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Lectin-glycan interactions, in particular those mediated by the galectin family, regulate
many processes required for a successful pregnancy. Over the past decades, increasing
evidence gathered from in vitro and in vivo experiments indicate that members of the
galectin family specifically bind to both intracellular and membrane bound carbohydrate
ligands regulating angiogenesis, immune-cell adaptations required to tolerate the fetal
semi-allograft and mammalian embryogenesis. Therefore, galectins play important roles in
fetal development and placentation contributing to maternal and fetal health. This review
discusses the expression and role of galectins during the course of pregnancy, with an
emphasis on maternal immune adaptions and galectin-glycan interactions uncovered in
the recent years. In addition, we summarize the galectin fingerprints associated with
pathological gestation with particular focus on preeclampsia.
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OVERVIEW: GALECTIN-GLYCAN INTERACTIONS
AT THE MATERNAL IMMUNE FUNCTION

Almost fifty years ago (mid-1970s), galectins were first described as a family of evolutionarily
conserved animal ß-galactoside binding lectins (1). Since then, the importance of galectins has been
recognized in many biomedicine disciplines including inflammation, malignancy and reproductive
biology. Galectins have extensive roles in the regulation of cell differentiation and function, but it is
their ability to control the innate and adaptive immune system in healthy and disease states which
has attracted significant interest. Galectins are well established regulators of lymphocytes, especially
T lymphocyte development, differentiation, activation and effector function (2). Multiple members
of the galectin family are widely expressed at the maternal-fetal interface where they play important
org December 2021 | Volume 12 | Article 7844731
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roles in implantation, placental and fetal development, including in
the regulation of maternal-fetal tolerance. Here, we review uterine
and placental galectin expression, function, and glycan interactions
at the maternal-fetal interface and highlight placental pathologies
associated with an aberrant galectin signature.
GALECTINS: STRUCTURE
AND FUNCTION

Galectins are a highly evolutionarily conserved family, of which
more than 20 galectins have been identified in mammals (3) and
12 in humans (4, 5). Galectins are found on many chromosomes
including human chromosomes 1, 11, 14, 17, 19 and 22. A cluster
of galectins found on chromosome 19 includes the placental-
specific galectins (gal-13, -14, -16) (6), which are thought to be
important in the formation of the highly invasive placenta found
in humans. Galectins possess a characteristic carbohydrate
recognition domain (CRD) and are classified according to their
structure as prototype, chimera or tandem-repeat type (Figure 1)
(7). Prototype galectins (gal-1, -2, -5, -7, -10, -11, -13, -14, -15
and -16) contain one CRD and typically form non-covalently
linked homodimers (3). The only chimera-type galectin (gal-3)
Frontiers in Immunology | www.frontiersin.org 2
consists of a C-terminal CRD connected to a N-terminal ‘tail’
that facilitates oligomerization into trimers and pentamers (8).
Tandem-repeat type galectins (gal-4, -6, -8, -9, -12) contain two
distinct CRDs connected by a linker peptide (2, 3).

Following synthesis in the cytoplasm, galectins are
predominantly secreted into the extracellular space where they
bind to carbohydrate ligands on the cell surface or in the
extracellular matrix. Alternatively, they can be translocated to
the nucleus, where they form part of the spliceosome (3).
Galectins lack a classical secretion sequence; thus, galectin
secretion is non-classical, bypassing the Golgi complex, likely
effected by direct transport across the plasma membrane (3).
Whilst the N-acetyllactosamine-enriched glycoconjugates
binding capacity of galectins led to their discovery (9),
galectins generally only weakly bind to b-galactoside-
containing glycans (7). Due to the unique nature of their
CRDs, galectins selectively bind to specific ligands, but this
binding is complex, regulated in part by the physiological
concentration of the lectin and multivalency and oligomeric
state of the galectin and ligand (7). Indeed, the physiological
ligands of many galectins are unknown. Altogether, this means
that the functions of galectins are highly contextual and reflect a
dynamic mechanism to regulate cell function (2).
FIGURE 1 | Types of galectins and general mechanisms. Shown is an illustration of the galectins structure and the functional interactions of this type of lectins with
cell-surface and extracellular glycoconjugates.
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GALECTIN-1

The first member of the galectin family to be identified, gal-1, is a
homodimeric protein that belongs to the prototype subgroup and
is composed of two subunits of 14.5 kDa (10). Gal-1 is synthesized
on cytosolic ribosomes and translocated to the extracellular
compartment through a non-classical secretory pathway.
Recently, it is been described that upon sensing cytosolic
lipopolysaccharide (LPS), gal-1 is released from the cell by
caspase-11 associated mechanisms, a process which is
dependent on gasdermin D (11). Thus, gal-1 acts as a danger-
associated molecules pattern (DAMP) in the extracellular space to
enhance the inflammatory response elicited by intracellular LPS.
However, the gal-1 secretion pathway in a physiological situation
such as pregnancy and placentation has not been determined.
Intracellularly, gal-1 is predominantly monomeric and
participates in protein-protein interactions in a carbohydrate-
independent manner (e.g. with H-Ras (12), protocadherin-24
(13) and gemin4 (14) among others). Once in the extracellular
compartment, gal-1 spontaneously dimerizes and binds to
numerous glycoproteins mostly in a glycan-dependent manner
(15). Thus, gal-1 recognizes galactose-b1-4–N-acetyl-glucosamine
[N-acetyl-lactosamine (LacNAc)] units present on the branches of
N- orO-linked glycans on diverse cell surface receptors (e.g. CD45
on lymphocytes) and extracellular matrix (ECM) proteins
including laminin and fibronectin (16–18) (Figure 1). Gal-1
displays broad anti-inflammatory properties and targets
multiples immune cell types. This review focuses on gal-1’s
significance within the maternal immune system during
pregnancy and its influence on pregnancy outcome.

At the feto-maternal interface, a wide range of immune and
non-immune cells synthetize and secrete gal-1 (3). Gal-1 was
shown to be the most abundantly expressed in the endometrium
–when compared to all other human tissues (19), where it is
mainly localized to decidual stromal cells. Gal-1 expression is sex
hormone-dependent, therefore its expression is increased in the
late secretory phase endometrium and it is further elevated in the
decidua (20). In vivo evidence also confirmed that sex hormones
(estrogens and progesterone) regulate the expression of uterine
gal-1, which is strongly increased during embryo implantation
(21) and then sustained through pregnancy. Interestingly, in the
course of the emergence of placental mammals, conserved cis
motifs were gained including an estrogen responsive element in
the 5′ promoter of LGALS1 (gal-1 gene) accounting for this sex
steroid regulation of LGALS1 expression (19). Of importance,
gal-1 is one of the most strongly expressed proteins in the
decidua, mainly in decidual stromal cells, at term gestation,
with decreased expression in laboring women (22). Taken
together with its anti-inflammatory actions in decidual cells,
measured by its inhibition of LPS-induced IL-6 production in
decidua-derived mesenchymal cells (23), gal-1 may regulate
decidual immune cell populations and sustain a local anti-
inflammatory microenvironment that favors pregnancy
maintenance, and its decreasing expression at term may allow
the pro-inflammatory changes in the decidua needed for the
onset of labor.
Frontiers in Immunology | www.frontiersin.org 3
Besides maternal decidual stromal cells, another major source
of gal-1 are the fetal trophoblasts as observed in various species.
Early in mouse and human embryogenesis, gal-1 is detected
starting in the fourth/five day of development and its expression
is limited to the inner cells mass and outer cells (which includes
the trophectoderm) (24, 25). The trophectoderm of the blastocyst
exhibits highly differentiated functions and participates in a
complex dialogue with maternal cells that enables implantation.
Indeed, gal-1 expression is strong in the trophectoderm-derived
giant cells (GC) and in spongiotrophoblast subsets, layers of the
placenta that are involved in placental invasion and have
endocrine functions (26, 27). Despite differences between mouse
and human placentation, gal-1 expression is also prominent in the
human trophoblast populations that carry out interstitial and
endovascular invasion, and regulate the ability of extravillous
trophoblasts to secrete immunoregulatory proteins such as
HLA-G (25, 26, 28–30). Moreover, early-gestation chorionic
villus–derived placenta mesenchymal stromal cells express
prominent gal-1 on the surface and this lectin is abundant in
secreted exosomes, which has been recently suggested to have
neuroprotective effect (31). This opens up new avenues in the field
of gal-1 as critical signaling molecule in the placenta secretome.

Decidual NK (dNK) cells are one of the best examples of how
maternal immune-privileged sites shape the phenotype of
leukocytes (32). dNK cells have increased gal-1 expression
when compared to peripheral NK cells (33, 34). Toscano M et
al. showed that gal-1 selectively controls the fate of Th1 and Th17
cells, due to the glycan-repertoire expressed by these T cells that
is compatible with gal-1 binding, whereas Th2 cells are resistant
to this lectin as a result of increased a2,6-sialylation of their cell
surface glycoproteins (35). Based on their ability to secrete gal-1,
dNK cells have been proposed to induce apoptosis of activated
Th1/Th17 cells (33). It is not clear, however, whether the gal-1
expressed on dNK cells is also present in cytotoxic granulates as
has been recently showed in CD8+ cytotoxic T lymphocytes
(CTLs) (36). Interestingly, under inflammatory conditions such
as during the course of preeclampsia, peripheral NK cell-subsets
depicted a less prominent gal-1 expression, which may be
responsible for the exacerbated Th1/Th17 systemic response
(37). Although dNK cells generally have a less inflammatory
phenotype compared to their peripheral counterparts, there is
evidence for anti-viral activity of dNK cells (38).

With regards to antigen presenting cells in the decidua (e.g.
dendritic cells, DCs), we found that exogenous gal-1 fine tunes
the DC immunoregulatory properties (39). Specifically, gal-1
treated decidua DCs induced an IL-10 expressing Treg cell subset
that is compatible with healthy gestation (39). In contrast, during
a failing pregnancy, an uncontrolled Th1 response is
accompanied by an immunogenic DC phenotype and
decreased decidual gal-1 expression (39, 40). Although several
gal-1 cell surface receptors including CD45, CD43, CD69, the
pre-BCR, and vascular endothelial factor receptor 2 have been
characterized, further studies are needed to identify the gal-1
receptor(s) at the feto-maternal interface responsible for
the extracellular function of this lectin. In addition,
characterization of the glycosylation profile of the potential
December 2021 | Volume 12 | Article 784473
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decidual gal-1 ligands, will provide their functional relevance in
the gal-1-glycan axis that fine tunes the immune response during
gestation. Mast cells are found in mucosal and epithelial tissues
including the feto-maternal interface and these cells secrete gal-1
during the course of pregnancy. Although mast cells are a small
population, these cells are known to regulate vasodilation,
vascular homeostasis, and angiogenesis. Therefore, the
expression of gal-1 in this particular cell subtype can be related
to increased angiogenesis and may indirectly regulate
placentation (41).

Given the important immunomodulatory and anti-
inflammatory roles of gal-1, it is unsurprising that dysregulated
gal-1 production is found in complications of pregnancy associated
with impaired immune tolerance including early pregnancy loss
(42–44). Specifically, placental gal-1 expression andmaternal blood
gal-1 levels are downregulated in the first trimester in women who
miscarry (25). In preeclampsia, another disease associated with
inflammation, decreasedmaternal blood levels of gal-1 are found in
the second trimester, while its increased expression in the placenta
and elevated maternal blood concentrations can be detected at the
time of clinical diagnosis (42–44). In murine models, loss of gal-1
causes preeclampsia-like features, exemplified by exacerbated
inflammation and an anti-angiogenic maternal response, which is
associatedwith reducedplacental labyrintharea and impaired spiral
artery remodeling (39, 45). Overall, these data suggest that a
substantial decrease in gal-1 expression in early pregnancy may
lead to the complete loss of tolerance and result in miscarriage in
both species, while a lower level of inhibition of gal-1 expression at
the feto-maternal interface, may enable the further progression of
pregnancy but with disturbed maternal-fetal immune interactions,
leading to preeclampsia and chronic rejection of the fetal semi-
allograft. The observed discrepancy in gal-1 levels between the
second and third trimesters in preeclampsia may reflect an initially
inhibited expression of gal-1, which may result in a compensatory
overexpression later in pregnancy similar to what is detected in
rejected kidney allografts (46). Because preeclampsia and early and
recurrent pregnancy loss (RPL) are syndromes rather than unique
entitieswithdiverse etiologies (47), is it important to emphasize that
only a portion of the clinical cases exhibit the above immune/anti-
angiogenic pathologies related to gal-1 dysregulation.
GALECTIN-2

Galectin-2 (gal-2, encoded by the LGALS2 locus) belongs to the
prototype subtype and its function at the feto-maternal interface is
less understood than that of other galectins (1, 48). This lectin has
been linked with pro- as well as anti-inflammatory actions (49,
50). The cellular binding sites for gal-2 are b1 integrin on T cells or
closely associated glycoproteins (51). Binding of gal-2 to
leukocytes results in cell-specific responses including apoptosis
of activated T cells and regulation of leukocyte turnover (52, 53).
Inmice, gal-2 suppresses contact allergy reactions by inducting the
apoptosis of activated CD8+ T cells; however, it has no significant
effect on resting CD8+ T cells (54). Additionally, gal-2 has been
attributed important inhibitory functions in monocyte and
Frontiers in Immunology | www.frontiersin.org 4
macrophage physiology, acting to inhibit monocyte migration
and preventing macrophage-induced T cell activation (55). Thus,
gal-2 was shown to shift T-cell cytokine profiles towards a Th2
phenotype, which is accompanied by downregulation of
interferon (INF)-g, tumor necrosis factor (TNF)-a and
upregulation of IL-5 (52). In activated neutrophils, gal-2
induced externalization of phosphatidylserine leading to
phagocytosis (53). The therapeutic potential of gal-2 has been
demonstrated in acute and chronic mouse colitis disease models,
where gal-2 induced a reduction in inflammation (49).

In the normal first trimester placenta, gal-2 is strongly
expressed in the syncytiotrophoblasts (STB) with its cellular
localization mainly found at the sites of interaction with the
maternal blood. However, gal-2 expression is not restricted to
the STBs as nuclear gal-2 expression has also been described in
decidual cells (56). Expression of gal-2 within the placenta is
reduced in pregnancy complications including miscarriages,
preeclampsia and intrauterine growth restriction (IUGR)
pregnancy (56–59). Preeclampsia not only causes a
dysregulation of the placental gal-2 expression, but Charkiewicz
et al. have shown that alterations of gal-2 levels can also be
detected in the maternal circulation (60). However, whether gal-
2 expression is causal for the development of miscarriage,
preeclampsia or IUGR or if it is a consequence of failed
trophoblast invasion is yet to be elucidated (61). Interestingly,
gal-2 expression during normal pregnancy varies with fetal sex.
Male placentas show more prominent gal-2 expression in the
extravillous trophoblast compartment when compared to the age-
matched female placentas (58). Thus, only male placentas
suffering from IUGR showed a reduced gal-2 expression in this
trophoblast population, whilst female placentas remained
unchanged. A gender-specific role for gal-2 in the aetiology of
preeclampsia and IUGR should be considered and
further investigated.

DNA methylation in the LGALS2 gene may be an important
mechanism to regulate gal-2 expression. It has been shown that
maternal eating disorders affect offspring cord blood DNA
methylation (62). In this context, offspring of women with
active restrictive eating disorders in pregnancy had lower
whole-genome methylation compared to offspring of women
with past restrictive eating disorders (62). In addition, increased
methylation at the LGALS2 locus could be identified in offspring
of women with past eating disorder compared to controls (62).
GALECTIN-3

Galectin 3 (gal-3, encoded by the LGALS3 locus) is the only
chimera-type member of the family identified so far (8). Via its
CRD, which is shaped as a cleft open at both ends, gal-3
exerts high affinity binding to poly LacNAc extensions of core
2 O- and complex N-glycans as well as to ABH blood group
oligosaccharides (63).

Gal-3 is present both extracellularly and in various subcellular
compartments including the cell membrane, nucleus and
cytoplasm; where its unique chimeric structure allows it to
December 2021 | Volume 12 | Article 784473
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interact with a variety of ligands to modulate specific processes
including cell growth and survival, adhesion, migration,
invasion, immune function and angiogenesis, all of which play
a significant role during maternal adaptation to pregnancy. In
the context of immune adaptations, a dual role in the regulation
of apoptosis depending on its subcellular localization has been
proposed for gal-3, promoting T cell apoptosis when secreted to
the extracellular milieu (64, 65) and showing protective effects
when acting intracellularly (66, 67). In addition, gal-3 has been
shown to exert potent inhibitory effects on NK cell activation and
function, by either binding specific core 2 O- glycan moieties on
target cells (68, 69) or by directly interacting with NK cell
activating receptors [i.e., NKp30, (70)]. Gal-3 is recognized as a
potent modulator of innate and adaptive responses, being
involved in the activation and differentiation of a variety of
immune cell subsets. It can regulate several components of the
acute inflammatory response including neutrophil activation and
rolling (71, 72), chemoattraction of monocytes/macrophages
(73) and mast cell degranulation (74). Among other
mechanisms, gal-3 modulates adaptive immunity by enhancing
tolerogenic (i.e., regulatory) IDO-expressing DC that support
Treg expansion (75), acting extracellularly to inhibit TCR
signaling at the immunological synapse (76) and by interfering
with co-inhibitory receptor signaling [i.e., PD-1 and LAG-3,
(77)]. Intracellularly, gal-3 appears to be critical for supporting
OX-40 mediated development of memory CD8+ T cells
following antigen exposure (78). Additionally, under sustained
tissue damage, gal-3 can promote the transition to chronic
inflammation, quenching T cell responses (64, 79) and
facilitating the walling off of tissue injury with fibrogenesis and
organ scarring (80). In damaged cells, the lectin can also function
as a receptor for advanced glycation end products promoting
accumulation of reactive oxygen species and endothelial
dysfunction (81, 82), which are both considered a hallmark of
preeclampsia pathogenesis. More recently, intracellular galectins
including gal-3 have emerged as important mediators sensing
tissue damage in the context of infections given their ability to
recognize host glycans exposed to the cytosolic milieu upon
rupture of endocytic vesicles or organelles (83), which in turn
leads to activation of autophagy pathways and recruitment of
antimicrobial factors. These functions, along with its proven
ability to control immune responses through DAMP and
(pathogen-associated molecular patterns) PAMP pathways (84,
85), make gal-3 an important mediator in both defense from
microbial infections and development of autoimmune
conditions. Determining whether these novel functions of gal-3
play a significant role during the resolution of infections at the
maternal fetal interface represents an attractive subject for
further research.

Despite considerable research over the past years, the
functional implications of gal-3 in the context of pregnancy are
only just emerging. In humans, gal-3 mRNA and protein can be
detected in maternal decidual cells (86) and also in all
trophoblast lineages of the placenta (87), with increased
expression levels associated with differentiation of the
cytotrophoblasts along the invasive extravillous trophoblast
Frontiers in Immunology | www.frontiersin.org 5
pathway (87, 88). In line with these findings, recent in vitro
studies have identified gal-3 as part of the trophoblast invasion
machinery (89) as well as a positive modulator of crucial
trophoblast cell functions including capillary tube formation
and syncytialization (88). In mice, gal-3 is detected primarily
in the uterine luminal and glandular epithelium, where its timely
up-regulation appears to be a requisite for successful
implantation (90). A role for this lectin in driving proper
placental function is further emphasized in a recent study,
which demonstrated that Lgals3 deficiency is associated with
impaired differentiation of trophoblast layers, enhanced decidual
NK cell infiltration and cytotoxic degranulation, and defective
vascularization resulting in asymmetric growth restriction due to
placental insufficiency (91). Interestingly, these studies revealed a
differential contribution of gal-3 to placental function depending
on its source of expression, as the IUGR phenotype was only
reproduced in mating models with Lgals3 deficiency of maternal
origin. Furthermore, dysregulated placental expression of gal-3
associated with enhanced activation of cellular stress pathways
was recently reported preceding the establishment of the
maternal syndrome in an experimental model of preeclampsia
superimposed on chronic hypertension (92).

During the course of pregnancy, maternal circulating gal-3
levels increase as pregnancy progresses (91). Dysregulation of
systemic levels of gal-3 have been described in pregnancy
complications, particularly the so-called ‘Great Obstetrical
Syndromes’ including preeclampsia (42, 93), IUGR (91),
preterm birth and premature rupture of membranes (94, 95),
and spontaneous pregnancy loss (96), all of which are associated
with disorders of deep placentation. However, an important
limitation of these studies is the diversity of criteria used to
establish patient cohorts, which leads to conflicting results that
make it difficult to determine whether dysregulated gal-3 levels
reflect a causative link or appear as consequence of the placental
pathology. In this context, future studies evaluating placental
biology, the regulation of vascular responses and maternal
adaptations in experimental models with altered gal-3
expression represent exciting avenues of research to establish
the precise physiological role of this lectin during pregnancy as
well as its potential application in diagnosis and interventions in
pathological settings.
GALECTIN-7

Galectin-7 (gal-7) is a prototype galectin initially identified as a
marker of stratified epithelia that is also expressed by many other
types of epithelia and other cell types including lymphocytes
(97). The LGALS7 gene is found on chromosome 19 (98), in a
cluster of galectins which includes gal-4 and the placental-
specific galectins gal-13, -14 and -16. In humans there is a
duplicate copy of LGALS7 (LGALS7B) located adjacent to
LGALS7 but on the opposite strand of chromosome 19 (99).
Gal-7 is able to form homodimers with a ‘back-to-back’
organization and can be secreted despite having no cell
secretion motif (97, 98). Gal-7 acts intracellularly via
December 2021 | Volume 12 | Article 784473
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interactions with c-Jun N-terminal kinases, Ras or Bcl-2 and
extracellularly via paracrine mechanisms to induce gene
transcription, including autocrine amplification (100, 101,
102–106).

Gal-7 production is regulated by p53, TNF-a and NFĸB (97),
but based on upstream promotor region sequencing it is
predicted that LGALS7 and LGALS7B may each be regulated
by different transcription factors (97, 99, 107). Studies to date
suggest that gal-7 has key functions in epithelial cell homeostasis,
including cell growth, differentiation and apoptosis as well as
functions in cell adhesion, migration and immune cell regulation
(101, 108;97, 105, 106, 109–116). The specific function of gal-7
likely relates to its cellular localization as gal-7 has been detected
in the nuclear, cytosolic, mitochondrial and extracellular
compartments (117).

Gal-7 has been suggested to play a key role in the intracellular
immune response against infection. Gal-7 is recruited by Tollip
to the autophagosome in HaCaT cells undergoing bacterial
autophagy following group A Streptococcus infection (118).
Gal-7 may also be considered an alarmin as it is released from
human epithelial keratinocytes via an IL-4/IL-13/STAT6
dependent mechanism, it polarizes CD4+ T cells towards a
Th1 phenotype and was found to be overexpressed in a murine
model of cardiac allograft rejection (111, 115, 119).

In vivo administration of exogenous gal-7 to pregnant mice
during mid-gestation results in a pro-inflammatory response
with elevated placental IL-1b and IL-6 and reduced IL-10 mRNA
production (120). Other reports however, indicate that gal-7 has
anti-inflammatory actions treatment of PMA-stimulated Jurkat
cells with gal-7 inhibits IL-2 and INF-g production (112), gal-7
silencing elevates IL-17A-stimulated HaCaT cell secretion of IL-
6 and IL-18 (107) and gal-7 is down-regulated in a mouse model
of psoriasis (107). Therefore, the immune regulatory role of gal-7
may be cell-type specific and/or may depend on its
cellular localization.

The absence of detectable gal-7 mRNA in term placenta (6)
and the discovery that Lgals7 deficient mice are fertile and give
rise to normal and fertile offspring initially suggested that gal-7
might not play an important role in female reproduction (121).
More recently, immunohistochemical studies localized gal-7 to
endometrial luminal and glandular epithelial cells, menstrual
phase stromal cells and 1st trimester and term placental
trophoblast including STB, cytotrophoblasts and extravillous
trophoblasts (113, 114, 122, 123). The published reports also
suggest that gal-7 localizes to uterine/decidua-resident immune
cells however, the identity of the immune cells was not confirmed
by dual staining (114, 122).

Exogenous gal-7 promotes endometrial epithelial cell
adhesion and migration in vitro (113, 114). Gal-7 is present in
menstrual fluid and in vitro studies suggest that it enhances re-
epithelialization during endometrial repair after menstruation by
promoting epithelial cell migration in a fibronectin/integrin
dependent manner (113). Exogenous gal-7 enhances adhesion
between human endometrial epithelial cells and the HTR-8/
SVneo trophoblast cell line, suggesting that gal-7 may facilitate
blastocyst adhesion to the uterine luminal epithelium during
Frontiers in Immunology | www.frontiersin.org 6
implantation. However, as gal-7 production is not up-regulated
during the receptive phase of the menstrual cycle, it is unlikely
that gal-7 is a critical mediator of blastocyst adhesion (114).
Rather, somewhat paradoxically, endometrial epithelial
production of gal-7 is increased in women with a history of
multiple early pregnancy losses (114). Gal-7 is also abnormally
elevated in maternal serum at 6 weeks gestation from women
who subsequently miscarry but is not altered after week 7 of
gestation (114, 124). The impact of even slightly increased gal-7
during early pregnancy may be substantial and sustained as it
exhibits high stability due to the its protease resistance and
increased stability following ligand binding (125). Elevated
endometrial gal-7 may alter endometrial function leading to
early pregnancy loss by increasing blastocyst-luminal epithelial
adhesion allowing lower quality embryos to implant and altering
the endometrial inflammatory environment by polarizing T cells
towards a Th1 phenotype (114, 126–130).

Increased gal-7 production is found in early pregnancy
chorionic villous samples (CVS; collected at 11-14 weeks
gestation) from women who subsequently develop preterm
preeclampsia (<37 weeks gestation) compared to women with
uncomplicated pregnancies (120). A small retrospective cohort
study also identified abnormally elevated gal-7 in maternal
serum (collected at 10-20 weeks gestation) from women who
subsequently developed preeclampsia (122). In vivo, gal-7
administration to pregnant mice causes preeclampsia-like
features including hypertension, albuminuria and impaired
placentation (120). Non-pregnant mice treated with gal-7 do
not develop hypertension or albuminuria, demonstrating that
gal-7 acts via the placenta to cause preeclampsia-like features in
this model. Gal-7 regulates placental expression of many
pathways thought to underlie the etiology of preeclampsia,
including stimulating human placental villous production of
sFlt-1-e15a, the sFlt-1 splice variant present only in the
placenta of higher-order primates (120, 131). In mice,
exogenous gal-7 induces a pro-inflammatory placental state
(elevated IL-1b , IL-6 and reduced IL-10 mRNA) and
alterations in the circulating and tissue renin-angiotensin-
(aldosterone)-system (RAS) homeostasis (120, 132–137). To
our knowledge this is the only mouse model of preeclampsia
which causes alterations to RAS homeostasis without
interventions to silence/overexpress specific RAS factors or
surgically reducing uteroplacental perfusion and therefore
could be a useful model to understand the role of RAS in the
etiology of preeclampsia. Murine and ex vivo primary human
trophoblast outgrowth experiments demonstrate that elevated
placental gal-7 impairs trophoblast invasion (120) as is reported
in preeclampsia (138). Gal-7’s inhibition of trophoblast invasion
may occur via regulation of Pappalysin-2 and Disintegrin and
metalloproteinase domain-containing protein 12 (ADAM12)
(120) which are well established regulators of trophoblast
migration (139–141).

Altogether these studies suggest that gal-7 likely has a role in
the uterine and placental innate immune response and that it is
produced at low levels during uncomplicated pregnancies.
Elevated production of gal-7 during any stage of pregnancy
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may reflect or induce a pro-inflammatory state leading to poor
pregnancy outcomes including RPL and preeclampsia.
GALECTIN-9

This “tandem-repeat type” galectin encoded by the LGALS9 gene
located on human chromosome 17 is a 34-39 kDa protein (142).
Gal-9 undergoes post-transcriptional splicing to form many
splice variants. Among tandem-repeat galectins, gal-9 has a
wide expression pattern including the nuclear, cytoplasmic and
extracellular compartments (143, 144). The exact mechanism of
secretion for gal-9 is poorly understood, however, it is most likely
to be secreted by one of the following non-classical secretory
pathways: direct translocation across the plasma membrane,
release via packaging in exosomes, or export via lysosomes,
endosomes, and microvesicles (145, 146).

Among several identified gal-9 receptors , T-cel l
immunoglobulin mucin 3 (Tim-3) is the most extensively
studied. TIM-3 was first discovered in 2002 on interferon IFN-
g producing CD4+ (Th1) and CD8+ T cytotoxic cells (147). TIM-
3 expression was verified in various immune cells, including Th1,
Th17, NK cells, NKT-like cells, g/d T cells, Tregs, MAIT-like
cells, dendritic cells, monocytes and also on trophoblast such as
giant cells (148–151). A growing body of evidence supports a role
of Tim-3 signaling in shaping both the adaptive and innate
immune responses (152). There is evidence that engagement of
Tim-3 by its ligand gal-9 leads to the death of Th1 and Th17 cells,
influencing the ability to induce T cell tolerance in both mice and
humans (153–156). CD4+ T cells secrete gal-9 upon T-cell
receptor activation resulting in the regulation of Th17/Treg
development (157). Gal-9 suppresses Th17 cell differentiation
and induces the apoptosis of Th1 and cytotoxic T cells while in
mice, it has been shown to enhance regulatory T cell
differentiation, suggesting immunosuppressive functions (158).
Moreover IL-6 abrogates the increase of gal-9+ Th cells in vitro
and indicates that the neutralization of IL-6 may be a strategy to
increase gal-9+ Th cells to ameliorate Th1/Th17-skewed
immunity (157). Thus, engagement of TIM-3 by gal-9 may
function as a negative regulator, abrogating Th1- and Th17-
driven immune responses and may modulate the Th1/Th2
balance. The outcome of this interaction could have essential
roles in human pregnancy.

Gal-9 is highly expressed in the female reproductive tract and
at the maternal-fetal interface (86, 159) (160). In mouse models,
gal-9 plays a role in cell-to-cell interactions and the
establishment of an immune-privileged local environment for
implantation and early fetal development, as well as the
mediation of decidual cell migration and chemotaxis (159).
Both murine placental spongiotrophoblast and decidual
regulatory T cells express gal-9: decidual gal-9+ Th cells are an
important source of a secreted, soluble form of gal-9 (161).
Endometrial stromal cells secrete gal-9 to suppress inflammatory
reactions of uterine NK cells via Tim-3 [23]. The predominant
gal-9 splice variant (Lgals9 D5) was found to downregulate IFN-g
production mouse dNK cells and therefore gal-9 may limit Th1
Frontiers in Immunology | www.frontiersin.org 7
cell numbers (158). Available evidence also supports a similar
role for gal-9 in human pregnancy. Gal-9 is expressed by human
endometrial glandular epithelial cells (uterodomes) during the
window-of-implantation. Post-implantation, gal-9 is highly
produced by epithelial cells and stromal cells of the decidua
during early pregnancy and by syncytiotrophoblast and
cytotrophoblasts (160, 162, 163). Gal-9 is implicated in the
regulation of dNK cell function and the maintenance of
normal pregnancy as the expression of gal-9 by primary
human trophoblasts induces the transformation of peripheral
NK cells into dNK-like cells via the interaction with Tim-3
molecule (164). Treg cells increase their gal-9 expression as
pregnancy progressed-coinciding with the increasing gal-9 level
in maternal blood, suggesting that expression of gal-9 in the
Tregs subset may have important roles in the maintenance of
pregnancy (165).

The evidence discussed above suggests that gal-9 is
implicated in the modulation of maternal immune tolerance
to support fetal growth and development, therefore it is
important to consider its role in pathologic pregnancies like
spontaneous miscarriage, RPL, or preeclampsia. Normal
pregnancy and cases of spontaneous abortions differ
significantly in terms of endometrial gal-9 splice variant
profiles in both a mouse model of spontaneous abortion
(CBA/J females with DBA/2J males) and in humans (158).
Placentas from abortion-prone mice had lower mRNA levels of
gal-9 compared to the normal placenta (158). Tim-3 expression
by dNK cells from human miscarriages and abortion-prone
mouse models is also reduced compared to healthy pregnancies,
and the function of Tim-3+ dNK cells has been shown to be
impaired (164). Moreover, decreased Th2 cytokine and
increased Th1 cytokine levels were observed in Tim-3+ dNK
cells, but not in those Tim-3- dNK cells derived from human
and murine miscarriages (164). These data indicate that both
the frequency and the function of Tim-3+ dNK cells are
abnormal in miscarriage. In addition, women with a history
of RPL have lower levels of circulating gal-9 compared to
healthy pregnant women and reduced Tim-3 expression by
peripheral NK cells (166, 167). The dysregulation on the gal-9/
Tim-3 axis is accompanied by a decrease of systemic TGF-b1
levels, which has been implicated in the upregulation of Tim-3
expression (162, 168). Besides these changes, an increase of
soluble Tim-3 (sTim-3) in addition to the reduced gal-9
circulating levels has been reported in these patients, which
could enhance the competitive binding of gal-9 by sTim-3
leading to failed inhibitory signals controlling inflammation
(166). A therapeutic potential of recombinant (r)gal-9 has been
shown in preclinical models of several diseases like transplant
rejections and autoimmune condition (169). The use of rgal-9
in RPL patients might be an effective therapeutic strategy to
restore maternal-fetal immune tolerance.

The gal-9/Tim-3 pathway has also been implicated in
maternal systemic inflammation in early-onset preeclampsia,
however further analyses are urgently needed for a better
understanding of this axis (170, 171). Decreased Tim-3
expression by T cells, cytotoxic T cells, g/d T cells, NK cells,
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and CD56dim NK cells, as well as increased frequency of gal-9+

peripheral lymphocytes is detected in women with early-onset
preeclampsia (148, 170). Hao et al. found that the gal-9
expression detected by immunofluorescence in decidual
tissues from preeclamptic patients was significantly higher
compared to the control group (171). These data suggest that
the impairment of the gal-9/Tim-3 pathway can result in an
enhanced systemic inflammatory response, including the
activation of Th1 lymphocytes in early-onset preeclampsia.
Furthermore, Li et al. demonstrated that exogenous rgal-9
administration alleviates the preeclampsia-like manifestations
(characterized by insufficient trophoblast cell invasion and
impaired spiral artery remodeling) in a rat model of
preeclampsia induced by LPS by upregulating Tim-3
expression in decidual macrophages (172). This finding may
be related to the activation of the gal-9/Tim-3 signaling
pathway, which promotes decidual macrophage polarization
shifting to M2 subtype (172). Thus, the gal-9/Tim-3 axis may
provide a valuable target for clinical interventional
immunotherapy for early-onset preeclampsia although the
findings that the interaction of gal-9 with Tim-3 in innate
immune cells such as monocytes and dendritic cells induces
the secretion of pro-inflammatory cytokines including TNF-a
and can synergize with Toll-like receptors should be taken into
consideration (173). Further functional evidence is needed to
better understand the in vivo extracellular functions of gal-9.
PRIMATE-SPECIFIC PLACENTAL
GALECTINS (GAL-13, -14 AND -16)

Gal-13 was discovered by Bohn et al. as Placental Protein 13
(PP13) when systematically isolating >50 pure proteins from the
human placenta and characterizing them with physico-chemical
methods (174). Using the purified PP13 protein and anti-PP13
antisera, Than et al. isolated and sequence analyzed the full-
length cDNA encoding PP13, and described PP13 to be placenta-
specifically expressed (175). They also discovered close placenta-
specific galectin relatives of gal-13, and first characterized their
evolution, structure, expression and functions (6, 176–182).
Other groups, pioneered by Meiri et al. explored the clinical
utilization of gal-13/PP13 immunoassays in maternal blood in
normal and complicated pregnancies (183–186), as well as the
potential use of gal-13/PP13 therapy for preeclampsia (187–193).
As a result of systematic work, almost four decades of increasing
international collaboration delineated the pivotal role of
placental galectins in maternal-fetal immune-interactions and
their promising diagnostic and therapeutic potentials for
pregnancy complications.

The gene encoding gal-13 (LGALS13) is located on
chromosome 19 within a cluster of galectin genes and
pseudogenes, which emerged via birth-end-death evolution in
anthropoid primates. Evolutionary analysis suggested that this
cluster were originated from an ancestral mono-CRD galectin
and underwent multiple gene duplications, rearrangements and
losses as well as sequential divergence and subfunctionalization
Frontiers in Immunology | www.frontiersin.org 8
(4, 6). In humans, five genes belong to this galectin cluster, out of
which three (LGALS13, LGALS14, LGALS16) are uniquely
expressed by the placenta (4, 6). RNA and protein level
evidences demonstrated predominant expression of these
galectins in the syncytiotrophoblast but not in the underlying
progenitor cytotrophoblast, with lower expression in extravillous
trophoblasts, amnion epithelium and fetal endothelium (6, 177,
178, 181). The expression of these galectin genes is
developmentally regulated during villous trophoblast
differentiation and syncytialization, with the strongest
expression observed for LGALS14 and LGALS13 due to
promoter evolution (181). The insertion of a primate-specific
transposable element into the upstream region of an ancestral
galectin gene introduced several binding sites for transcription
factors fundamental for placental gene expression, leading to the
gain of placental expression of these galectins. Further promoter
changes via duplication or insertion of transposable elements led
to varying placental expression levels of these galectin genes
(181). For gal-13, it is released from the syncytiotrophoblast into
the maternal circulation by secretion or shedding of
microparticles (178, 179, 183, 194, 195). Due to their similar
structural and expressional characters, we may suppose that gal-
14 and gal-16 behave similarly to gal-13 regarding their placenta-
maternal transfer.

The placenta-specific galectins structurally belong to the
“proto-type” sub-group of galectins, which have a single CRD
(6, 176, 177, 196). The topologies of these CRDs revealed by
homology modelling are similar to other prototype galectins,
often called as “jelly-roll” structure, although their amino acid
sequence has considerably diverged during evolution (4, 6, 176,
197). In fact, adaptive evolution occurred in the CRDs of newly
emerged genes in the LGALS13 clade, followed by conservation
of residues in descendant lineages, suggesting that placenta-
specific galectins have acquired and sustained important novel
functions in anthropoids (4, 6). From the eight conserved
residues in the CRD, three that are key for overall sugar
binding were subject to strong purifying selection, while five
residues crucial for the binding of galactose or glucose moieties
were replaced in several lineages following gene duplications,
which have contributed to differences in their CRDs (6). In
accordance with this evolutionary evidence, in vitro sugar-
binding assays and in silico ligand docking simulations showed
that placenta-specific galectins have sugar-binding capabilities
different from other galectins (6, 176, 177, 180), which was
recently also supported by X-ray crystallographic studies
(198–201).

The first in vitro functional assays with recombinant
placenta-specific galectins demonstrated their pro-apoptotic
capability on activated T lymphocytes in a similar extent as
gal-1, thus, it was proposed that these galectins emerged to
reduce the danger of maternal immune attacks on the fetal
semi-allograft and to confer additional immune tolerance
mechanisms in anthropoid primates, supporting their
hemochorial placentation during long gestation (6, 197).
Later, gal-13/gal-14 were shown to increase the rate of late-
apoptotic T cells irrespective of their activation status (182).
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Since the surface expression of CD95 was also induced by gal-
13/gal-14 treatment, these galectins may increase the sensitivity
of activated T cells for activation-induced cell death (182). T
cytotoxic cells bound more galectins and were more susceptible
to gal-13/gal-14 induced apoptosis than T helper cells, probably
due to their differential glycosylation patterns (182). An
interesting observation was made on extracellular gal-13
aggregates localized around decidual veins in the first
trimester (202). These crystal-like aggregates were associated
with immune cell-containing zones of necrosis. It was
hypothesized that syncytiotrophoblast-secreted gal-13 drains
from the intervillous space into decidual veins, where it forms
perivenous aggregates, which attract, activate and kill maternal
immune cells while facilitating local tolerance for trophoblasts
to invade and convert maternal spiral arterioles.

Unlike T cells, neutrophils cultured with recombinant gal-13 do
not undergo apoptosis (203). Gal-13 did not interfere either with
neutrophil extracellular trap (NET) release, degranulation,
phagocytosis, or bacteria-induced reactive oxygen species (ROS)
response, but induced increased expression of programmed death-
ligand 1 (PD-L1), hepatocyte growth factor (HGF), vascular
endothelial growth factor (VEGF), matrix metalloproteinase 9
(MMP-9), and TNFa (203). Thus, gal-13 may shift neutrophils
towards a placental-growth-permissive phenotype, while
maintaining all their primary functions and abilities to respond to
bacterial invasion (203). In addition, gal-13/gal-14 stimulated IL-8
production innon-activatedT cells (182),which is interesting in the
context of the pro-angiogenic effect recombinant (204), decidual
neutrophil-secreted or dNK cell secreted IL-8 (205–207). Since the
pro-angiogenic effects of other galectins has been established as
reviewed elsewhere (208), it is tempting to hypothesize that gal-13/
gal-14 may induce angiogenesis at the maternal-fetal interface via
the induction of T-cell secreted IL-8. Indeed, recent in vivo studies
showed that exogenousgal-13 can induce1) the vasodilatationof rat
isolated uterine arteries by activating the endothelial prostaglandin
andnitricoxide (NO)pathways (188, 189); 2) expansive remodeling
of uterine veins and arteries (192); 3) drop in the blood pressure of
rats (187, 188); and the 4) increase of placental and pup weights
(188). These functional properties of placental galectins are
remarkable especially in the context what we have learnt from the
placental origins of pregnancy complications, especially
preeclampsia, a multifactorial syndrome, in which disturbances in
trophoblast-immune cell interactions and vascular remodeling are
in the center of pathologies (209, 210).

Placental expressionofgal-13hasbeen shown tobedysregulated
before and after the preeclampsia onset, as evidenced at the RNA
level inCVSfirst trimester samples, and remains at lower expression
patterns by the time of disease diagnosis (178, 179, 181, 211, 212). A
similar placental down-regulation was observed for gal-14 at the
third trimester, and since its regulation of expression is strongly
linked to that of gal-13 (181), we hypothesize that placental gal-14
behaves similarly to gal-13 in early pregnancy. Their down-
regulation may lead to disturbed immune cell interactions and
reduced trophoblast invasion as well as abnormal spiral artery
remodeling and angiogenesis, leading to the ischemic stress of the
placenta, which are central to the pathogenesis of preterm
Frontiers in Immunology | www.frontiersin.org 9
preeclampsia. In parallel with this, lower gal-13 concentrations
are detected in the maternal circulation during the first trimester of
women who subsequently developed preterm preeclampsia
compared to healthy pregnant women by many international
clinical studies, with some earliest ones referenced here (183–186,
197, 213–216). Due to its superior biomarker properties, gal-13 was
assessed to be included into first trimester risk assessment of
preterm preeclampsia by these and other studies. A seemingly
conflicting observation was made, with preterm preeclamptic
pregnancies showing a steep increase in maternal blood gal-13
concentrations during the second trimester, reaching significantly
higher levels in the third trimester compared tohealthy pregnancies
(197). This phenomenon was elucidated to be due to the ischemic
placental stress and the consequently augmented shedding of gal-13
from the placenta into the maternal circulation via trophoblastic
microvesicles (178, 179, 195, 197, 217). Thus, placental galectins,
especially gal-13, turned out to be promising early biomarkers of
abnormal deep placentation. Moreover, encouraging studies are
being performed for the replenishment of gal-13 to restore immune
balance and inhibit the development of one of the most severe
obstetrical syndrome, preeclampsia.
GALECTINS AND PREGNANCY-
SPECIFIC GLYCOPROTEINS

In addition to placental galectins, the fetus-derived
syncytiotrophoblast, which is the major interface with the
material circulation and represents the endocrine tissue of the
placenta, secretes the pregnancy-specific glycoproteins (PSGs).
PSG1 or Schwangerschafts protein 1 (SP1), as it was originally
called, is one of 10 humanPSGs and is increasingly secreted into the
maternal circulation with advancing gestation. PSGs have been
studied regarding their potential for being a biomarker for
pregnancy complications and trophoblastic diseases for more
than four decades although specific antibodies for the different
PSGs arenot available (218, 219). Recently, PSGexpressionwas also
observed in a subpopulation of extravillous trophoblasts at the
mRNA and protein levels (220, 221). The presence of invasive
trophoblast cells and the direct contact of maternal immune cells
with fetal tissue as found in species with hemochorial placentas and
in equine endometrial cups is hypothesized to have favored the
evolution and expansion of PSGs, which exist only in a minority of
mammals (222). ThenumberofPSGgenes varies greatly;while new
worldmonkeys have 3PSGgenes, someoldworldmonkeyshave 17
(222). Humans have 10 PSG-encoding genes and splice variants
that differ by the number of Ig-like domains or length of the
cytoplasmic tail have been described (223). Interestingly, copy
number variations are common in the human PSG locus and
while some functions are shared by all members of the family, it
remains to be determined whether during evolution, some
members of the family have adopted new functions and bind to
different ligands (224, 225). Therefore, whether higher PSG gene
dosage and expression levels of individual PSGs confers an adaptive
advantage or it is detrimental during pregnancy remains
unknown (226).
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Within the human PSGs, PSG1 is one of the highest expressed
and the best studied (222, 227, 228). PSG1 has pro-angiogenic
activity and immunomodulatory actions by binding to the latency-
associatedpeptidesof the anti-inflammatory cytokinesTGF-b1and
TGF-b2 resulting in their activationand increase in thenumberofT
regulatory cells (229–232). PSG1 also interacts with two integrins,
a5b1 and aIIbb3, resulting in its ability to modulate extravillous
trophoblast adhesion andmigration and the interaction of platelets
with fibrinogen, respectively (221, 227). We found that the
concentration of PSG1 is lower in African American women
diagnosed with preeclampsia when pregnant with a male
fetus (233).

The high expression level of PSG1 during the third trimester
permitted the isolation of native PSG1 from pooled serum of
pregnant women using affinity chromatography allowing for a
comprehensive glycomic and glycoproteomic investigation of
the native protein (234). PSG1 has seven potential N-linked
glycosylation sites across its four Ig-like domains designates as
N, A1, A2 and B2 but only four sites mapping to the N, A1 and
A2 domains of the protein were confirmed to be occupied by
glycans (234). The presence of multiantennary and poly-N-
acetyl-lactosamine (LacNac) elongated moieties with mainly
alpha2,3-linked sialic acid terminals, suggested that PSG1 could
interact with members of the galectin family. Because gal-1 has
a well-established modulatory role in pregnancy-associated
processes, the interaction between PSG1 and gal-1 has been
investigated in detail (3, 39). Gal-1 binds to native and
Frontiers in Immunology | www.frontiersin.org 10
recombinant PSG1 in a carbohydrate-dependent manner,
demonstrated by the inhibition of PSG1-gal-1 binding by
lactose and failure of PSG1 generated in insect cells or N-
acetylglucosaminlytransferase I (GnTI)-deficient cells, which
carry only mannose-type glycans, to interact with gal-1. In
addition, removal of N-linked oligosaccharides from the N- and
A2- PSG1 domains by treatment with the amidase PNGase F
prevented their binding to gal-1 (234). Changes in glycosylation
could add further complexity to the regulation of important
biological processes in pregnancy known to be regulated by
both extracellular galectins and their ligands, including the
PSGs. At present, whether glycosylation of PSGs and its ability
to interact with galectins differs with gestational age or during
pathological pregnancies has not been investigated. In addition,
whether all members of the PSG family within a species or in
the different species in which these proteins are expressed
interact with gal-1 or other members of the galectin family
has not been established and should be further explored.
CONCLUSION AND PERSPECTIVE

Galectins’ extracellular functions are mainly believed to be the
result of their lectin properties, but intracellular functions,
which are independent of their ability to bind glycans, result
from protein-protein interactions (Figure 2 and Table 1). The
interaction of placental- or maternal- derived glycoproteins
FIGURE 2 | Localization of galectins within the placental and maternal compartment.
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with galectins could potentially modulate the activity of some
galectins once they are secreted from a cell. The final outcome
of galectin-pregnancy specific glycoproteins interactions will
depend on their concentration, that of other galectin ligands,
and the affinity of the interactions. In addition, while only
investigated for a few glycoproteins, the presence of specific
glycan structures in proteins may vary at different times during
gestation or under pathological pregnancy conditions. In this
review, we have focused on the role of galectins in controlling
the maternal immune adaptation to gestation; however, the
galectins-glycans axis could modulate maternal immune
response in the context of inflammation induced by microbes
which requires further investigation. Deciphering those
interactions will help to understand the critical role of
glycoimmunology in the maternal adaptations and provide
novel diagnostic and therapeutic targets for pregnancy
complications characterized by aberrant glycosylation and
imbalance of galectins.
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