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Topological indices are indispensable tools for analyzing networks to understand the underlying topology of these networks.
Spiking neural network architecture (SpiNNaker or TSNN) is a million-core calculating engine which aims at simulating the
behavior of aggregates of up to a billion neurons in real time. Tickysim is a timing-based simulator of the interchip in-
terconnection network of the SpiNNaker architecture. Tickysim spiking neural network is considered to be highly symmetrical
network classes. Classical degree-based topological properties of Tickysim spiking neural network have been recently determined.
Ev-degree and ve-degree concepts are two novel degrees recently defined in graph theory. Ev-degree and ve-degree topological
indices have been defined as parallel to their corresponding counterparts. In this study, we investigate the ev-degree and ve-degree
topological properties of Tickysim spiking neural network. These calculations give the information about the underlying topology

of Tickysim spiking neural network.

1. Introduction

Biological neurons use signals that are known as action
potentials, membrane potentials, or spikes in short and
sudden increments to transmit information to neighboring
neurons. Spiking neural network (SNN), a special class of
artificial neural networks, communicates with the spikes of
the neuron models. Spiking neural network systems are a
class of parallel neural-like computing and distributed
models which are inspired from the way neurons com-
municate by means of spikes. Significant amounts of data
can be processed by networks of spiking neurons, using
relatively few spikes [1]. Spiking models that provide
powerful tools for the analysis of basic operations, in-
cluding neural information processing, plasticity, and
learning in the brain, are very similar to biological neurons.
In practical engineering, solutions for a wide variety of
specific problems, such as fast signal processing, event
detection, classification, speech recognition, spatial navi-
gation, or motor control, are provided by spiking networks
[2]. SNN has also been shown to be more computationally

stronger than sensors and sigmoidal gates [3]. SNNs in
neuromorphic hardware show positive characteristics such
as low power consumption, rapid extraction, and event-
based information processing. This makes them interesting
candidates for the efficient application of deep neural
networks, the preferred method for many machine learning
tasks [4].

Spiking neural network architecture (SpiNNaker or
TSNN) is a million-core calculating engine which aims at
simulating the behavior of aggregates of up to a billion
neurons in real time. Tickysim is a timing-based simulator of
the interchip interconnection network of the SpiNNaker
(TSNN) architecture. Tickysim spiking neural network is
considered to be highly symmetrical network classes. For an
overview of the SpiNNaker system architecture, we refer the
interested reader to reference [5]. Quaternary synapses
network for memristor-based spiking convolutional neural
networks has been investigated in [6]. Spiking neural p
systems with learning functions have been proposed in [7].
Spiking neural networks for handwritten digit recognition-
supervised learning and network optimization has been
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investigated in [8]. Generalized matrix inverse on spiking
neural substrate has been calculated in [9].

Neuromorphic computing is very important in view of
the data processing, machine learning, and artificial in-
telligence. This computing gives information about the
underlying topology of neural networks. Among these
computations, the computation of classical degree-based
topological properties of the Tickysim spiking neural net-
work has newly been investigated in [10]. In this study, we
investigate the ev-degree and ve-degree topological prop-
erties of the Tickysim spiking neural network as a contin-
uation of the study [10].

The graph of a Tickysim spiking neural network sheet is
shown in Figure 1. The number of vertices in the Tickysim
spiking neural network is represented as m x n.

Ev-degree and ve-degree concepts are two novel degrees
recently defined in graph theory [11]. Ev-degree and ve-
degree topological indices have been defined as parallel to
their corresponding counterparts [12-15].

2. Preliminaries

In this section, we give some basic and preliminary concepts
which we shall use later. A graph G=(V, E) consists of two
nonempty sets V and 2-element subsets of V, namely, E. The
elements of V are called vertices, and the elements of E are
called edges. For a vertex v, deg(v) shows the number of
edges that is incident to v. The set of all vertices which is
adjacent to v is called the open neighborhood of v and
denoted by N(v). If we add the vertex v to N(v), then we get
the closed neighborhood of v, N[v]. And now, we give the
definitions of ev-degree and ve-degree concepts which were
given in [11].

Definition 1 (ve-degree). Let G be a connected simple graph
and v € V(G). The ve-degree of the vertex v, deg,.(v), equals
the number of different edges that is incident to any vertex
from the closed neighborhood of v.

We also can restate Definition 1 as follows: Let G be a
connected simple graph and v € V(G). The ve-degree of the
vertex v is the number of different edges between the other
vertices with a maximum distance of two from the vertex v.

Definition 2 (ev-degree). Let G be a connected graph and
e=uv € E(G). The ev-degree of the edge e, deg.,(e), equals the
number of vertices of the union of the closed neighborhoods
of u and v.

The authors in [11] also can give the Definition 2 as
follows: Let G be a connected graph and e=uv € E(G). The
ev-degree of the edge e, deg,,(e) = degu + degv—n,, where n,
means the number of triangles in which the edge e lies in.

Definition 3 (ev-degree Zagreb index). Let G be a connected
graph and e =uv € E(G). The ev-degree Zagreb index of the
graph G defined as
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FiGure 1: Graph of the Tickysim spiking neural network for
m=n=12.

MY (G) = ) deg,e’. (1)
ecE(G)

Definition 4 (the first ve-degree Zagreb alpha index). Let G be
a connected graph and v € V(G). The first ve-degree Zagreb
alpha index of the graph G defined as

M (G) = ) deg, . )

veV (G)

Definition 5 (the first ve-degree Zagreb beta index). Let G be
a connected graph and uv € E(G). The first ve-degree Zagreb
beta index of the graph G defined as

M’/fve (G) = Z (deg,.u + deg,.v). (3)
uveE (G)

Definition 6 (the second ve-degree Zagreb index). Let G be a
connected graph and uveE(G). The second ve-degree
Zagreb index of the graph G defined as

MY (G) = Z deg,.udeg, . v. (4)
uveE(G)

Definition 7 (ve-degree Randic index). Let G be a connected
graph and uv e E(G). The ve-degree Randic index of the
graph G defined as

R™(G) = Z (degveudegvev)_llz. (5)

uveE (G)

Definition 8 (ev-degree Randic index). Let G be a connected
graph and e =uv € E(G). The ev-degree Randic index of the
graph G defined as
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TaBLE 1: The ev-degree of the edges of the Tickysim spiking neural
network.

TaBLE 2: The ve-degree of the vertices of the Tickysim spiking
neural network.

Number of edges Degrees of its end vertices ~ Ev-degrees Number of vertices Degrees Ve-degrees
4 (2,4) 5 2 2 9
4 (3,4) 6 2 3 16
2 (3,6) 7 4 4 16
2 (4,4) 6 4 4 21
2m+2n—12 (4,4) 7 2m+2n-16 4 23
4m + 4n—20 (4,6) 8 2 6 26
3mn—-8m—8n+ 21 (6,6) 10 2 6 29
8 6 34
2m—12 6 35
ev _ -1/2 2n—12 6 36
R7(@) = eeEZ@ degeve (6)  mm—am-4an+16 6 42

Definition 9 (ve-degree atom-bond connectivity index). The
ve-degree atom-bond connectivity (ve-ABC) index for a
connected graph G defined as

’degVe (u) + deg,. (v) -2
deg,. (u) x deg,. (v)

ABC*(G) = )
uveE(G)

(7)

Definition 10 (ve-degree geometric-arithmetic index). The
ve-degree geometric-arithmetic (ve-GA index) for a con-
nected graph G defined as

2+/deg,. (1) x deg,. (v)

GA™(@)= D )+ deg. (1)

uveE (G)

(8)

Definition 11 (ve-degree harmonic index). The ve-degree
harmonic (ve-H) index for a connected graph G defined as

2
uveE (G) degve (u) + degve (V)

H™(G) = (9)

Definition 12 (ve-degree sum-connectivity index). The ve-
degree sum-connectivity (ve-y) index for a connected graph
G defined as

1 (G) = Z (deg,. () + deg,, (v))_”z. (10)

uveE (G)

3. Results

We know that the Tickysim spiking neural network has m x
n vertices and 3mn—2m—2n+ 1 edges. With the help of
Figure 1 and Table 1, we give the ev-degree partition of the
edges of the Tickysim spiking neural network.

And from Tables 2 and 3, we give the ve-degree partition
of the vertices of the Tickysim spiking neural network.

The ev-degree and ve-degree topological indices of the
Tickysim spiking neural network are given in Table 4.

TaBLE 3: The ve-degree of the end vertex of edges of the Tickysim
spiking neural network.

Number of edges Degrees of its end Ve-degrees of its end

vertices vertices
4 (2,4) (9,16)
4 (3,4) (16,21)
2 (3,6) (16,29)
2 (4,4) (16,16)
2 (4,4) (16,23)
2 (4,4) (21,23)
2m+2n-16 (4,4) (23,23)
4 (4,6) (16,26)
4 (4,6) (21,29)
4 (4,6) (23,26)
2 (4,6) (21,34)
4 (4,6) (23,34)
2m (4,6) (23,35)
2m + 4n— 38 (4,6) (23,36)
4 (6,6) (26, 34)
4 (6,6) (29, 34)
2 (6,6) (34, 34)
2 (6,6) (29,42)
12 (6,6) (34,42)
4 (6,6) (34, 35)
2m—12 (6,6) (35,35)
4 (6,6) (34, 36)
2n—14 (6,6) (36, 36)
m (6,6) (35,42)
n (6,6) (36,42)
3mn—11lm—-11ln+ 15 (6,6) (42,42)

And we begin to compute ev-degree and ve-degree topological indices.

4. Conclusions

Neuromorphic computing is very important in view of the
data processing, machine learning, and artificial in-
telligence. This computing gives information about the
underlying topology of neural networks. Among these
computations, the computation of the ev-degree and ve-
degree topological properties of Tickysim spiking neural
network provided the information about the underlying
topology of the Tickysim spiking neural network. The other
well-known topological indices values of the Tickysim
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spiking neural network are interesting for further studies.
Also, the mathematical properties of ev-degree and ve-
degree topological indices have not been studied so far. In
this regard, the mathematical properties are worth to in-
vestigate for future studies.

Appendix
The Calculations in Table 4

The following calculations (A.1)-(A.10) were made by using

Figure 1, Tables 1, 2, and 3, and the definitions of ev-degree
and ve-degree topological indices:

MY(TSSN) = ) deg, e’ = 4x5° + 4x6” + 2x7° + 2x6” + (2m + 21— 12)x7° + (4m + 4n - 20)x8’
e€E (TSSN) (A1)
+ (3mn—8m —8n + 21)x10* = 300mn — 446m — 446n + 354,
M (TSSN) = )" deg,v* = 2x9” + 2x16° + 4x16” + 4x21° + (2m + 2n - 16)x23” + 2x26” + 2x29° + 8x34>
veV (TSSN) (A.2)
+(2m —12)x35° + (2n—12)x36" + (mn — 4m — 4n + 16)x42* = 1764mn — 3548m — 34061 — 5252,
ME (TSSN) = (deg,.u + deg,.v) = 4x25 + 4x37 + 2x45 + 2x32 + 2x39 + 2x44 + (2m + 2n — 16)x46
uveE (TSSN)
+ 4x42 + 4x50 + 4x49 + 2x55 + 4x57 + 2mx58 + (2m + 4n — 38)x59 + 4x60 + 4x63 + 2x68 (A.3)
+2x71 + 12x76 + 4x69 + (2m — 12)x70 + 4x70 + (2n — 14)x72 + mx77 + nx78
+ (Bmn—11m—11n+ 15)x84 = 252mn —381m — 374n + 142,
M (TSSN) = deg . udeg v = 4x9x16 + 4x16x21 + 2x16x29 + 2x16x16 + 2x16x23 + 2x21x23
uveE (TSSN)
+(2m + 2n—16)x23x23 + 4x16x26 + 4x21x29 + 4x23x26 + 2x21x34 + 4x23x34 + 2mx23x35
+ (2m + 4n—38)x23x36 + 4x26x34 + 4x29x34 + 2x34x34 + 2x29x42 + 12x34x42 + 4x34x35 (A4)
+ (2m —12)x35x35 + 4x34x36 + (2n — 14)x36x36 + mx35x42 + nx36x42
+ (Bmn—11m—11n + 15)x42x42 = 5292mn — 11160m — 109301 + 8760,
_ 4 4 2 2 2
R (TSSN) = deg. udeg v)"* = + + + +
(TSSN) i Tss (degetidegeet) ™ = 516 " Vioxal * ViexD * ViexTs ® vaxTe
2 2m+2n—16 4 4 4 2 4
+ + + + + + +
V21x23 V23x23 V16x26 V21x29 23x26 /21x34 +/23x34
2m 2m+4n—38 4 4 2 2 12
+ + + + + + +
V23x35 V23x36 V26x34 29x34 /34x34 /29x42 +/34x42
4 2m—12 4 2n—14 m n 3mn—-1lm—-11ln+ 15
+ + + + + + + , (A.5)
\34x35 +/35x35 /34x36 +/36x36 +/35x42 /36x42 V42x42
_1+1+1+1+1+2+2m+2n—16+1+4+4+2+4
321 2429 8 2423 /483 23 V26 V609 /598 714 /782
2m  2m+4n—38 2 4 1 2 6 4 2m—12 2 n—-7
+ + + + +—+ + + + + +
\/805 623 V221 /986 17 /1218 /357 /1190 35 3434 18
m n 3mn—-11lm—-11n+ 15
+ + + ,
74/30 642 42
4 4 2 2 2m+2n-12 4m+4n-20 43mn—-8m—8n+ 21
R® (TSSN) = deg V2= 2, 2 2
R AR AR A 5 VIO
(A.6)
4 N 6 +2m+2n—10 dm+4n—-20 43mn—-8m—-8n+ 21
V56 V7 V8 V10 ’
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e ldeg, (1) +deg,, () -2 4vZ3  4v35  2vA3 230  2V37 | 2V@Z
ABC™(TSSN) = ) = + + + +
e BTSN \1 deg,. (1) x deg,. (v) Vox16  V16x21 +16x29 +/16x16 +/23x16 +/21x23

+(2m+2n—16)\/ﬂ+ 4/40 . 4+/48 s 4/47 . 2+/53 s 4+/55 +2m\/%
\23x23 V16x26  +21x29  23x26 21x34 /23x34  +/23x35
+(2m+4n—38)\/§Jr 4+/58 . 4+/61 . 2+/66 . 24/69 . 12\/ﬂ+ 4/67
\23x36 V26x34 29x34 +/34x34 +/29x42 +/34x42 /34x35
+(2m—12)\/8§+ 4+/68 +(2n—14)\/%+ m\75 . n\76 +(3mn—11m—11n+15)\/8_2 (A.7)
\/35x35 \/34x36 \/36x36 \35x42  /36x42 V42x42
:@+@+@+@+ V37 +2\/ﬁ+2(2m+2n—16)m+2\/ﬁ+16\/§+4\/E
3 421 2429 8 2423 /483 23 V26 /609 /598
+2\/§§+4\/§+2m\/%+(2m+4n—38)\/§+2\/§§+4\/ﬁ+@+ 2\/@+@
V714 /782 +/805 623 V221 /986 17 /1218 /357
. 467 +2(2;qf1—12)\/ﬁ+4\/ﬁ+ (n—7)\/%+5m\/§+2\/ﬁn+ (3mn—11m—11n + 15)/82
\/1190 35 3+/34 18 7430  6V42 42 ’

2
GA™ (TSSN) = Z \Jdeg,. (u) x deg,. (v) _ 4x2+/9x16 . 4x4~/16x21 N 2x24/16x29 . 2x2+/16x16
uveB (TSSN) deg,. (1) + deg,. (v) 25 37 45 32

s 2x2/23x16 . 2x24/21x23 . 2x(2m + 2n—16)+/23x23 .\ 4x2/16x26 . 4x2~/21x29
39 44 46 42 50
4x2~/23x26 . 2x2~/21x34 . 4x2~/23x34 ) 2mx2+/23x35 . (2m + 4n—38)x2~/23x36
49 55 57 58 59
s 4x2~/26x34 . 4x2~/29x34 . 2x2+/34x34 . 2x2~/29x42 . 12x2~/34x42 . 4x2+/34x35
60 63 68 71 76 69
s (2m —12)x2+/35x35 . 4x2~/34x36 .\ (2n—-14)x2/36x36 s mx2+/35x42 . nx2+/36x42
70 70 72 77 78
(Bmn—11m—11n + 15)x2+/42x42
" 84
9 64v21 1629 16+/23 /483
=—+ + +2+ + T

A8
_9% +16\/%+4\/@+8\/m+4\/m (A8
25 37 45 39 21 25 49 55
+8m+2m\/%+ (24m+48n—456)\/ﬁ+4\/m+8m+2+4m+ 12+/357
57 29 59 15 63 71 19
8+/1190 24+/34 2m+/30 6n\42
69 35

+2m—-12 + +2n-14 + +
11 39

+(2m + 2n—16)

+

+3mn—11lm—-11ln+ 15

2mx/%+2m\/%+6m/ﬁ+ (24m+48n—456)\/§§_ +%+64\/ﬁ+16@
29 11 39 59 25 37 45
+16\/§§+\/er16m+4\/@+8\/@+4m+8m+4m+8m+4m
39 11 21 25 49 55 57 15 63 71
N 12+/357 N 81190 . 24\@,

19 69 35

=3mn-7m-7n+

23

2 4x2 4x2 2x2 2x2 2x2 2x2 2m+2n—16)x2 4x2
H*(TSSN) = ) _ 4x2 Qm+2n-16)x2  4x2

a deg. By st e a6 2
webts,) GeBuc (1) + deg ()

4x2 4x2 2x2 4x2 2mx2 (2m+4n-38)x2 4x2 4x2 2x2 2x2 12x2
+ + + + + +

— ettt —t+— t—t—t—t—+t——
50 49 55 57 58 59 60 63 68 71 76
4x2 (2m-12)x2 4x2 (2n—-14)x2 mx2 nx2 (Bmn-1lm-11n+15)x2 (A.9)
et ——+ + +—+
69 70 70 72 77 78 84
8 8 4 1 4 1 (2m+2n-16) 4 4 8 4 8 2m (2m+4n—38)x2
=—t—t—F—F—F—F— b —t—F—F—F—F+—
25 37 45 8 39 11 23 21 25 49 55 57 29 59
2 8 1 4 6 8 (2m-12) n-7 2m n (3mn-11lm-11n+ 15)

4
—t—t—t—t—Ft—Ft—— F —+—+—+—+ ,
15 63 17 71 19 69 35 35 18 77 39 42
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B 4 4 2 2 2 2 (2m+2n-16)
V¢ (TSSN) = d +d 12 - +t——t——+——+—=
x ( ) WGEZ(S : ( egye (1) €8ve (V)) \/— \/3— \/4—5 V32 39 ad Va6
4 4 4 2 4 2m (Zm +4n— 38) 4 4 N 12
Va2 T V50 TVaS T NBs N7 VB8 V59 60 ves \/_ V71 /76
. 4 N (2m- 12) 4 (2n 14) m n (3mn 11m—11n+ 15)
@ Vo vt ve v ivst Ve (A10)
4 2 1 2 1 (2 +2n— 16) 4 4 + 4 N 2 4 2m
"5 \/_7 3v5 2v2 B9 VL a6 V&2 5v2 7 55 <57 /58
(2m+4n-38) 2 4 1.2 6 4 (@m-12) 4 @Qn-14) m
\/59 ERENARY V71 TG 70 70 6v2 \77
. n N (Bmn—-11m-11n +15)
V78 2v21
Data Availability [11] M. Chellali, T. W. Haynes, S. T. Hedetniemi, and T. M. Lewis,

The data used to support the findings of this study are in-
cluded within the article.
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