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Abstract

Affect-driven cognitive biases can be used as an indicator of affective (emotional) state.

Since humans in negative affective states demonstrate greater responses to negatively-

valenced stimuli, we investigated putative affect-related bias in mice by monitoring their

response to unexpected, task-irrelevant stimuli of different valence. Thirty-one C57BL/6J

and 31 DBA/2J females were individually trained to return to their home-cage in a runway.

Mice then underwent an affective manipulation acutely inducing a negative (NegAff) or a

comparatively less negative (CompLessNeg) affective state before immediately being

tested in the runway with either an ‘attractive’ (familiar food) or ‘threatening’ (flashing light)

stimulus. Mice were subsequently trained and tested again (same affective manipulation)

with the alternative stimulus. As predicted, mice were slower to approach the light and spent

more time with the food. DBA/2J mice were slower than C57BL/6J overall. Contrary to pre-

dictions, NegAff mice tended to approach both stimuli more readily than CompLessNeg

mice, especially the light, and even more so for DBA/2Js. Although the stimuli successfully

differentiated the response of mice to unexpected, task-irrelevant stimuli, further refinement

may be required to disentangle the effects of affect manipulation and arousal on the

response to valenced stimuli. The results also highlight the significant importance of consid-

ering strain differences when developing cognitive tasks.

Introduction

A key goal in animal welfare science is to measure the affective (emotional) states of animals

since these are a major determinant of an individual’s well-being. Affective states are valenced

(i.e. they are positive or negative) and they comprise behavioural, neural, physiological and

subjective components [1]. The subjective ‘feelings’ component can be assessed via linguistic

report in humans, but this is not possible in non-human animals. Instead, we must assess ani-

mal affect only in terms of its other components, and infer (or not infer) the subjective compo-

nent according to other considerations (e.g. see [2]). In humans, self-reported affect is
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associated with variation in cognitive processes in the form of judgement, memory and atten-

tion biases. For example, people reporting negative affect make more negative judgements

about ambiguous events (e.g. [3,4]), pay more attention to threatening stimuli (e.g. [5–8]), and

recall more negative memories (e.g. [9,10]) than those reporting more positive affect (see [1]

for review). There is evidence for a similar relationship between affective valence (positivity vs

negativity) and judgement under ambiguity in animals ([11–15]); such ‘judgement biases’ can

thus be useful behavioural indicators of affective valence in animals.

Since the seminal work of Harding et al. (2004), methods for assessing cognitive judgment

biases in animals have been developed for a diverse range of species including rodents (see

reviews [16] and [17]), primates (e.g. [18,19]), birds (e.g. [20,21]) and invertebrates (e.g. [22–

27]). However, most of these methods require lengthy periods of discrimination training, in

which animals are taught to perform operant tasks to respectively access and avoid positively-

and negatively-valenced stimuli (e.g. Go/No-Go tasks). This can make such protocols imprac-

tical for assessing the affective states of large numbers of animals [28]. Additionally, a signifi-

cant proportion of individuals can fail to achieve rigorous discrimination in such tasks [29],

and negative experiences during training can influence the response to subsequent ambiguous

cues during testing [30]. Efforts have been made to refine protocols for measuring cognitive

judgement bias in animals, including by reducing the length of habituation and discrimination

training phases, using tasks involving positive rewards of differing value (and avoiding nega-

tive stimuli) (e.g. [31–33]), and designing tasks that take advantage of naturalistic stimuli or

behaviour (e.g. [30,34,35]). Nevertheless, many judgement bias tasks remain lengthy to train

(e.g. on average 27 trials [14], see also [33]) and implement.

Simpler and potentially quicker protocols in which individuals show enhanced or reduced

attention to particular stimuli according to affective state, show promise. Evidence of affect-

related attention biases have been suggested for both humans (e.g. see reviews [36–38]) and

other species (starlings: [39,40]; parrots: [41]; sheep: [28,42]; cattle: [43]; macaques: [44]).

Although there has been a lack of agreement about the cognitive mechanisms underlying these

biases in humans [3,37,45,46], it is widely agreed that high levels of anxiety and other negative

affective disorders are linked with a greater response (e.g. attention [36,45,47,48] and distracti-

bility [6,49,50]), specifically to task-irrelevant threatening stimuli. In contrast, people with

more optimistic reward expectancies (associated with positive affect [51]) show greater atten-

tional bias towards rewarding than punishing stimuli [52–54].

Measuring attention in humans often involves establishing how and when a stimulus is per-

ceived using linguistic report or by using behavioural or physiological indicators, such as eye

gaze or reaction time. Accurately identifying attention-related changes in such processes

becomes more difficult for non-human species, whose sensory and perceptual systems may

differ greatly from our own and can be difficult to interpret [55]. Using mice as a model spe-

cies, we therefore aimed to develop a simple and novel protocol for assessing affect-related

biases in their response to unexpected task-irrelevant stimuli that were designed to be either

mildly threatening (a bright flashing light) or mildly rewarding (a familiar food item).

Developing new, non-invasive tools for inferring affective state is of importance to animal

welfare scientists, neuroscientists and psychopharmacologists interested in the assessment of

animal affect. Validated measures of affective state can help to develop improved models and

treatment options for human emotional disorders [38,56], as well as providing additional

information regarding the structure and functions of animal affect, against which other mea-

sures of animal welfare can be compared. Mice represent the ideal species for the development

of such measures as they are the primary mammalian model for neuropsychological research

[57] and conducting an acute affective manipulation on this species in a controlled environ-

ment is relatively straightforward.

Responses of mice in opposite affective states to negative and positive stimuli
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Our objective in the present study was to develop a novel measure of cognitive bias in mice

by assessing their response to unexpected, task irrelevant stimuli (i.e. distractors) of differing

valence. We aimed to establish a protocol that would require minimal training and would be

transferrable to different strains of mice, and (following validation) to different species. We

therefore worked with two commonly used strains of laboratory mouse: C57BL/6J and DBA/

2J [58], which differ in their behaviour and apparent anxiety levels (with some differences

between studies: e.g. [59–64]) and their physical appearance (aiding identification in mixed-

strain housing refinement) and. Because females are at a significantly greater risk of developing

affect-related disorders in humans [65], we used female mice for this study (additionally,

females of both strains are known to be able to be mixed-housed with no detrimental impact

on welfare [66]).

We developed a runway task in which mice were trained to return to their home cage (posi-

tive reinforcer for mice [56,67]). Mice then underwent either a negative [68] or a compara-

tively less negative affect manipulation [69], immediately followed by a runway test in which a

mildly ‘threatening’ (flashing white light, which is preferentially avoided by mice) [70–72] or a

mildly ‘attractive’ (familiar food) [73] stimulus was unexpectedly added. Mice were subse-

quently subjected to a second test with the same affect manipulation as previously, but with

the opposite stimulus type. Given the putative difference between the two unexpected stimuli,

we hypothesized that mice would take longer to approach the flashing light than the food, and

spend more time in proximity to the familiar food than the flashing light. Drawing our predic-

tions from the phenomenon in humans, we expected that mice in a negative affective state

would be more attentive to (i.e. more distracted by) the ‘threatening’ light stimulus than mice

exposed to a comparatively less negative affective state manipulation. We thus predicted that

mice in a negative affective state would take longer to approach the light and to reach the

home-cage than those exposed to a comparatively less negative affective state manipulation.

Additionally, we predicted that mice exposed to a comparatively less negative affective state

manipulation would take less time to approach and spend more time consuming food than

mice in a negative affective state.

Materials and methods

Ethical statement

This study was conducted at the University of Bristol under UK Home Office Licence (PPL:

P2556FBFE). The Home Office application and all protocols used were given approval by the

University of Bristol Animal Welfare and Ethical Review Body. Animal use and care was in

accordance with the Animals (Scientific Procedures) Act 1986, EU directive 2010/63/EU and

UK Home Office code of practice for the housing and care of animals bred, supplied or used

for scientific purposes. All animals were weighed weekly and monitored daily throughout the

study for any health issues. At the end of the study (after 14 weeks), the animals were eutha-

nised by skilled technicians using a schedule 1 method, (concussion, immediately followed by

cervical dislocation and confirmation of death–the use of both methods ensured rapid loss of

consciousness).

Animals, housing and husbandry

Thirty-one female C57BL/6J and 31 female DBA/2J mice (Mus musculus; Charles River,

France) were housed in 31 highly enriched transparent cages (Techniplast, dimensions: 44cm

L x 34cm W x 20cm H) from three weeks of age (sample sizes based on power analyses using

data previously published in [66]). Upon arrival in the laboratory, each mouse was weighed

and one C57BL/6J (black) and one DBA/2J (brown) mouse of similar weight (+/- 2.5g) was

Responses of mice in opposite affective states to negative and positive stimuli
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pseudo-randomly (mouse selected at random, but matched with cage mate based on weight)

allocated to each cage, to avoid the possibility of cage effects confounding strain effects. In

addition, the mixed-strain housing enabled individual identification within pairs, removing

the need for invasive marking procedures. The cages contained sawdust (IPS), nesting mate-

rial, a cardboard shelter (13cm L x 13cm W x 13cm H, Little Cherry Ltd), a red igloo with a

running wheel (fast-trac, Datesand), two cardboard tubes (7.5cm L, ; 3.8cm, IPS), a transpar-

ent polycarbonate handling tunnel (13cm L, ; 5cm, Datesand), a flexible plastic tube (approxi-

mately 20cm long, ; 7.5cm, SnuggleSafe) which was attached to the cage lid, three aspen

gnawing blocks (two small: 5cm L x 1cm W x 1cm H, one large: 10cm L x 2cm W x 2cm H,

Datesand), two nestlets (Ancare, USA), a hammock (roughly 12 cm x 12 cm) made from a

sock attached to the lid, a sisal rope ladder and one half of a coconut shell (approximate

dimensions: 12.7cm L x 7.6cm W x 5cm H, Little Cherry Ltd) which was attached to the lid

with sisal rope. Other natural materials (two small pine cones, two wooden sticks (10cm L))

were sterilised in an autoclave before being added to each cage for additional enrichment. A

millet spray and one cob of dried corn (Pets at Home) was attached to the lid of each cage.

Food treats (e.g. oatmeal crisps with maple syrup, Pets at Home) were given on a daily basis in

the home cage. Food (LabDiet) and water were available ad-libitum and animals were kept

under a 12hr reversed light-dark cycle (lights on 1900–0700). All cages were housed within

three Scantainers (Scanbur BK) in the home room and were cleaned every four weeks. Tem-

perature (Mean ± SEM, 20.9± 0.5˚C) and relative humidity were controlled at the room level

(Scantainers used as shelving units with doors open) and were checked daily.

Handling habituation

During the first four weeks, mice were gradually habituated to both the presence of the experi-

menters (5 sessions) and to tunnel handling [68,69,74] (13 sessions). During handling, experi-

menters always wore gloves and a white laboratory coat. Each cage was removed from the

Scantainer and placed on a trolley in the centre of the home room, where handling took place.

At all times, mice were handled using the polycarbonate tunnel from their home cage, follow-

ing a validated method shown to reduce stress in laboratory mice [68,69,74]. To initially

encourage mice into the tunnel, a few droplets of condensed milk (Carnation, Nestle) were

dropped in the centre of the tunnel and smeared in a semicircle to allow both mice simulta-

neous access. One familiar food treat was given to each mouse following habituation / han-

dling sessions. Each individual mouse’s progress was assessed and recorded on a daily basis

(monitoring behaviour during habituation and handling until they reached the criteria: “confi-

dently entered handling tunnel without encouragement and lifted out of the cage”). All han-

dling and subsequent testing took place during the active (dark) phase (between 0900–1800),

under red light.

Test apparatus and training

The test apparatus consisted of a long white plastic runway (200cm L x 7cm W x 5.5cm H)

which connected a start-box (33cm L x 15cm W x 10cm H) to the home cage (see Fig 1a) and

was located in a testing room, which was isolated from the home room. A guillotine door sepa-

rated the start-box from the rest of the runway. The runway was covered with a fine plastic

mesh to ensure that the mice could not escape. They were first habituated to the test apparatus

in pairs (i.e. cage mates) over three daily sessions. During paired habituation, both mice were

moved (using the tunnel) into the start-box and the guillotine door was raised (approximately

10s later) and remained open to allow exploration of the apparatus. In the first two sessions the

lid of the home cage was removed to allow the mice to re-enter it directly, but in the third

Responses of mice in opposite affective states to negative and positive stimuli
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session the home cage lid was closed and mice were transferred back to their home cage using

the tunnel once they had made their way back to the home-cage end of the runway. The ses-

sion ended when both mice had returned to the home cage or after 10 minutes had elapsed.

Between sessions, the apparatus was cleaned with 70% ethanol.

After these three paired habituation daily sessions, runway training continued individually

(training phase). During training, the mouse’s cage-mate was contained within the home cage

at the end of the runway. On reaching the lid of the home cage, the mouse was caught in the

handling tunnel and transferred back to the home cage. Each individual was given six training

sessions (one per day). Latency to reach the home cage was recorded live for every trial. Cages

of mouse pairs were tested in a pseudo-random order (using six predefined sequences to ensure

each vertical Scantainer column and each shelf within each Scantainer were alternatively bal-

anced), and the order that the cage mates were tested in was alternated across sessions.

Testing and affective manipulation

The experimental timeline is outlined in Fig 1b.

Fig 1. Runway set-up for test and experimental procedure. (A) Shows obstacle (orange egg carton) location and stimulus

presentation area (location S) which was positioned at 118cm from the start-box door. Mice were exposed to either a familiar

food or flashing light stimulus. All tests were conducted under red ambient light. (B) Experimental procedure and timeline.

https://doi.org/10.1371/journal.pone.0226438.g001
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On the day following the last training session, and immediately prior to the first test session,

each mouse underwent an affective manipulation (either Negative: NegAff (N = 15 cages) or

comparatively less negative: CompLessNeg (N = 16 cages)), which was pseudo-randomly allo-

cated by an independent, naïve experimenter to each cage of mice (equally spreading NegAff

and CompLessNeg affective state manipulation treatments within each vertical Scantainer col-

umn and within each shelf within each Scantainer). Cage mates were tested consecutively with

the same affective manipulation (either NegAff or CompLessNeg), and the order cage mates

were tested was alternated across tests. The NegAff manipulation involved an unfamiliar

experimenter (CR, ‘negative’ handler) removing the test mouse from the home cage by picking

it up at the base of the tail, which has been shown to be more aversive than handling using the

tunnel [68] and isolating it for 1 minute in a small unfamiliar, barren gravel-bedded (preferen-

tially avoided substrate, Fureix unpublished data) transparent box (15cm L x 10.5cm W x

10.5cm H; gravel: premium aquarium gravel, Pets at Home). Animals in the CompLessNeg

condition were removed from the home cage using the tunnel following the same procedure

as in habituation and training sessions by a familiar experimenter (AT, ‘less negative’ handler).

Following these affective manipulations, each mouse was placed by its respective handler into

the start-box of the runway apparatus to begin the test. The handler then left the room and

remained blind to the stimulus used in the subsequent test. It was not possible to blind the test

observer to the stimulus used in each test, but we subsequently conducted a reliability assess-

ment on a subset of the latency data using a second naïve observer (Intraclass correlation coef-

ficient = 0.998, df = 61, p<0.001).

By the end of the training phase, most mice quickly traversed the runway (median runway

time for sixth training session: 9s, range: 5-24s). During testing, an unfamiliar obstacle was

placed within the runway (a piece of a plastic egg tray 8.5cm L x 10cm W x 5cm H, 110cm

away from the start-box–see Fig 1a), which served as a location marker for the unexpected sti-

muli (familiar food, N = 32 mice; flashing light, N = 30 mice), but also slowed mouse runway

speed to ensure mice paid attention to the stimuli, which were situated at 118cm along the run-

way. The food was familiar condensed milk and a crumbled biscuit treat contained within a

6.5 x 6.5cm familiar plastic tray, and the light was a flashing white light beam (EverBrite),

which has been previously used as a mild stress inducer for mice [70]. The stimulus type allo-

cated to each mouse pair during this first test was pseudo-randomly pre-determined to ensure

that the stimuli type was equally spread across shelves and columns within each Scantainer–i.e.

to ensure all mice receiving food first were not clustered within a particular Scantainer location

assigned by a blind experimenter. At the start of the test, the guillotine door of the start-

box was raised as in training sessions, allowing the mouse to run to the home cage. Once the

mouse had reached the end of the runway, the ‘less negative’ handler entered the room and

carefully returned the mouse to the home cage using the handling tunnel. The test apparatus

and obstacle were cleaned with 70% Ethanol after each test.

On the day following testing, mice began training in the runway apparatus again with no

stimuli or obstacle present and this continued for six further sessions. A second test was then

conducted, exposing each mouse to the alternative stimulus (i.e. light if first exposed to food or

vice-versa), but combined with the same affective manipulation it was exposed to previously

(see Fig 1b).

Runway latency measures

Each mouse’s latency to return to the home cage from the time the guillotine door of the start

box was fully raised was extracted for all trials (Fig 1a). To control for inter-individual differ-

ences in running speed, we calculated for each mouse its corrected runway latency for each

Responses of mice in opposite affective states to negative and positive stimuli
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test, i.e. the ratio of its test latency to its median latency during the six previous trials with no

stimulus (either training for test 1 or re-training for test 2). For test sessions only, we also cal-

culated the latency to approach the obstacle (adjacent to the stimulus presentation area–but

removing the confound of time taken to cross the obstacle) and the time spent within the stim-

ulus presentation area (S: Fig 1a).

All habituation, training, re-training and test sessions were video recorded using CCTV

cameras (Swann; Quadrox Software). To ensure observer blinding, a tracking software tool

(USE Tracker– www.usetracker.org) was used on test trials to extract the time spent in the

stimulus presentation area. We planned to also use the tracking software to extract the latency

to approach the obstacle and return to the home cage. However, visual inspections revealed

that the obstacle and the home-cage goal line occasionally interfered with mouse detection in

these zones, and we therefore relied on the manually-collected latencies for these two measures

(Reliability Intraclass correlation coefficient = 0.998, df = 61, p<0.001).

On two occasions during training sessions (out of a total of 744 training and re-training tri-

als), one mouse attempted to escape through the netting above the runway and the trial had to

be stopped. Data collected during these trials were excluded from the following analyses. On

four occasions (out of 124) during tests, the mouse failed to reach the home cage within the

allotted 10min. For these trials a maximum latency of 600s was assigned.

Statistical analysis

Data were analysed using R version 3.3.2 (R Core Team, 2016). Models were fitted using the

package lme4 [75]. We constructed generalized linear mixed models with random intercepts,

but fixed slopes. Within each model, cage and mouse were included as random effects (mouse

nested within cage). Unexpected stimulus type (i.e. food or light), order of stimulus presenta-

tion (i.e. being tested first with food or light), affect manipulation (tunnel handling or tail han-

dling plus isolation), strain (C57BL/6J or DBA/2J), stimulus�affect interaction, and the 3-way

stimulus�affect�strain interaction were included as fixed effects. For each model, the assump-

tions of parametric testing were checked using Shapiro-Wilk normality tests on the residuals.

Due to the exaggerated right-skew of the data, gamma distribution, rather than normal distri-

bution models best represented the data and are presented throughout the Results section.

Likelihood ratio tests were used to compare the full model, with models excluding each fixed

term of interest. This allowed us to determine the significance of the term by measuring the

deviance from the full model, using the Χ2 distribution.

Results

As predicted, there were significant main effects of stimulus type: mice took longer to leave the

start box and approach the obstacle/stimulus when the light was present than when food was

presented (Χ2
(5) = 13.41, p = 0.020) (Fig 2), and spent longer in the presence of the food than

the light (Χ2
(5) = 31.49, p<0.001) (Fig 2). Perhaps due to these opposing effects, stimulus type

had no significant effect on the corrected latency to reach the home cage (Χ2
(5) = 3.86,

p = 0.570) (Fig 2).

We also found, as expected, a significant main effect of strain: DBA/2J mice were slower to

approach the obstacle, regardless of which stimulus was present (Χ2
(4) = 19.79, p<0.001) (Fig

3), spent longer in the presentation area (Χ2
(4) = 66.21, p<0.001) (Fig 4) and were slower to

reach the home cage (Χ2
(4) = 31.44, p<0.001) than C57BL/6J mice (Fig 5).

Latencies to approach the obstacle tended to be shorter (though not statistically significantly

so) following NegAff manipulations (Χ2
(5) = 10.36, p = 0.066) especially with the light stimulus

(2-way interaction, Χ2
(4) = 9.50, p = 0.050), particularly for DBA/2J mice (3-way interaction,
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Fig 2. Least mean squares (s) +/- 95% confidence interval during tests split by stimulus type (either light or food).

(A) Latency to approach the obstacle (adjacent to the stimulus presentation area), (B) time spent within the stimulus

presentation area and (C) corrected latency to reach the home cage ‘Corrected latency’ is the ratio for each mouse of its

test latency to its median latency during the six prior trials with no stimulus (either training for test 1 or re-training for

test 2). Mice took longer to approach the obstacle with the light than the food stimulus (Χ2
(5) = 13.41, p = 0.020) and

spent longer in the presence of the food than the light (Χ2
(5) = 31.49, p<0.001), but latency to reach the home cage did

not significantly differ between stimuli (Χ2
(5) = 3.86, p = 0.570).

https://doi.org/10.1371/journal.pone.0226438.g002
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Χ2
(3) = 8.50, p = 0.037) (Fig 3). No significant main or interaction effect of affect manipulation

was observed on the time spent in the presence of the two stimulus types (affect manipulation

main: Χ2
(5) = 6.66, p = 0.245; affect�stimulus: Χ2

(4) = 5.59, p = 0.232; affect�stimulus�strain

interaction: Χ2
(3) = 4.11, p = 0.249) (Fig 4). Moreover, contrary to the prediction that mice in a

relatively negative affective state would be more sensitive to the light stimulus than mice

exposed to a comparatively less negative affective state manipulation, we found no significant

effect of affect manipulation (Χ2
(5) = 2.10, p = 0.835), affect�stimulus type (Χ2

(4) = 2.10,

Fig 3. Latency to approach the obstacle split by strain (C57: C57BL/6J or DBA: DBA/2J), affect manipulation (negative: NegAff or

comparatively less negative CompLessNeg), and stimulus type (either light or food) (s) (Least Mean Squares) +/- 95% Confidence Interval.

DBA/2J mice took longer to approach overall than C57BL/6J mice (Χ2
(4) = 19.79, p<0.001), and latencies to approach tended to be shorter

following NegAff manipulations (Χ2
(5) = 10.36, p = 0.066), especially with the light stimulus and even more so in DBA/2J mice (Χ2

(4) = 9.50,

p = 0.050).

https://doi.org/10.1371/journal.pone.0226438.g003

Fig 4. Time spent within the stimulus presentation area split by strain (C57: C57BL/6J or DBA: DBA/2J), affect manipulation (negative:

NegAff or comparatively less negative CompLessNeg), and stimulus type (either light or food) (s) (Least Mean Squares) +/- 95%

Confidence Interval. Mice spent longer in the stimulus presentation area with the food compared to the light (Χ2
(5) = 31.49, p<0.001), and

DBA/2J mice spent longer within the stimulus presentation area than C57BL/6J mice (Χ2
(4) = 66.21, p<0.001); no other significant effect was

observed.

https://doi.org/10.1371/journal.pone.0226438.g004
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p = 0.717) or strain�affect�stimulus type (Χ2
(3) = 2.06, p = 0.560) on the corrected latency to

reach the home cage (Fig 5).

Discussion

We aimed to develop a novel measure of cognitive-bias by determining the response of mice

(whose affective state was experimentally manipulated) to unexpected task-irrelevant stimuli.

We expected mice to take longer to approach the light stimulus than the food and to spend

more time in the proximity of the food than the light (this, we hypothesized, would be due to

an avoidance reaction induced by the aversive nature of the light stimulus, and an approach

reaction due to the positive nature of the familiar food). Additionally, we predicted that

induced differences in the affective states of mice would generate affect-related cognitive biases

and thus modulate their responses to the stimuli. We therefore predicted that mice in a nega-

tive affective state (NegAff) would be more sensitive to the light (take longer to approach and

to reach the home-cage) than those exposed to a comparatively less negative affective state

manipulation (CompLessNeg). Furthermore, we expected NegAff mice to take more time to

approach and spend less time consuming food than CompLessNeg mice. Our predictions

were partially supported, with mice taking longer to approach the light and spending less time

with it, but we found no significant influence of affective manipulation on their response to

the stimuli.

The runway task successfully induced differential effects in response to the stimuli. As pre-

dicted, mice were slower to approach the obstacle when the light was present than when food

was present, and were less likely to remain in the stimulus presentation area (i.e. transitioning

through this area more quickly) when the light was present compared to when the food was

present. Stimulus type however had no significant effect on the overall runway latency. It is

likely that the runway latency was not a sensitive enough measure to detect differences because

the opposing effects on latency at different areas of the runway counteracted each other (for

both stimuli), resulting in no observed difference in overall transit time. A task refinement

could be to present both stimuli simultaneously to identify which stimulus the mouse

Fig 5. Corrected latency to reach the home cage split by strain (C57: C57BL/6J or DBA: DBA/2J), affect manipulation (negative: NegAff or

comparatively less negative: CompLessNeg), and stimulus type (either light or food) (s) (Least Mean Squares) +/- 95% Confidence Interval.

‘Corrected latency’ is the ratio for each mouse of its test latency to its median latency during the six prior trials with no stimulus (either training

for test 1 or re-training for test 2). DBA/2J mice had longer corrected latency to reach the home cage than C57BL/6J mice (Χ2
(4) = 31.44,

p<0.001); no other significant effect was observed.

https://doi.org/10.1371/journal.pone.0226438.g005
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approaches and investigates more readily. Additionally, the light stimulus may have presented

more obvious visible cues than the food when mice were in the start-box, although we

expected that the food would provide an olfactory cue. This could account for the slower

approach time to the light, but not the lack of difference in overall runway latency. Future

work could aim to use stimuli which provide equally salient visual and olfactory cues.

Although the two stimuli used in the task were successful in producing the predicted

responses, we are less certain about the efficacy of the affective manipulations used. The only

near-significant influence of affect manipulation (and significant interaction) was that mice

(particularly DBA/2Js), were slower to approach both stimuli (particularly the light) following

the comparatively less negative affective state manipulation. This might be in line with the

report that humans in a comparatively positive affective state can demonstrate non-specific

attention broadening towards task irrelevant information [76,77], perhaps because the envi-

ronment is perceived as safe to explore [77], but does not match with greater attentional bias

towards rewarding than punishing stimuli observed in people with more optimistic reward

expectancies [52–54]. We also expected NegAff mice to take longer to approach (and spend

less time with) the light than CompLessNeg mice. It is possible that the handling treatments

were not effective at inducing acute relatively positive and negative affective states. However,

we chose acute handling manipulations because they have previously been shown to induce

differential anxiety-like states in mice [68,69,72, though see 78]. For example, Clarkson et al.

[79] found that following tail handling, C57BL/6J mice showed increased anxiety-like behav-

iours in potentially threatening situations compared with mice that were tunnel handled. In

Clarkson et al.’s study (and others) however, the handling method was repeated over several

days (10 days in [79]) and in our current study the affective manipulation was only applied

once directly before each test. At all other times during training and habituation all mice were

handled using their home cage tunnel. Perhaps chronic or repeated manipulations would be

necessary to induce affect-related bias in their response towards stimuli in this task. Similarly,

in the human literature (on which we based our predictions), the induction of mood states was

more prolonged [80] than in our current study, which could account for the dissimilarity

between our predicted and observed results.

An alternative explanation for the unexpected influence of affect is that a higher level of

arousal, as a result of the tail handling in the NegAff mice, led to enhanced activity (hence

shorter obstacle approach speed) compared to CompLessNeg mice who underwent a gentler

handling procedure. It is also possible that the NegAff mice were experiencing “relief” from

returning to the familiar runway, following isolation in the gravel-bedded box and thus might

have been in a more positive affective state during the task than predicted (see [81]). Addition-

ally, if tail handling is aversive, the NegAff mice could have been attempting to flee more

quickly from the start-box where they were placed immediately after handling.

Overall, we found significant differences in the behaviour of the two strains of mice during

the runway test. On average, DBA/2J mice took longer to complete the runway, approach the

obstacle and spent longer within the stimulus presentation area than C57BL/6J mice. Previous

studies have found that DBA/2J mice have up to a 30% higher basal metabolic rate and a 0.7˚C

higher core temperature than C57BL/6Js [82] and that they consume more food in free access

tests [83–85], which may explain why they spent longer with the food than C57BL/6Js (because

they value food more highly). Moreover Crawley et al.’s (1997) review [64] suggests that

C57BL/6J mice typically show more open field locomotion and lower levels of anxiety-like

behaviour when compared with DBA/2J mice, even though general strain differences vary

between studies [60–64]. Our findings that the DBA/2J mice show longer approach and overall

runway latencies could thus also be explained by strain differences in anxiety-like states and/or

locomotor tendencies.
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Although this task has potential for detecting affect-related variation in response to stimuli

in mice, there are several theoretical issues which need to be resolved before it can be devel-

oped further. Firstly, the influence of negative affective states on cognition has been more

intensively studied than the influence of comparatively more positive affective states, and fur-

ther research into the interaction between positive affective state and stimulus type in humans

is important to advance this field and is relevant to anyone interested in the assessment of

either human or animal affect. In addition, significant differences exist between the tasks

which have been developed to assess human responses to stimuli and the task we developed

here. Human tasks generally use highly focused measures of attention (e.g. reaction times, gaze

direction [86]), whereas few studies have attempted this for animals given the practical difficul-

ties of taking such measures (although see [87–89]). An example of a more focussed beha-

vioural measure which could be used in addition to latency would be investigating and

sniffing, however this would require more detailed video footage of mice than we had access

to. Differences in results between human and non-human tasks could therefore be attributed

to the lack of focussed measures of attention in the mice.

In addition to the theoretical issues, practical refinement of the task would involve using

the obstacle [currently used as a marker during the tests for the stimulus presentation area in

the runway] from the beginning of the training phase. This would restrict the novelty of the

testing situation to the stimuli per se, and enable correction for individual differences in moti-

vation not only when analysing the overall latency to reach the home cage (as we did here), but

also the measures related to specific areas of the runway, i.e. the stimulus approach latencies

and the time spent in the stimulus presentation area.

To summarise, we have developed a task which successfully differentiated the response of

mice to unexpected, task-irrelevant stimuli (i.e. mice were slower to approach the ‘aversive’

light and spent more time with the ‘attractive’ food), but no clear effect of affect manipulation

was observed. Indeed, although we found that following a comparatively more negative affect

manipulation, mice tended to be faster to approach the stimuli, particularly the mildly aversive

light (and even more so in DBA/2J mice), we found no other effects of affect manipulation.

We therefore suggest that theoretical and practical improvements could be made, and con-

clude that a more prolonged affective state manipulation may be required to dissect the roles

of affect and arousal in driving these results. Additionally, we found that the two strains of

mice tested behaved differently under test conditions and this should be considered when

developing future affective-bias tasks.
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