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rAbstract )

knowledge gaps in the literature.

The ubiquitous nature of micro- (MP) and nanoplastics (NP) is a growing environmental concern. However, their
potential impact on human health remains unknown. Research increasingly focused on using rodent models to
understand the effects of exposure to individual plastic polymers. In vivo data showed critical exposure effects
depending on particle size, polymer, shape, charge, concentration, and exposure routes. Those effects included local
inflammation, oxidative stress, and metabolic disruption, leading to gastrointestinal toxicity, hepatotoxicity, repro-
duction disorders, and neurotoxic effects. This review distillates the current knowledge regarding rodent models
exposed to MP and NP with different experimental designs assessing biodistribution, bioaccumulation, and biologi-
cal responses. Rodents exposed to MP and NP showed particle accumulation in several tissues. Critical responses
included local inflammation and oxidative stress, leading to microbiota dysbiosis, metabolic, hepatic, and reproduc-
tive disorders, and diseases exacerbation. Most studies used MP and NP commercially provided and doses higher
than found in environmental exposure. Hence, standardized sampling techniques and improved characterization
of environmental MP and NP are needed and may help in toxicity assessments of relevant particle mixtures, filling
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Introduction

Plastic debris is a growing environmental concern. In
2019, 368 million tons of plastic were produced glob-
ally [1]. Furthermore, pandemic-related single-use plas-
tics (i.e., surgical masks) have worsened the scenario [2].
Despite recycling initiatives and legislation to ban single-
use plastics, different plastic particles have been found in
oceans, fresh water and agricultural systems, urban envi-
ronments, the atmosphere, and remote areas such as the
Mount Everest [3-5]. Small plastic particles are defined
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as microplastics (MP) (less than 5 mm diameter) and
nanoplastics (NP) (less than 100 nm) [6, 7] and can vary
in size, shape, type of polymer, and concentration [1, 3,
8, 9]. Regarding the sources, these are either deliberately
manufactured (primary MP/NP) or derived from larger
plastics during environmental exposure such as UV irra-
diation, mechanical abrasion, or microbial degradation
(secondary MP/NP) [8].

Plastic particles are far-reaching and a multifaceted
problem. The focus is not only on food [10, 11] or aquatic
systems [4, 7, 8] as primary sources of plastic exposure
but also on its epidemiological consequences [9, 12-14].
Small volume but large surface area facilitates chemical
reactions with body fluids and tissues in direct contact
with particle surfaces. These particles are of particular
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concern due to their persistence, bioaccumulation in
the food chain and in wildlife destined for human con-
sumption, potential toxicity, and ability to act as vectors
for pathogens and co-pollutants [9, 12]. Marine organ-
isms have also presented toxic effects of MP and NP
exposure, depending on the type of organism, ultimately
affecting bioaccumulation, metabolic changes, inflam-
mation, reproduction effects, behavior, and ecosystem
interactions [8, 15]. In addition, fish exposed to NP by
environmentally relevant exposure route (contaminated
prey ingestion) showed NP accumulated in different
fish tissues and affected innate immune gene signatures.
This exposure may compromise their ability to survive in
nature [16].

Humans are exposed either directly to MP and NP in
drinking water, sea salt, and the atmosphere or indirectly
through the food chain [8—11]. Debris from plastic pros-
thetic implants is also a source of exposure to MP and NP
in humans [9]. Moreover, the accumulation of particles in
all trophic levels may expose humans to more particles in
food sources [10, 13]. In a recent systematic review about
MP content in American food sources, a caloric intake-
based calculation was used to estimate human ingestion
of a large number of particles (>50,000) per year, sig-
nificantly rising if drinking bottled water was included
[17]. Such studies are necessary to raise public awareness
about the constant uptake of plastic into the human body.
It remains a matter of debate, however, which types of
particles or their size or cargo as well as location may be
critical in driving specific health-related conditions and
diseases.

Continuous sources of less-concentrated MP (food
containers and drinking water) are also a concern. Regu-
lators (EFSA/WHO) state that MP and NP exposure in
humans present few adverse effects, although this state-
ment may be due to little evidence rather than a lack of
effects. Preliminary signs of harm are still arising. The
precautionary principle recommends and supports ini-
tiatives to develop better analytical methods before con-
cluding that MP and NP exposure is entirely safe after all
[18].

Current estimations of plastic particle exposure in
humans are limited due to the lack of an established
method to provide non-destructive evidence of MP and
NP presence in tissue [10]. Ultra-thin sections of tissue,
often used in medical research, cannot clarify the possi-
ble involvement of plastic in disease processes, as plas-
tic is technically challenging to identify due to its small
size and chemical inertness. Assessment of MP and NP
exposure in rodent models offers a valuable tool to assess
health risk of plastic exposure to animals and parallel it
to humans. In addition, many established rodent mod-
els of human diseases offer the possibility to assess the
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sensitivity of specific pathologies to MP and NP expo-
sure. We review recent findings from MP exposure
within in vivo rodents model systems intending to give an
outlook on them beyond the highlighted gastrointestinal
and respiratory tract possible effects and fill knowledge
gaps within other systems as well.

Searching methods

In this scoping review, we used different combinations of
keywords in the Google Scholar database between 2001
and 2021: "microplastics”; "nanoplastics”; "exposure”; "oral
administration"; "inhalation"; "rodents"; "mice"; "rats";
"accumulation"; "toxicity" and "toxic effects". Inclusion
criteria were original studies published in peer-reviewed
journals and performed by exposing rodents (mice and
rats) to MP and NP, assessing the accumulation of par-
ticles in tissues and/or toxic effects. With that, 31 origi-
nal studies were included and described in Table 1. The
remaining manuscripts were included as complementary
information.

Discussion

Plastics utilized in rodent models

Plastics are synthetic polymers derived from fossil fuels
or biomass. The most common polymers produced glob-
ally include polyethylene terephthalate (PET), polyethyl-
ene (PE), polyvinyl chloride (PVC), polypropylene (PP),
polystyrene (PS), and polyurethane (PUR) [19]. Hetero-
geneous plastic mixtures contaminate environmental
sources such as water [20, 21], in which environmental
fragmentation and degradation may hinder their clas-
sification, generating products with different shapes,
sizes, chemical compositions, and densities [14]. How-
ever, most rodent studies used one plastic entity (Table 1)
and not with heterogeneous mixtures as found in the
environment.

Commercially available particles are uniform spheres
with pristine or functionalized surfaces. Despite the
characterization of exposure effects of a particular poly-
mer, commercial specifications do not reflect environ-
mental exposure accurately [14]. To this end, Estrela
and colleagues assessed acute exposure to the combina-
tion of zinc oxide nanoparticles and PS NP in mice [22].
Although pathophysiological changes were observed
from exposure to PS NP (Table 1), no additive or syner-
gistic effects were observed when administered in com-
bination. Moreover, Liang and colleagues found that MP
and NP mixtures with different sizes facilitate biodistri-
bution in mice’s tissues [23].

Secondary MP and NP exhibit diverse shapes and
surfaces from environmental weathering that may
influence biodistribution. For example, an assessment
of tritiated polyethylene glycol (PEG)ylated PS in a
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tumor model nude mouse highlighted the accumula-
tion of rod/worm-like particles in the liver and spleen
compared with retention of small spherical particles in
tumor masses [24]. However, further work is needed
to determine the effects of polydisperse environmen-
tal secondary particles. In addition, the development of
improved sampling methods to accurately characterize
‘natural’ particles is necessary [20, 21].

According to our literature review, label-free deter-
mination of plastic in cells and human-relevant systems
has not yet been successful, although innovative micro-
scopic or spectroscopic methods (e.g., UV light spec-
trum, infrared light spectrum, and Raman spectrum)
are still emerging [25]. Radio-labeled plastic particles
are used to include quantitative whole-body radiogra-
phy in marine organisms and determine the mass bal-
ance in mice [24, 26, 27]. Fluorescently-labeled MP
and NP facilitate direct quantification of bioaccumu-
lation in tissues. Also, many commercial particles are
produced with internalized fluorescence, avoiding dye-
specific interactions on the particle surface. Nonethe-
less, possible effects of label leaching over time must be
considered [28, 29].

Quantifying particle deposition within tissues helps
determine whether responses are due to direct interac-
tions with particles or indirect secondary effects [28,
29]. Monitoring labeled polymers non-invasively offer
the potential for real-time measurements. For instance,
Amereh and colleagues observed the accumulation of a
mixture between 25 and 50 nm polystyrene particles in
testes of Wistar rats using in vivo imaging system (IVIS)
[30]. Another study using IVIS showed accumulation
over time in the intestines of mice exposed to MP and
NP [23]. However, longitudinal monitoring of fluores-
cent probes is hampered in deep tissues by signal pen-
etration and tissue autofluorescence. Also, due to the low
resolution, positive fluorescent signals are likely to be
aggregates rather than being dispersed particles. Those
difficulties may justify the observation of particle fluores-
cence only in peripheral tissues.

Plastic contaminants should not be viewed as isolated
particles as several organic and non-organic molecules
can adhere to them. Proteins can, for example, form a
protein corona around particles [31, 32]. However, it is
unclear whether these are human-relevant proteins and
their effect. Other toxic molecules can also bind to plastic
(some of them already during the manufacture of plastic
products) and are slowly released later into the environ-
ment or the body [33]. Moreover, plastic binds to lipids
or changes their composition in cell membranes, which
may occur in freshwater algae [34]. However, we did not
find any information on such phenomena in rodents or
human-relevant systems.
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Due to synthetic production and environmental deg-
radation, plastics are in close contact with several types
of additives and pollutants, such as phthalates, bisphenol
analogs, surfactants, and pigments, all associated with
potential toxic effects [14]. For example, Deng and col-
leagues demonstrated phthalate ester accumulation in
the gut, liver, and testes following exposure to PE MP by
oral gavage [35]. Moreover, several chemicals can act as
endocrine disruptors, i.e., affecting hormones pathways
or acting as pseudo-hormones themselves [36, 37].

In summary, improved sampling methods to determine
the most common environmental particle properties will
help to streamline the systematic characterization of the
effects of individual polymers of different shapes, sizes,
and associated coronas. In addition, the experimental
utilization of heterogeneous mixtures of particle combi-
nations and environmental plastic samples may contrib-
ute to a better understanding of the potential additive
effects and effects of chemicals that come as cargo with
MP and NP exposure.

Dosage

The environmental relevant dose of MP and NP expo-
sure is heavily debated. Many studies use MP and NP
concentrations far greater than current human exposure
estimates (Table 1). Estimations are that human con-
sumption of up to 0.06 mg/kg/day of particles occurs via
drinking water [30]. Administration of a high single dose
of particles followed by substantial recovery or constant
exposure of concentrated particles is unlikely to reflect
real-world scenarios. To this end, Stock and colleagues
used a dosing regimen of PS MP at less than 34 mg/
kg body weight thrice weekly for four weeks [38]. They
found minimal particle uptake into intestinal tissue and
no toxic effects.

Conversely, high concentrations reflect the combina-
tion of multiple exposure routes in nature [39] and emu-
late increases in microplastic pollution in the future.
Current limitations in methods to detect MP and NP
accurately hinder estimations of environmental con-
centrations unreliable [40]. Therefore, determining the
threshold at which MP and NP exposure is associated
with adverse events remains critical.

Polymer exposure routes

Oral ingestion of plastic and absorption via the gas-
trointestinal tract has so far been the focus of MP/NP
research [38]. However, reports in which plastic parti-
cles sized up to 20 pum are ingested [41] do not seem
comprehensible according to the assessment of the
German Federal Institute for Risk Assessment (BfR)
[42]. Although microparticles up to 150 pm can trans-
locate across mammals’ intestinal barriers [43], the



da Silva Brito et al. Particle and Fibre Toxicology (2022) 19:28

absorption rate is below 0.3%. From the rate, mostly
particles sized up to 10 pm should be able to penetrate
all organs, including the brain, with unexplored conse-
quences [44].

Low absorption of MP and NP through intestinal epi-
thelium could be related to particles properties and effi-
ciency of the mucus barrier to interact and maintain MP
and NP in the intestinal lumen. By being maintained,
MP and NP can be excreted in the feces or deposited,
which may cause local irritation or release of toxic addi-
tives [44]. Also, MP and NP can be internalized by intes-
tinal epithelium and be re-released into the intestinal
lumen due to a turnover of approximately 3 days, thus
not reaching the bloodstream [45]. Currently, some stud-
ies assume that toxic effects are expected in the digestive
tract and liver due to continuous plastic accumulation
(Table 1) [46, 47]. A murine model fed with PE particles
showed increased inflammation in small intestines fol-
lowed by changes in microbiota and increased systemic
pro-inflammatory markers [48].

Another route for human exposure to MP and NP is
drinking water, as plastic particles were detected in tap
and bottled water [17]. Some studies used this admin-
istration route to expose rodents models to MP and NP
(Table 1). However, water consumption was not assessed
for particle intake calculations [49—51]. Additionally, this
route is not appropriate for assessing buoyant polymers
such as PP and PE and may be inefficient considering
particle sedimentation over time for MP and NP suspen-
sions. Another limitation of the oral uptake route (drink-
ing water, diet, and oral gavage) might be bioavailability,
which was estimated to range from 0.2 to 1.7% with dif-
ferent types of NP in vivo [52].

Plastic is not only absorbed by food through the diges-
tive tract [53]. It can also be inhaled through fine air
dust (e.g., abrasion from car tires or clothing [54, 55]
and release chemical additives [56] once within the body
[57]). Occupational diseases associated with textiles have
been extensively reviewed [54]. Fragments and fibers are
the most common forms of atmospheric MP and NP.
However, estimations of human exposure levels are lim-
ited by the lack of sensitivity of current methods to detect
small particles [5, 58].

Clearance of inhaled particles can be through mucocili-
ary transport resulting in negligible deposition in airways
or phagocytosis by alveolar macrophages or lymphatic
transport [54]. MP and NP may avoid these mechanisms,
accumulating in the lungs and entering systemic circu-
lation [27, 58, 59]. Inhaled nanoparticles can also reach
the central nervous system (CNS) through the olfactory
bulb [60]. A recent 14-day repeat inhalation study in rats
highlighted lung inflammation and decreased inspiratory
rate following exposure to 100 nm PS particles [58]. Also,
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a single intratracheal dose during gestation resulted in
maternal-to-fetal translocation of PS NP [59].

Topical exposure to MP and NP from microbeads in
personal hygiene products and contaminated water may
directly affect the skin. Epidermal cells exposed to MP
and NP in vitro exhibited oxidative stress [61]. However,
uptake across the outermost skin layer, the stratum cor-
neum, is considered restricted to nanoparticles smaller
than 100 nm [43]. Minimal uptake was observed fol-
lowing ex vivo administration of 20-200 pum fluorescent
particles to pig ears both with and without compromised
barrier function [62]. Particle weathering and aging may
enhance topical uptake, as observed in mice with quan-
tum dot nanoparticles [63]. To our knowledge, topical
plastic exposure has not been extensively characterized
in rodent models.

Various exposure routes have been utilized in ani-
mal models. Oral and inhalation routes are considered
the main exposure routes in humans. The influence of a
particular administration route on particle characteris-
tics (e.g., accompanying corona or ability to release toxic
chemicals) is not well understood.

In vivo effects of polymer exposure

Despite being considered chemically inert compared to
plastic monomers, toxicity following MP and NP expo-
sure was described (Fig. 1, Table 1). MP and NP toxic-
ity may result from their persistent physical presence in
tissues. Size-dependent effects have been demonstrated
in vitro with PS spheres [61, 64]. Small and positively
charged particles may have greater bioavailability in
mammals [65]. Particle accumulation has been demon-
strated in organs such as the liver, kidneys, brain, spleen,
and reproductive organs (Fig. 1, Table 1), although it was
independent of the functionalized surface coating in high
concentration [52].

Disruption, penetration, absorption, and endocytosis
mechanisms, which may be toxic [66], are currently being
discussed as possible ways plastic particles can enter and
interact with cells and tissues [67, 68]. Possible toxic con-
sequences may not only be due to MP and NP exposure,
as most commercially available particles used in studies
in vivo are provided in aqueous suspensions with disper-
sant and conservant solvents. Walczak and collaborators
centrifuged the particles for conservant and surfactant
removal before usage, controlling possible effects found
after exposure [52]. Thus, evaluating additional com-
pounds as control groups and not only test vehicle solu-
tions is essential.

Direct effects and underlying mechanisms
In mice exposed to fluorescently labeled particles, local-
ized inflammation at the site of particle accumulation
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has been confirmed in the liver [41, 69, 70] and testes
[71]. However, fluorescent dye leaching from MP and NP
could also contribute to the exposure effects observed.
Interestingly, few studies evaluated the fluorescent dye
leaching of particles under conditions such as simulated
gastric and intestinal fluids, and fluorescence leaching
was negligible [23, 52]. Moreover, fluorescent MP and NP
are mainly used only for bioaccumulation and biodistri-
bution assessments into tissues, and non-fluorescent for
toxicity evaluations [23, 41]. Exposure to non-fluorescent
particles resulted in increased inflammation in primary
absorption sites consistent with the exposure route, such
as the gut [48] and lungs [58].

One proposed central mechanism for MP and NP tox-
icity is the induction of oxidative stress, which has been
extensively observed in vitro [72]. However, another
study found the opposite effect, a reduction of plastic-
induced oxidative stress in cells in vitro [73]. In addition,
some cell types can actively excrete plastic particles [64],
possibly influencing the response to oxidative stress [74].
Mice exposed to drinking water with high concentrations

of MP showed impaired antioxidant defenses, such as
decreased superoxide dismutase (SOD) and glutathione
(GSH) expression and increased malondialdehyde
(MDA) formation (a product from lipid peroxidation). In
addition, increased activity of the Nrf2/Keapl pathway
was observed, suggesting plastic-induced oxidative stress
and its relation with inflammation in the tissue microen-
vironment [69].

Regarding additives and pollutants leached from plas-
tic particles, mice exposed to MP and NP (PS and PE) by
drinking water with organic flame retardants presented
more pronounced oxidative stress in the liver [70]. Tes-
tes of mice exposed to oral gavage with PE coated with
phthalate esters also showed oxidative stress responses
[35]. However, these effects may be due to additives
released in the solution and not to MP and NP expo-
sure, as no information was provided regarding solutions
stability over time or whether they were used as fresh
preparations [35, 70]. Mice exposed to a single dose of
MP and NP mixtures with different sizes by oral gavage
showed increased ROS generation, intestinal epithelium
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apoptosis, and intestinal permeability, and pre-treatment
with antioxidants reversed the effects [23].

Current studies do not indicate genotoxicity or muta-
genicity of everyday plastics, as shown for PS [75]. In
contrast, an in vitro study in human fibroblasts [76] and
an investigation into the damage to cell-free DNA [77]
indicated corresponding genotoxicity. However, other
types of plastic and rodents models have hardly been
investigated to confirm effects on a broader species scale.

Gastrointestinal toxicity

Plastic exposure in the intestines of mice induces local
inflammation [48], alters microbiomes [78] especially
favoring facultative pathogenic S. aureus strains [48],
provokes metabolic dysfunction [49], influences liver
lipid metabolism [79, 80], and modifies host—pathogen
interactions [81]. Although these results seem relevant
for humans [82], most effects occurred with high MP and
NP doses in unspecific endpoints not simulating environ-
mental conditions.

Changes to the intestinal microbiota contribute to met-
abolic disorders, including obesity and diseases such as
colorectal carcinoma [82, 83]. Li and colleagues observed
increased microbial load and diversity in fecal samples of
mice fed with PE particles (600 pg/day for 35 days) [48].
Gut dysbiosis coincided with increased hepatic bile acid
levels and altered serum bile- and amino acid-related
metabolites in mice exposed to high concentrations of
5 pum PS MP (100 and 1000 pg/L) in drinking water for
six weeks [49].

Hepatotoxicity

In response to oral exposure to MP and NP, multiple
groups showed altered gut microbiome and disruption of
serum and hepatic markers of amino acid synthesis and
metabolism, energy, and lipid metabolism [49-51, 79],
followed by liver inflammation [41, 69]. Hepatocellular
edema and inflammatory cell infiltration were observed
with increased hepatic IL-1p and TNF-a mRNA follow-
ing exposure to 5 um PS particles (20 mg/kg/day body
weight) in drinking water for 30 days [69]. The extent of
hepatotoxic insult was not sufficient to alter serum mark-
ers of liver function (alanine transaminase [ALT] and
aspartate aminotransferase [AST]) after the exposure
period. However, mice exposed to 250 nm PUR particles
by oral gavage for 10 days showed increased serum ALT,
alkaline phosphatase (ALP), IL-6, and TNF-« levels, fol-
lowed by liver vascular congestion and hepatocytes vacu-
olization [84]. Accumulation quantification of fluorescent
particles was hindered by extensive tissue autofluores-
cence, hampering to conclude whether the effects were
associated with the presence of hepatic particles.
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Stock and colleagues treated heme oxygenase-1 (HO-1)
triple transgenic (HOTT) reporter mice with a mixture
of 1, 4, and 10 pm PS particles by oral gavage [38]. These
animals expressed a LacZ reporter sensitive to oxidative
stress and inflammation. However, the study found no
positive responses or pathological changes to the liver or
other organs, possibly due to the low concentrations of
particles (1.25-34.0 mg/kg body weight for particles mix-
ture every 3 days for 28 days).

The liver is the primary site for lipid metabolism and
is sensitive to pathologies such as nonalcoholic fatty liver
disease (NAFLD) that manifest as an accumulation of
fatty vesicles combined with elevated circulatory choles-
terol and triglycerides [83]. Lipid disruption in response
to MP/NP exposure in rodents has been observed by
multiple groups [50, 51, 82, 85]. Luo and colleagues
observed hepatic ballooning (characteristic of apopto-
sis), increased hepatic triglycerides, total cholesterol,
and decreased PPARa and PPARy mRNA in maternal
mice after exposure to 5 pm PS MP (100 and 1000 pg/L)
by drinking water during gestation and lactation [50].
Disrupted PPAR signaling and decreased hepatic tri-
glycerides and total cholesterol were also observed in
F1 offspring. The lipid-sensitive nuclear receptor PPAR«
regulates fatty acid catabolism and clearance and is
thought to have anti-inflammatory effects (NF-xB sup-
pression) [86]. Therefore, the extent of hepatic PPAR«
downregulation is predictive of NAFLD severity.

PPARy is also downregulated during hepatic stellate
cell activation, resulting in fibrosis [86]. At lower con-
centrations of 5 um PS (500 pg/L), hepatic fatty vacuoles
were observed in male C57BL/6 wild-type mice exposed
to MP by drinking water for 28 days, without changes to
hepatic triglyceride or PPARy at the protein level [85].
This result indicates potential strain and/or gender dif-
ferences, although a lack of water intake assessment may
have resulted in different particle exposure between indi-
viduals. However, Lu and colleagues observed decreased
liver weights and hepatic and circulatory levels of total
cholesterol and triglycerides with downregulation of
hepatic triglyceride synthesis in male mice exposed to 0.5
and 50 pm PS MP (100 and 1000 pg/L) by drinking water
for 35 days. At the mRNA level, increased PPARa and
decreased PPARYy expression were identified [79].

Changes in lipid metabolism are thought to be depend-
ent on particle size. F1 offspring from dams exposed to
0.5 and 5 pm PS particles (100 and 1000 pg/L) in drinking
water during gestation exhibited decreased hepatic total
cholesterol and triglycerides in a particle dose- and size-
dependent manner [51]. In addition, decreased PPAR«
hepatic mRNA expression was observed in groups
exposed to 5 um MP alone. Whether these effects are due
to altered maternal metabolism, making offspring more
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susceptible to disease, or particles transferred to the fetus
directly affecting the next generation remains unclear.

Reproductive dysfunction

MP and NP have been shown to accumulate in reproduc-
tive tissues [23, 30] and cross the placental barrier [59].
Accumulation of MP and NP in testes of rodents cor-
responded with histological changes followed by local
inflammation and DNA damage in germ cells [30, 71,
87]. Also, rodents exposed to MP and NP by oral gavage
showed decreased serum testosterone levels, a hormone
essential for spermatogenic cells development [30, 71,
87]. These observed effects were alleviated in male mice
treated with ROS scavenging compounds because oxi-
dative stress was induced through p38 MAPK signaling
pathway activation after MP exposure [87]. This pathway
is also involved in inflammation, which could explain
increased levels of pro-inflammatory cytokines in testes
of mice exposed to MP and NP [71, 87, 88]. Addition-
ally, mice exposed to MP by drinking water demonstrated
increased NF-«B followed by decreased Nrf2 and HO-1
in testes, suggesting this increased pro-inflammatory
profile may be due to reduced Nrf2/HO-1-mediated
NEF-«B inhibition pathways [88].

Plastic exposure of mice dams caused far-reaching
effects on milk ingress [50] and generally metabolic syn-
dromes [51] in first and second-generation offspring of
the first and second generation, regardless of sex [89]. In
ovaries, exposure to MP by drinking water for 90 days
reduced the number and volume of growing follicles and
anti-Miillerian hormone levels and induced oxidative
stress in rats [90, 91]. In addition, oxidative stress trig-
gered cell death mechanisms, inflammation [90], and
fibrosis through Wnt/B-catenin pathway activation in
ovaries [91]. Changes in the uterus due to plastic expo-
sure were also observed [92], with altered number and
gender ratio of offspring of parents exposed to PE MP by
oral gavage during pregnancy. However, tendencies were
not dose-dependent [93].

Exposure to PE MP in dams by oral gavage during
pregnancy and lactation altered the development and
number of T cells in spleens in offspring of both sexes.
Also, the maturation of dendritic cells was inhibited in
males and enhanced in female pups [93]. Furthermore,
in an allogeneic mating murine model, pregnant mice
exposed to PS MP by IP administration showed increased
resorption rates of embryos, decreased number and
diameter of uterine arterioles, and disturbances of mater-
nal-fetal immune microenvironment, which compro-
mises embryos development [94].

Metabolic disorders were also observed in offspring
of dams exposed to PS MP by drinking water during
pregnancy [50, 51] and lactation [50]. To evaluate the
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long-term effects of MP and NP exposure, Luo and col-
leagues analyzed physiological, pathological, and metab-
olism indicators of adult F1 offspring (40-weeks old) of
dams exposed to PS MP during pregnancy and lactation.
Adult female F1 offspring showed increased lipid accu-
mulation in the liver [50]. Furthermore, pregnant mice
exposed to MP and NP by IV administration showed
decreased embryo body weight, although not affect-
ing the number of embryos [95]. In addition, mice dams
exposed to 60 nm NP showed decreased placental diam-
eter and extravasation in fetuses and placenta [95].

Neurotoxicity

Nanoplastics can cross the blood—brain barrier in a size-
dependent manner [96]. Bioaccumulation, altered lipid
peroxidation, and disrupted activity of neurotransmitters
have been reported in the brains of marine organisms
and fish [96, 97]. However, plastic-mediated neurotox-
icity in rodents has been poorly investigated so far [97].
While no significant differences in cognitive function
were observed in rats exposed to PS NP for five weeks by
drinking water, the authors noted that the small sample
size (n=6) and limited testing unlikely reflected subtle,
transient effects [98].

Estrela and colleagues observed impaired object rec-
ognition in response to PS NP exposure, coinciding with
redox changes, reduced acetylcholinesterase (AChE)
activity, and accumulation of particles in the brain [22].
Nonetheless, administration of particles systemically (IP)
does not reflect the first-pass effect and is not considered
a relevant exposure route for environmental MP and NP.
Furthermore, altered neurotransmitter activity following
MP and NP accumulation was observed in organs besides
the brain, such as the liver [41], highlighting the potential
for particles to damage CNS function in multiple tissues.
In addition, indirect effects of particle exposure, such as
pro-inflammatory mediators from other accumulation
sites, may also result in neurotoxicity [99].

Other effects
The potential effects of MP and NP exposure in other tis-
sues are still poorly investigated in rodent models. For
example, rats exposed daily to MP for 90 days by drinking
water showed myocardium alterations, such as vascular
congestion, areas with thinner muscle fibers and rup-
tures, and increased serum heart damage markers (CK-
MB and Troponin I) [100]. Also, increased apoptosis and
oxidative stress in the heart were observed, which trig-
gered activation of the Wnt/B-catenin signaling pathway
related to myocardium fibrosis [100].

Another concern is the potential toxicity in endocrine
tissues caused by plastics. For example, rats exposed daily
to PS NP for five weeks by oral gavage showed decreased
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active forms of thyroid hormones (FT3 and FT4) in cir-
culation and increased levels of TSH with high doses of
NP, followed by changes in cholesterol serum markers
and more liver damage. Hence, PS NP administration
could interfere with lipid metabolism by disrupting the
thyroid endocrine system [101].

The pathophysiology of chronic inflammatory diseases
and co-morbidities of metabolic syndrome may be exac-
erbated in individuals exposed to excessive MP and NP
levels. Administration of 5 um PS particles by drinking
water in a murine acute colitis model enhanced hepatic
lipid disruption and intestinal barrier dysfunction [85].
Serum inflammatory markers were higher in mice with
colitis than in control animals exposed to MP, indicating
the potential for sensitization of individuals with sub-
stantial plastic loads to chronic diseases.

Future perspectives

New studies are continuously published regarding pos-
sible harmful effects in terrestrial mammalian organisms
caused by plastic particles. However, most studies have a
set of inherent challenges that need to be overcome. Con-
sidering plastic particles are found everywhere, the first
challenge is the presence of contaminants during analy-
sis. Contaminants were described in detecting plastic
particles in controls, possibly from contact with air and
plastic released from clothing and laboratory materials.
In addition, the high diversity of plastic properties, such
as insolubility to non-harmful solvents and buoyancy,
can compromise the main experimental models to assess
toxicity.

Another challenge is the availability of environmental
plastics, like heterogeneous mixtures compared to com-
mercially available plastics used in studies, which cannot
be extrapolated to reality. This lack of studies on environ-
mental plastics is mainly related to poor improvement
in sampling, processing, and detection of plastics loads,
which also compromises estimations of MP and NP doses
found in the environment. This issue converges with
another challenge: doses applied in many in vivo stud-
ies do not correspond to plastics concentrations found in
the environment, and studies using environmentally rel-
evant doses showed no effects, diverging from high doses
experiments.

Many variables and conditions are applied in different
studies designs; thus, considering multiple testing prob-
lems that could be related to data and performing proper
adjustments for each case is needed for satisfactory con-
clusions and suggestions. Studies may use the precau-
tionary principle as an argument for evaluating exposure
to high doses of MP and NP before assessing the envi-
ronmental dose. However, literature bias may occur for
publications demonstrating effects, conflicting with the
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studies using low doses, as they might show different
results or absence of effects. Furthermore, low incentives
for studies with no effects may further compromise a
critical debate regarding exposure to MP and NP.

Although plastics are compounds that can be in nature
for a long time, longitudinal monitoring for plastic toxi-
cology remains poorly explored. Experimental chronic
models assessing only one terminal endpoint may not
show effects, hence questioning the exposure period
required to observe effects. Additionally, improvement in
experimental designs for long-term and chronic studies
may help comprehend immunogenic responses to pro-
longed plastic exposure.

Several knowledge gaps were addressed in this review:
synergistic or antagonistic effects of particle mixtures on
uptake, biodistribution, bioaccumulation, clearance, and
biological responses; standardized method(s) of assess-
ment of particle combinations or environmental plastics
is vital for appropriate risk assessment of reliable expo-
sure concentrations and time; lack of non-invasive or
non-destructive estimation of particle load and biodistri-
bution at an adequate resolution. These knowledge gaps
may be filled by improving sampling, processing, and
detection in optimal resolution, leading to better estima-
tions and the development of experimental designs closer
to the environment.

Conclusion

Understanding cytotoxic effects of plastic exposure
requires more progress in several fields. First, standard-
ized sampling techniques and improved characterization
of environmental MP and NP are needed. Second, will
there is a good body of evidence on acute plastic expo-
sure, chronic exposure over longer time frames in higher
organisms is understudied. Third, consensus on the
effects and methodological tools on the presence of plas-
tic in vertebrates in different types of organs are lacking
to better understand potential relationships to chronic
inflammation and disease. More research is needed to
shed light on those aspects to better understand the con-
sequences of plastic exposure in human health and envi-
ronmental risks.
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