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Abstract
The nuclear lamina, along with associated nuclear membrane proteins, is a nexus for regu-

lating signaling in the nucleus. Numerous human diseases arise from mutations in lamina

proteins, and experimental models for these disorders have revealed aberrant regulation of

various signaling pathways. Previously, we reported that the inner nuclear membrane pro-

tein Lem2, which is expressed at high levels in muscle, promotes the differentiation of cul-

tured myoblasts by attenuating ERK signaling. Here, we have analyzed mice harboring a

disrupted allele for the Lem2 gene (Lemd2). No gross phenotypic defects were seen in het-

erozygotes, although muscle regeneration induced by cardiotoxin was delayed. By con-

trast, homozygous Lemd2 knockout mice died by E11.5. Although many normal

morphogenetic hallmarks were observed in E10.5 knockout embryos, most tissues were

substantially reduced in size. This was accompanied by activation of multiple MAP kinases

(ERK1/2, JNK, p38) and AKT. Knockdown of Lem2 expression in C2C12 myoblasts also

led to activation of MAP kinases and AKT. These findings indicate that Lemd2 plays an es-

sential role in mouse embryonic development and that it is involved in regulating several sig-

naling pathways. Since increased MAP kinase and AKT/mTORC signaling is found in other

animal models for diseases linked to nuclear lamina proteins, LEMD2 should be considered

to be another candidate gene for human disease.

Introduction
The nuclear envelope (NE) is a specialized domain of the ER that contains inner (INM) and
outer (ONM) nuclear membranes joined at nuclear pore complexes and lined by the nuclear
lamina (reviewed in [1–3]). The lamina is a filamentous protein meshwork that contains a
polymeric assembly of nuclear lamins, type V intermediate filament proteins found in all meta-
zoans (reviewed in [4–6]). Three major subtypes of lamins are expressed in most differentiated
mammalian somatic cells: lamins A/C, which are alternatively spliced products of the same
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gene, and lamin B1 and lamin B2, which arise from separate genes. The NE also includes a host
of minor protein components, particularly transmembrane proteins of the INM (reviewed in
[7,8]). Although the ONM is continuous with more peripheral ER, many transmembrane pro-
teins are highly concentrated at the INM, partly due to their interactions with lamins and/or
chromatin (reviewed in [9]). Some of these transmembrane proteins have been characterized
in detail, including the lamin B receptor (LBR), emerin, Lamina-Associated Polypeptide 1
(LAP1), LAP2, and MAN1 [7,10]. The nuclear lamina is involved in organizing the structure of
the NE, attaching chromatin to the INM, modulating interphase chromosome structure, and
anchoring the cytoplasmic cytoskeleton to the nucleus [3,10]. These functions involve the poly-
meric nuclear lamin core as well as integral and peripheral membrane proteins associated with
nuclear membranes.

At least 15 human diseases are caused by mutations in proteins associated with the NE (re-
viewed in [1,11]). The diseases, termed “laminopathies” or “nuclear envelopathies,”most com-
monly arise from mutations in the gene for lamins A/C (LMNA). They include various forms
of muscular dystrophy, cardiomyopathy, lipodystrophy, neuropathy, and premature aging syn-
dromes. Laminopathies also have been linked to mutations in transmembrane proteins of the
NE. For example, mutations in the gene for emerin (EMD) cause Emery-Dreifuss muscular
dystrophy (EDMD)[12], and mutations in the LEMD3 gene encoding MAN1 cause sclerosing
bone dysplasias [13]. Although mutations in NE proteins have been associated with defects in
signaling, gene expression, and NE/nuclear structure [2,11], the proximal molecular mecha-
nisms leading to human disease are largely unclear.

In mammals, emerin and MAN1, along with the INM proteins LAP2β and Lem2, contain a
LEM homology domain [14]. The LEM domain is an ~40-amino acid sequence that binds to a
dimer of BAF, a small polypeptide involved in chromatin organization [7]. LEM domain pro-
teins have a widespread tissue distribution, although their expression levels vary. Studies in cul-
tured cells and animal models have suggested a diverse range of functions for LEM domain
proteins of the INM, including regulation of signaling and chromatin structure [7], and modu-
lation of NE reassembly at the end of mitosis [15]. Some of the most extensive insights have
been obtained for MAN1, which is involved in attenuating TGF- signaling [13,16,17]. MAN1
interacts directly with the phosphorylated forms of Smad 2/3 [16,17] and with a Smad phos-
phatase [18], and might provide a scaffold that facilitates Smad dephosphorylation. Mice with
a gene-trap allele of Lemd3 encoding MAN1 die at midgestation with a defect in vasculogenesis
associated with overactive TGF-β[19,20]. Deficiency of emerin in various experimental models
has been associated with elevated ERK signaling [21,22]. Although mice lacking emerin expres-
sion appear phenotypically normal [23], the absence of emerin in mice enhanced the muscular
dystrophy-like disorder associated with LAP1 deficiency [24]. Multiple LEM domain proteins
are found in other metazoans and have been linked to tissue-specific pathology in C. elegans
[25], Drosophila [26], and Xenopus [27,28]. While different LEM domain proteins clearly have
distinctive functions, functional overlap also has been reported [26,27,29,30].

Lem2, which we identified in a proteomics screen for novel NE transmembrane proteins
[31], is related to MAN1 in overall membrane topology [32]. Both proteins contain N- and C-
terminal nucleoplasmic domains flanking a central region with two transmembrane sequences
and a luminal segment. Moreover, both proteins share sequence homology in the luminal do-
main and in the second nucleoplasmic domain [32], although Lem2 lacks the Smad-binding re-
gion found in MAN1 [33]. Lem2 is expressed widely and binds to A-type lamins [32,34], and
RNAi-mediated knockdown of Lem2 in certain cell types leads to irregular nuclear structure
and reduced proliferation [35]. We found that Lem2 is strongly upregulated during myoblast
differentiation [34] and plays a critical role in attenuating ERK signaling during this process
[29]. Here, we have analyzed the functions of Lemd2 in mouse with a gene-trap allele
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(Lemd2Gt). While Lemd2+/Gt mice were almost normal phenotypically, Lemd2Gt/Gt mice exhib-
ited embryonic lethality by E11.5. At E10.5, there was defective growth of most embryonic re-
gions, along with substantially increased activation of MAP kinases and AKT in embryonic
extracts. Similar signaling defects were observed with Lem2 knockdown in cultured cells. To-
gether, these results reveal that Lem2 plays a crucial role in mouse embryonic development
and in the regulation of several signaling pathways, underscoring the importance of this pro-
tein in mammals.

Results

Derivation and characterization of mice with a Lemd2 gene-trap allele
We used mouse embryonic stem cells with a gene-trap insertion in the Lemd2 locus (Lemd2Gt)
to derive Lemd2 knockout mice (Fig. 1). The gene trap introduced a sequence between exons 3
and 4 of Lemd2 that contains a splice acceptor site (SA), a cDNA encoding the β-galactosidase
reporter linked to neomycin (βgeo), and a SV40 cleavage/polyadenylation site (pA) (Fig. 1A).
PCR analysis of genomic DNA was used for genotyping (Fig. 1B). To characterize transcripts of
the wild-type and gene-trap alleles, we performed Northern blot analysis on mRNA from E13.5
embryos with an oligonucleotide probe recognizing exon 1 of Lemd2 (Fig. 1C). A single band
corresponding to the 2.4 kb Lemd2mRNA was detected in wild-type embryos (Fig. 1C, lane 1).
In Lemd2+/Gt embryos (Fig. 1C, lane 2), a 5.4 kb band also was observed, matching the size of

Fig 1. Gene-trap disruption of the Lemd2 locus. (A) Upper panel: Schematic of the Lemd2 gene, showing exon organization (black boxes). Lower panel:
Depiction of the gene-trap insertion in the Lemd2 gene (see text). The location of the RNA probe used for Northern blotting (“probe”) and the positions of the
primers used for PCR genotyping are indicated. (B) PCR analysis of yolk sac DNA from Lemd2+/+, Lemd2+/Gt, and Lemd2Gt/Gt embryos. (C) Northern blot
analysis of mRNA from wild-type and heterozygous embryos at E13.5. (D) Schematic of the wild-type Lem2(wt) protein, with the LEM domain and
transmembrane (TM) sequences indicated, and of the Lem2(gt) predicted fusion protein. ‘Ab’ indicates the peptides used for production and purification of
anti-Lem2 antibodies. (E) Western blot analysis of E10.5 embryo extracts with the indicated antibodies. Dotted arrow indicates the predicted position of the
Lem2(gt) fusion protein and the 32-kDa mark designates the putative Lem2 fragment.

doi:10.1371/journal.pone.0116196.g001
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the predicted Lemd2-βgeo transcript. These results, combined with our analysis of Lemd2Gt pro-
tein products at various developmental stages (described below), indicate that “splicing around”
the insertional mutation (to downstream Lemd2 exons) does not occur at significant levels.

Wild-type Lemd2 produces a 511-amino acid protein, but the gene-trap Lemd2-βgeo allele is
predicted to generate an ~175-kDa fusion protein, “Lem2(gt)”, containing the N-terminal 296
amino acids of Lem2 fused to the β-galactosidase-neo fusion (βgeo) (Fig. 1D). Affinity-purified
antibodies against Lem2 were used to analyze extracts from E8.5, E10.5, and E13.5 embryos by
western blotting (Fig. 1E and S1A Fig.). Expression of Lem2 was detected at all three stages,
with a progressive increase from E8.5 to E13.5. In wild-type embryos, the antibodies detected a
single Lem2 band at the expected molecular weight (58 kDa). This band was reduced in intensi-
ty by about one-half in Lemd2+/Gt extracts and was absent from Lemd2Gt/Gt extracts (obtained
only at E8.5 and E10.5). Unexpectedly, the predicted 175-kDa Lem2-βgeo fusion protein was
not detected in either Lemd2+/Gt or Lemd2Gt/Gt extracts with antibodies against either Lem2 or
β-galactosidase. Instead, anti-Lem2 recognized a 32-kDa band, and anti-β-galactosidase recog-
nized a 115-kDa band (Fig. 1E, top and middle panels). The 32-kDa and 115-kDa polypeptides
likely represent degradation products of the predicted Lem2-βgeo fusion protein, with the 32-
kDa band containing sequences from Lem2 exons 1–3 and the 115-kDa species containing β-
galactosidase. In Lemd2+/Gt embryos, the level of the presumptive Lem2 exons 1–3 product was
only ~1/4–1/3 that of the 58-kDa Lem2 band (S1A and C Fig.), raising the possibility that the
32-kDa Lem2 fragment might be unstable. Consistent with that idea, the 32-kDa band could
not be detected in skeletal muscle from adult Lemd2+/Gt animals (S1B Fig.), although the 115-
kDa β-galactosidase band was clearly evident. The loss of Lem2 in E10.5 embryos with the
Lemd2Gt allele did not affect the levels of lamin B1, which is expressed throughout embryogen-
esis (Fig. 1E) [6]. Furthermore there was no consistent change in the levels of emerin (data not
shown). Lamins A/C are not expressed until E12 [36], well after the onset of Lem2 expression.

Lem2 is widely expressed in different adult human and mouse tissues [32,34], although lev-
els are much greater in cardiac and skeletal muscle [34]. We analyzed heterozygous Lemd2+/Gt

embryos by X-gal staining to examine the expression pattern of Lemd2Gt at midgestation
(Fig. 2). Analysis of whole-mount embryos at E10.5 and E13.5 (Fig. 2A, B, left panels) showed
variable levels of X-gal staining throughout the embryo. Examination of histological sections at
low magnification (Fig. 2A, B, right panels) revealed only weak labeling, although slightly
higher staining sometimes was seen in the developing liver, Wolffian duct and certain areas of
neuroectoderm (Fig. 2A, right, arrows). In sections from E10.5 embryos viewed at higher mag-
nification (Fig. 2C), X-gal staining was detected in cells arising from all three germ layers, as ex-
emplified by views of neuroepithelium (ectoderm), heart (mesoderm), and liver (endoderm).
From these results, we conclude that Lem2 is expressed as early as E8.5 during embryogenesis
and is present in all three germ layers by E10.5. Also, Lemd2Gt/+ embryos contain reduced lev-
els of a Lem2-related fragment rather than the full-length gene-trap fusion protein; this Lem2
fragment is not detectable in adult skeletal muscle.

Homozygous disruption of Lemd2 causes embryonic lethality by E11.5
Lemd2+/Gt mice were viable, developmentally normal and fertile, and showed no abnormalities
in growth or survival for up to one year (S1D Fig. and data not shown). Histological analyses of
cardiac and skeletal muscle from Lemd2+/+ and Lemd2+/Gt mice at 1, 4, and 8 months revealed
no differences in overall morphology and skeletal muscle fiber diameter (S1E Fig. and data not
shown). Also, neither genotype showed evidence of skeletal muscle fibrosis (S1E Fig.). Howev-
er, there were modest kinetic differences in muscle regeneration in Lemd2+/Gt animals (see
below).
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Heterozygotes were intercrossed to obtain Lemd2Gt/Gt animals. Of 109 live-born offspring,
44 were Lemd2+/+, 65 were Lemd2+/Gt, and none were Lemd2Gt/Gt (Fig. 3A). Analysis by the
Chi-squared test indicates that Lemd2Gt/Gt embryos die before birth (p = 8 × 10-8). The ratio of
Lemd2+/+ to Lemd2+/Gt mice (44:65) did not match a perfect Mendelian ratio (1:2), but it is im-
portant to note that the p-value for the observed ratio was not statistically different from the
1:2 ratio (p = 0.1193).

We carried out timed matings of Lemd2+/Gt mice to identify the stage when Lemd2Gt/Gt em-
bryos die (Fig. 3A). Genotyping of 50 embryos at E9.5 and 112 embryos at E10.5 revealed a
normal Mendelian ratio of Lemd2Gt/Gt embryos (Fig. 3A), although some embryos undergoing
resorption could not be genotyped. In contrast, no Lemd2Gt/Gt embryos were observed at
E11.5. These results indicate that Lem2-deficient mice die between E10.5 and E11.5.

To investigate the basis for the lethality of Lemd2Gt/Gt, we carried out more detailed analyses
of E10.5 embryos (Fig. 3). The Lemd2Gt/Gt embryos were conspicuously smaller than Lemd2+/+

and Lemd2Gt/+ littermates, had a paler yolk sac, and appeared to contain less blood, as judged

Fig 2. Lem2 expression during embryonic development. (A-B) Whole mount lateral views (left panels) and sagittal sections (right panels) of Lemd2+/Gt

embryos at E10.5 (A) and E13.5 (B) stained with X-gal. Arrows in (B) indicate tissues with slightly higher X-gal staining: L, liver; W, Wolffian duct; N,
neuroepithelium. Bars: 1 mm. (C) Sagittal sections of the indicated regions of a Lemd2+/Gt embryo at E10.5 stained with X-gal and Nuclear Fast Red. Lower
panels are high-magnification views of boxed areas. Bars: 15 μm.

doi:10.1371/journal.pone.0116196.g002
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by bright-field microscopy (Fig. 3B-C). Nonetheless, the great majority of Lemd2Gt/Gt embryos
exhibited the morphogenetic hallmarks of E10.5 embryos, such as a beating heart, eyes, bran-
chial arches, forebrains, midbrains, and hindbrains, limbs, and an elongated tail with obvious
somites. A small fraction (~10%) of Lemd2Gt/Gt embryos had more severe defects, particularly
abnormalities in craniofacial development (S2 Fig.).

Histological analyses of embryos at E10.5 revealed that organogenesis in Lemd2Gt/Gt embry-
os occurred in a manner similar to wild-type littermates. The mutant embryos developed heart,
lungs, liver, eye structures, somites, pharyngeal arches, and primitive red blood cells (Fig. 3E,
S3 Fig. and Fig. 4A). The appearance of many tissues in Lemd2Gt/Gt embryos, such as the liver
(Fig. 4C), was similar to that of wild-type embryos. However, certain tissues in Lemd2Gt/Gt em-
bryos such as neural and heart structures appeared to be less developmentally advanced and/or
abnormal (Fig. 4A, B). The neuroepithelium in the neural tube (Fig. 4A, upper) and mesen-
chyme (S3 Fig.) had reduced cell density and many gaps between cells. Although serial sections
revealed normal looping and formation of a four-chambered heart in Lemd2Gt/Gt embryos

Fig 3. Abnormal growth and embryonic lethality of Lemd2Gt/Gt mice. (A) Genotypes of embryos and
pups produced from intercrossing of Lemd2+/Gt animals. (B, C) Bright-field images of Lemd2+/+ (left) and
Lemd2Gt/Gt (right) embryos at E10.5. (B) Views of embryos within yolk sacs. (C) Views of embryos with yolk
sacs removed. (D) Crown-to-rump length of embryos at E9.5 and E10.5. Lemd2+/+ n = 6; Lemd2Gt/Gt n = 5.
Data are presented as mean ± SD. (*p< 0.0005, **p< 0.005). (E) Sagittal sections of Lemd2+/+ and
Lemd2Gt/Gt E10.5 embryos stained with H&E. Bars: 500 μm.

doi:10.1371/journal.pone.0116196.g003
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Fig 4. Impaired neurogenesis and cardiogenesis in Lemd2Gt/Gt embryos. (A-C) Histological sections of
Lemd2+/+ (left) and Lemd2Gt/Gt (right) E10.5 embryos stained with H&E. (A) Top panels: transverse sections
of the posterior region of the neural tube. Lower panels: higher magnification views of blood cells from panel
A. (B) Sagittal sections of heart. Lower panels are high-magnification views of boxed areas. (C) Sagittal
sections of liver. Bars: A and B top, 50 μm; A and B bottom and C, 15 μm.

doi:10.1371/journal.pone.0116196.g004
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(Fig. 4B and data not shown), the myocardium was abnormally thin (only 1–3 cells thick), and
the trabeculae were underdeveloped (Fig. 4B, enlarged insets).

We analyzed neural tissues of E10.5 Lemd2Gt/Gt embryos for cell growth abnormalities,
given that these regions had the highest Lemd2 expression by X-gal staining. To investigate cell
proliferation, we carried out in vivo labeling with BrdU. The neural tube from wild-type embry-
os had BrdU incorporation in ~50% of the cells (Fig. 5A). In contrast, the same region from lit-
termate Lemd2Gt/Gt embryos showed BrdU incorporation in only ~20% of the cells (Fig. 5). We
also evaluated apoptosis using the TUNEL assay. Quantitative analysis of TUNEL staining in
midbrain neuroepithelium revealed 7-fold higher apoptosis in Lemd2Gt/Gt embryos than in
wild-type littermate embryos (Fig. 5B, right panel). Finally, we analyzed neural tissue for differ-
entiation by immunofluorescence staining of cryosections with antibodies against class-III β-
tubulin, a widely used marker of postmitotic neurons [37] (Fig. 5C). Wild-type embryos
showed a prominent layer of cells containing neuronal β-tubulin along the basal surface of the
neuroepithelium (Fig. 5C, left panel). This band of class-III β-tubulin-positive cells was
markedly reduced in Lemd2Gt/Gt embryos (Fig. 5C, right). These observations suggest that the
lack of Lem2 in E10.5 Lemd2Gt/Gt embryos leads to reduced proliferation of the neuroepithe-
lium, increased apoptosis in neural progenitor cells, and impaired accumulation of
differentiated neurons.

Hyperactivation of MAPK and AKT signaling in Lemd2Gt/Gt embryos
We previously found that knockdown of Lem2 in C2C12 cells leads to increased ERK activity
and a blockade of myogenic differentiation [29]. To determine if the embryonic lethality of
Lemd2Gt/Gt mice is associated with aberrant signaling, we analyzed the activity of several signal-
ing pathways in E10.5 Lemd2Gt/Gt embryos by performing western blotting on embryo extracts
with antibodies against phosphorylated forms of key signaling molecules. Extending our earlier
results in cultured cells [29], we found that the level of ERK1/2 phosphorylation was ~7–10-
fold higher in Lemd2Gt/Gt embryo extracts than in wild-type embryo extracts (Fig. 6A, B).
Immunofluorescence staining of cryosections of the hearts and somites revealed increased lev-
els of phospho-ERK1/2 in Lemd2Gt/Gt embryos (Fig. 6C). We also found an ~2–3-fold increase
in the level of phosphorylation of p38 and JNKMAP kinases in Lemd2Gt/Gt embryos (Fig. 6D,
E). Finally we found ~4–10-fold more phosphorylation of AKT at the Thr308 and Ser473 acti-
vation sites [38] in Lemd2Gt/Gt embryo extracts (Fig. 6F). By contrast, we found no changes in
the level of phosho-Smad2, which reflects activation of TGF-β signaling [39] (Fig. 6F) and is in-
creased in MAN1-deficient embryos [19,20]. Our results reveal hyperactivation of three major
MAP kinase pathways as well as AKT in E10.5 Lemd2Gt/Gt embryos, but no change in the acti-
vation of TGF-β signaling associated with Smad2 phosphorylation.

We attempted to generate immortalized mouse embryonic fibroblasts (MEFs) from E9.5–
10.5 Lemd2Gt/Gt embryos in order to further analyze signaling using a cultured cell model. Al-
though we readily obtained immortalized MEFs from Lemd2+/+ embyros, we were unsuccessful
with Lemd2Gt/Gt littermates. As an alternative, we analyzed proliferating murine C2C12 myo-
blasts where Lem2 was depleted with siRNAs (Fig. 7A). In parallel, we examined cells with
knockdown of emerin (Fig. 7A), given that emerin and Lem2 have overlapping functions in
C2C12 myoblast differentiation [29] and because depletion of emerin in cultured cells was re-
ported to activate ERK [22]. Knockdown of Lem2 did not detectably affect the level of emerin
(Fig. 7A) or of other NE marker proteins we examined including LAP2β (data not shown). We
found that knockdown of Lem2 led to a significant increase in the level of phosphorylation of
ERK1/2, p38, and JNK kinases (Fig. 7B, C), although the fold-activation was less than in ex-
tracts of Lemd2Gt/Gt E10.5 embryos (Fig. 6). Emerin knockdown resulted in similar increases in
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Fig 5. Increased apoptosis, reduced cell proliferation and smaller number of differentiated neurons in
the absence of Lem2. (A) Cell proliferation monitored by BrdU incorporation in Lemd2+/+ and Lemd2Gt/Gt

embryos at E10.5. Anti-BrdU staining (green) with DAPI counterstaining (blue) of cryosections of the neural
tube, showing transverse (upper panels, posterior region) and sagittal (lower panels, midbrain region) views.
Bar graph: Quantification of the percentage of BrdU-positive cells in the neuroepithelium of Lemd2+/+ and
Lemd2Gt/Gt E10.5 embryos. (B) Midbrain sections adjacent to those of Fig. 5A (lower panels) subjected to
terminal dUTP nick end labeling (TUNEL) analysis (green) and DAPI counterstaining (blue). Bar graph:
Quantification of the percentage of TUNEL-positive cells in the midbrain of Lemd2+/+ and Lemd2Gt/Gt E10.5
embryos. (C) Immunofluorescence staining of class III β-tubulin (red) and DAPI counterstaining (blue) in the
hindbrain neuroepithelium of wild-type and Lemd2Gt/Gt embryos at E10.5. Arrowheads point to the ventricular
surface of the neuroepithelium, and brackets indicate the layer of mesenchyme. Data are presented as mean
± SD. (*p< 0.0005, *** p< 0.05). Bars: 50 μm.

doi:10.1371/journal.pone.0116196.g005
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phosphorylation of the MAP kinases (Fig. 7B, C). However, the knockdown phenotypes di-
verged with analyses of AKT activation. Phosphorylation of AKT on both Thr308 and Ser473
sites was increased twofold by Lem2 depletion (Fig. 7D) but was unchanged by knockdown of
emerin (Fig. 7D). In summary, these results show that silencing of Lem2 in cultured cells reca-
pitulates the increased activation of MAP kinases and AKT observed in Lemd2Gt/Gt embryos.
Moreover, since AKT was activated by Lem2 depletion but not by emerin knockdown, the
functions of Lem2 appear to affect a broader range of signaling pathways than emerin. These
experiments can help to explain our finding that disruption of Lemd2 in the mouse leads to em-
bryonic lethality, whereas the loss of Emd has virtually no phenotype [23].

Delayed muscle regeneration associated with decreased Lem2 levels
Although Emd–/Y mice do not exhibit overt muscular dystrophy, muscle regeneration in these
mice is slightly delayed [23]. Since the muscle of Lemd2+/Gt mice contains only one-half the
amount of Lem2 as Lemd2+/+ mice (S1B Fig.), we evaluated whether the reduced levels of Lem2

Fig 6. Activation of MAP kinase and AKT signaling pathways in Lemd2-deficent embryos. (A, B, D-G) Western blot analysis of protein extracts from
Lemd2+/+ and Lemd2Gt/Gt embryos at E10.5. Samples from 4 separate embryos of each genotype are shown. All extracts were from embryos with beating
hearts. (A) Labeling with anti-Lem2 and anti-GAPDH. (B, D-G) Labeling with antibodies to the phosphorylated activation sites of various kinases or kinase
effectors (upper panels) and to nonphosphorylated epitopes of the corresponding proteins (lower panels). (B) Anti-ERK1/2. (D) Anti-p38. (E) Anti-JNK1/2. (F)
Anti-AKT. (G) Anti-Smad2. Error bars indicate standard deviations (*p< 0.0005, **p< 0.005, ***p< 0.05, ns “not significant”). (C) Immunofluorescence
staining of sagittal cryosections of Lemd2+/+ and Lemd2Gt/Gt hearts and somites at E10.5 with anti-phospho-ERK1/2 antibodies. All images were captured
and displayed with exactly the same parameters.

doi:10.1371/journal.pone.0116196.g006
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Fig 7. Activation of various signaling pathways in C2C12 cells by knockdown of Lem2 or emerin. (A)
Immunoblot showing expression of Lem2 and emerin in C2C12 cells transfected with control (Ctrl) siRNA or
either of two different siRNAs targeting Lem2 or emerin mRNA. (B-D) Western blot analysis of the
phosphorylated and total levels of ERK1/2 (B), P38 (C), JNK1/2 (D), and AKT at Tyr307 and Ser473
phosphorylation sites (E). Graphs show plots of band intensities. Bars indicate the ratio of phosphorylated
protein to non-phosphorylated protein normalized to Ctrl. Values are mean ± standard deviations for n = 4
samples per group (*p< 0.0005, **p< 0.005, ***p< 0.05, ns “not significant”).

doi:10.1371/journal.pone.0116196.g007
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resulted in differences in muscle regeneration. Muscle injury was induced by injection of cardi-
otoxin (CTX) into the tibialis anterior (TA) muscle; histological analyses were carried out at
five time points after CTX injection. At 3 days post-injection, there was massive inflammatory
infiltration along with necrotic muscle fibers (Fig. 8A). Necrotic fibers were much more abun-
dant in Lemd2+/Gt muscles at this time point (asterisks), suggesting that the inflammatory re-
sponse might be delayed in those mice. Four days after the injection, necrotic fibers were
absent, and the muscle contained small regenerating myofibers with centrally located nuclei
and an extensive immune cell infiltrate. The nascent myofibers progressively increased in di-
ameter through days 5 and 6, concomitant with a reduction in the immune cell infiltrate. Al-
though the diameter of regenerating fibers in Lemd2+/Gt and Lemd2+/+ mice was similar on
days 4 and 5, the average cross-sectional diameter of regenerating myofibers at day 6 was sig-
nificantly smaller in Lemd2+/Gtmice than in wild-type counterparts (Fig. 8B). The size distribu-
tion was biased towards smaller diameter myofibers in Lemd2+/Gt mice (Fig. 8C). At day 14
post-injection, these differences disappeared (Fig. 8A); the average muscle fiber diameter in
Lemd2+/Gt and wild-type mice was indistinguishable. Also, the muscles in both groups of mice
appeared largely regenerated, although centralized nuclei still were abundant.

In summary, with CXT-induced muscle regeneration, the Lemd2+/Gt mice had delayed re-
moval of necrotic tissue and slower growth at the midpoint of the regenerative process, but re-
generation ultimately occurred. Consistent with that finding, there was no overt muscular
dystrophy phenotype in skeletal muscle of Lemd2+/Gt mice.

Discussion
In the current study, we show that disruption of the mouse Lemd2 gene leads to embryonic le-
thality by E11.5. The Lemd2 gene-trap allele used for this analysis, instead of producing a fu-
sion protein containing the first 296 residues of Lem2 fused to βgeo, yielded low levels of an
~32-kDa Lem2 fragment that was likely released from the fusion protein by proteolytic cleav-
age. Lem2 expression was evident in E8.5 embryos by western blotting. In E10.5 embryos,
Lemd2 expression was detected throughout the embryo by X-gal staining and was found in
cells arising from all three germ layers. Thus, the expression of Lem2 substantially precedes
that of lamins A/C, which appears only at E12 in mouse [36].

The E10.5 Lemd2Gt/Gt embryos displayed many of the hallmark morphogenetic features of
organogenesis found in wild-type littermates, although several abnormalities were apparent.
The mutant embryos were smaller with reduced amounts of blood, had a lower cell density in
neural tissue and mesenchyme, and manifested underdevelopment of parts of the heart and
neural tissue. Also, cell proliferation in the neuroepithelium cells was reduced in Lemd2Gt/Gt

embryos, and apoptosis was much more frequent. It seems unlikely that anemia was the princi-
pal cause of the reduced growth of Lemd2Gt/Gt embryos: mutant mice with disruptions in genes
required for definitive erythropoiesis are paler than Lemd2Gt/Gt embryos at comparable stages,
yet show no size reduction [40,41]. Moreover, we rarely observed evidence of necrosis in E10.5
Lemd2Gt/Gt embryos.

The most striking phenotype of embryos at E10.5 was aberrant regulation of MAP kinase
and AKT signaling pathways. In whole-embryo extracts, we observed markedly increased acti-
vation of three groups of MAP kinases—ERK1/2, JNK1/2, and p38. ERK1/2 showed the largest
change, with a 7–10-fold increase. Also, we detected a 4–10-fold increase in phosphorylation of
two well-studied activation sites of AKT (Thr308 and Ser473) [38]. Hyperactivation of these
different signaling pathways could readily explain the embryonic lethality of Lemd2mutants.
In particular, enhanced ERK signaling promotes apoptosis in certain cell contexts (reviewed in
[42]). It is noteworthy that elevated levels of MAP kinases [21,43] and AKT/mTORC [44,45]
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Fig 8. Muscle regeneration after cardiotoxin-induced injury in Lemd2+/Gt mice.Muscle regeneration was induced by injection of CTX into the tibialis
anterior (TA) muscles of 4-month-old mice. (A) H&E transverse sections of Lemd+/+ and Lemd2+/Gt TA control muscles, and TA muscles at days 3, 4, 5, 6,
and 14 after CTX injury. * necrotic myofibers found in heterozygous TA samples 3 days post-CTX. (B) Mean myofiber diameter at days 3, 4, 5, 6, and 14
post-CTX injury. (C) Cross-sectional diameters of regenerated myofibers in wild-type and Lemd2+/Gt TAmuscle 6 days after CTX injury. Diameter of 100
myofibers with central nuclei were measured by ImageJ. Six samples of each genotype were analyzed. Data are presented as mean ± SD. (*p< 0.0005,
**p< 0.005, ***p< 0.05, ns “not significant”).

doi:10.1371/journal.pone.0116196.g008
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have been reported in emerin and lamin A mouse models for cardiomyopathy and muscular
dystrophy. In light of these findings and the effects of other LEM domain protein deficiencies
in C. elegans [25] and Drosophila [26], LEMD2 should be considered as a candidate disease
gene in humans with muscle disorders.

In contrast to mice with the Lemd2Gt/Gt genotype, Lemd2+/Gt mice grew to adulthood with
no overt abnormalities, even though they contained about one-half the wild-type level of Lem2
in heart and skeletal muscle. Nonetheless, there was a modest delay in CTX-induced muscle re-
generation in these mice. That finding, along with the fact that Lem2 is expressed at particular-
ly high levels in striated muscle [34], supports the possibility that Lem2 is involved in muscle
homeostasis in mammals. However, a more complete evaluation of this issue will require creat-
ing a conditional knockout allele for Lemd2 and breeding muscle-specific Lemd2
knockout mice.

A homozygous gene-trap disruption of mouse Lemd3 (encoding MAN1) also led to lethality
by E11.5 [19,20], but the phenotype of these mutants was distinct from Lemd2 knockout mice.
At E10.5, Lemd3 knockout embryos [19,20] were much smaller than the Lemd2Gt/Gt embryos
described here. Also, the demise of Lemd3 embryos was linked to overt defects in vasculogen-
esis associated with a grossly enlarged pericardium and frequent internal hemorrhages [19,20].
These aberrations were not observed in Lemd2Gt/Gt embryos. At the molecular level, the abnor-
malities observed in Lemd3 knockout embryos were attributed to elevated TGF-β signaling and
was accompanied by increased levels of phospho-Smad2 [19,20]. By contrast, there was no in-
crease in the level of phospho-Smad2 in extracts of Lemd2Gt/Gt embryos. Thus, in embryos at
mid-gestation, Lem2 and MAN1 regulate distinct signaling systems.

Knockdown of Lem2 in cultured C2C12 cells by siRNAs led to activation of ERK1/2, JNK1/
2, p38 and AKT, similar to the results with Lemd2Gt/Gt embryos. Although silencing of emerin
in C2C12 cells resulted in increased phosphorylation of the three MAP kinases, no effects on
AKT were observed. These results suggest that in mice, Lem2 affects a broader range of signal-
ing networks than emerin. Considering that Lem2 and emerin have partially overlapping func-
tions [29], these results can explain the disparate phenotypes of the gene disruptions in mice
[i.e., lack of a significant phenotype in emerin-deficient mice [23] versus embryonic lethality in
the Lem2 mutant mice].

We have been unable to determine whether the activation of MAP kinases and AKT with
loss of Lem2 in mice and C2C12 cells involves signaling pathway crosstalk (i.e., whether the in-
creased activity of MAP kinases with loss of Lem2 is due to elevated AKT, or vice versa). We
found that treatment of Lem2-silenced C2C12 cells with a MEK inhibitor to reduce activated
ERK1/2 had no effect on AKT activation, whereas treatment with a PI3 kinase inhibitor to in-
hibit AKT caused a time-dependent oscillation in the levels of activated ERK1/2 (unpublished
data). In future work it may be possible to use mutational analysis of Lem2 to shed light on
this question.

The increased activation of MAP kinases and AKT resulting from the loss of Lem2 could be
due to direct or indirect mechanisms. In one potential direct mechanism, Lem2 could provide
a binding platform at the INM to bring signaling effectors and phosphatases into close proxim-
ity to enhance pathway inactivation. This would be analogous to the model of MAN1 in TGF-β
attenuation [18]. Consistent with this possibility, most of the N-terminal nucleoplasmic do-
main of Lem2 (apart from the LEM domain itself) is predicted to be unstructured by the Dis-
EMBL server, and unstructured protein domains often turn out to be docking sites for
signaling regulators [46]. One potential indirect mechanism could involve a role for Lem2 in
chromatin structure and gene expression. The LEM domain protein LAP2β has been reported
to interact with chromatin regulators-including HDAC3-to promote gene silencing [47,48].
Lem2 could engage in similar types of mechanisms to alter programs of gene expression that
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influence signaling. Moreover, since the LEM domain of Lem2 interacts with BAF [30,32], the
loss of a BAF binding site at the INM could alter the balance of chromatin-associated functions
mediated by BAF-LEM domain interactions. Resolution of these questions should be facilitated
by dissection of Lem2 domains and interacting partner proteins in future work.

Materials and Methods

Ethics statement
Use of mice in this project conforms to the Guide for the Care and Use of Laboratory Animals
published by the US National Institutes of Health (NIH publication No. 85–23, revised 2011)
and follows protocols approved by the Scripps Research Institute Animal Care and Use Com-
mittee (IACUC # 09–0059–02 “Organization and Functions of the Nuclear Lamina”). All sur-
gical procedures were done after mouse anesthesia by isoflurane, as directed by the
IACUC protocols.

Generation and genotyping of Lemd2Gt/Gt mice
The ES cell line DD0639, which contains a gene-trap insertion mutation in the Lemd2 locus
(Wellcome Trust Sanger Institute, UK), was used to derive knockout mice. The resulting
Lemd2Gt line was backcrossed for 10 generations onto a C57BL/6 background, and subsequent-
ly was intercrossed to obtain homozygous Lemd2Gt/Gt mice. Genotyping was performed by
PCR using genomic DNA from tail biopsies or yolk sacs. We used a forward primer in intron 3
(50-CTCCCAGGGATCCACTAACAATGG-30) and a reverse primer located within exon 4
(50-GCCTGCAGCCGACTCACAGC-30); this PCR reaction yielded a 531-bp product in the
wild-type allele. A second PCR reaction used forward primer 50-CTACGGCCTG-
TATGTGGTGGATGAA-30 and reverse primer 50-GAAACCGCCAAGACTGTTACCCATC-
30 (located in βgeo sequences), yielding a 436-bp product with the mutant allele.

Morphological and histological analysis
Lemd2+/Gt mice were intercrossed, and pregnant Lemd2+/Gt mice were sacrificed at different
time points post-coitum. For histology, embryos were fixed in zinc-buffered formalin fixative,
embedded in paraffin, cut into 10-mm sections, and stained with hematoxylin and eosin
(H&E). Whole-mount X-gal staining of embryos was performed using the β-galactosidase re-
porter gene staining kit (Sigma) according to the manufacturer’s instructions. Sections were
counterstained with Nuclear Fast Red. Slides were digitized on a Leica SCN400 slide scanner
and visualized on the SlidePath Digital Image Hub. Regions of interest were captured with a
screen capture tool, and images were arranged with Adobe Photoshop CS5.

Immunofluorescence microscopy and related assays
Embryos were fixed in PBS-buffered 4% paraformaldehyde, cryoprotected by overnight incu-
bation in 30% sucrose/PBS, and embedded in Tissue-Tek OCT (Sakura Finetek). Sagittal 8-
mm sections were cut on a cryostat and mounted on Superfrost slides (Fisher Scientific). Sec-
tions were rehydrated in PBS and permeabilized for 1 h in 0.5% Triton X-100. After blocking
in 3% BSA, primary antibodies were incubated overnight at 4°C followed by fluorophore-
conjugated secondary antibodies. The following primary antibodies were used: mouse mono-
clonal anti-BrdU Alexa Fluor 488 conjugate (B35130, Invitrogen); mouse anti-class III β-
Tubulin (T8578, Sigma); rabbit polyclonal anti-phospho-ERK1/2 (Thr202/Tyr204; #9101, Cell
Signaling Technology (CST) were each used at a 1:100 dilution. Nuclear counterstaining was
performed with Hoechst 3342. Stained tissue was analyzed on a Carl Zeiss 710 confocal
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scanning laser microscope. Imaging used a 63× Plan Apo objective (1.4 NA) and a pinhole set-
ting of 1 Airy unit. Single images were used for figures, and contrast was adjusted using Adobe
Photoshop CS5.

To analyze cell proliferation, pregnant females received an intraperitoneal injection of
50 μg/g body weight bromodeoxyuridine (BrdU) (Sigma-Aldrich) and sacrificed 30 min later.
Embryos were isolated and processed for immunofluorescence microscopy with a primary
Alexa488-conjugated monoclonal anti-BrdU antibody (B35130, Invitrogen). To analyze apo-
ptosis, sections were prepared as described above. DNA fragmentation was detected with a
transferase-mediated dUTP nick-end-labeling (TUNEL) method using a fluorescent staining
kit according to the manufacturer’s instructions (Roche Diagnostics).

RNA isolation and Northern blotting
Total RNA was extracted with Trizol reagent (Invitrogen), and poly(A)+ RNA was purified
with the Dynabeads mRNA purification kit (Dynal). For Northern blotting, 120 μg of poly(A)+

RNA from whole embryos were separated on 3% formaldehyde 1% agarose gels and transferred
to Hybond membranes (GE Healthcare Life Sciences). The membrane was incubated with a
32P-labeled RNA probe corresponding to nucleotides 707–726 of the Lemd2 transcript in
ULTRAhyb-oligo hybridization buffer (Ambion-Life Technologies).

Cell culture and RNA interference
C2C12 cells (ATCC CRL-1772) were maintained in Dulbecco’s modified Eagle’s medium sup-
plemented with 10% fetal bovine serum, L-glutamine, sodium pyruvate, nonessential amino
acids, and antibiotics. Small interfering RNAs duplexes targeting mouse Lem2 (#1: 50-GCUG-
GUCUCUGUUUCUUAA-30; #2: 50-GCUCAUUCACACCUGCCUU-30), emerin (#1: 50-
ACUACUAUGAGGAGAGUUAUUUGAC-30; #2: 50-GCCUAAGGCAAUGCUUGUCUCC-
CAC-30), and a nontargeting control siRNA (50-ACTGTCACAAGTACCTACA-30) were pur-
chased from Integrated DNA Technologies. siRNAs were introduced into C2C12 cells by
incubating 1.5 × 105 cells (resuspended in complete medium after trypsinization) with a com-
plex of 50 pmol siRNA and 5 μl Dharmafect 1 (Dharmacon, Lafayette, CO). After 24 h, cells
were transfected a second time using the same protocol. The medium was replaced with fresh
growth medium on the morning after each transfection. Cells were analyzed 72 h after first
siRNA transfection.

Immunoblot analysis
To quantify phosphorylation levels of MAPKs, AKT, and Smad2, protein lysates were prepared
by dissolving whole embryos, muscle samples, or cell monolayers in SDS loading buffer contain-
ing proteinase and phosphatase inhibitor cocktails (Roche). Equal cell equivalents of total pro-
tein (20 μg) were resolved on Novex 4–20% Tris-glycine gels (Invitrogen) and transferred to
nitrocellulose membranes. Membranes were blocked with 5% nonfat dry milk reconstituted in
PBS with 0.1% Tween 20 (PBS/T) and incubated with the following primary antibodies diluted
in PBS/T: mouse monoclonal anti-emerin (NCL-EMERIN, Novocastra; dilution 1:5000), anti-
GAPDH (ab9484, Abcam; dilution 1:10000), and anti-β-galactosidase (Z3781, Promega; dilu-
tion 1:200); and rabbit polyclonal anti-Erk1/2 (#9102, CST; dilution 1:1000), anti-phospho-
Erk1/2 (Thr202/Tyr204; #9101, CST; dilution 1:500), anti-p38 (#9212, CST; dilution 1:1000),
anti-phospho-p38 (Thr180/Tyr182; #9211, CST; dilution 1:1000), anti-SAPK/JNK (#9252, CST;
dilution 1:500), anti-phospho-SAPK/JNK (Thr183/Tyr185; #9251, CST; dilution 1:500), anti-
AKT (#4691, CST, dilution 1:2000), anti-phospho-AKT (Thr308; #2965, CST; dilution 1:2000),
anti-phospho-AKT (Ser473; #4060, CST, dilution 1:1000), anti-phospho-SMAD2 (Ser465/467;
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#138D4, CST; dilution 1:500) and anti-SMAD2 (#D43B4, CST, dilution 1:500). Antibodies
against synthetic peptides of murine Lem2 (residues 149–169 and 202–221) were affinity-
purified against the immunogen (Chen et al., 2006) and used at a 1:200 dilution. Following
washes in PBS-T, blots were incubated with corresponding polyclonal anti-mouse and anti-
rabbit secondary antibodies, horseradish peroxidase conjugated, diluted in PBS/T at a 1:5000 di-
lution (#115–035–003 and #111–035–003, Jackson Immunoresearch Inc.); secondary antibody
binding was detected by chemiluminescence. Detection and quantitative analysis was performed
with digital imaging systems (UVP; Alpha Innotech) and their software applications.

Muscle regeneration analysis
Cardiotoxin (CTX) was injected into both tibialis anterior (TA) muscles of 12–16-week-old
age- and sex-matched Lemd2+/+ and Lemd2+/Gt mice. Mice were euthanized at 3, 4, 5, 6, 7 or 14
days after CTX-induced injury. The TA muscles of 6 mice per strain and per time-point were
harvested and divided into two sections: one section was flash-frozen and used for protein
studies, and the second section was fixed in zinc-buffered formalin fixative for H&E staining.
The three muscles for each strain and time-point that showed the most consistent degenera-
tion/regeneration patterns were selected for further analysis.

Supporting Information
S1 Fig. Lem2 expression in gene-trap embryos and adults, and normal postnatal phenotype
in Lemd2+/Gt mice. (A, B) Levels of Lem2 determined by western blot analysis of extracts from
E8.5, E10.5, and E13.5 embryos of the indicated genotypes (A) and of extracts from three sepa-
rate Lemd2+/+ and Lemd2+/Gt adult TA muscles (B). A Lem2/βgeo fusion protein (~175 kD)
was not detected in either embryonic or adult muscle samples. The 32-kDa Lem2 fragment was
detected only in Lemd2+/Gt and Lemd2Gt/Gt embryonic samples (left panel). Anti-βgal antibod-
ies recognized a 115-kD band, the predicted molecular weight for β-galactosidase, in both em-
bryo and adult samples. GAPDH was the loading control. (C) Graph showing the relative
intensities of the Lem2 and 32-kDa Lem2 fragment bands in extracts from E10.5 Lemd2+/Gt

and Lemd2Gt/Gt embryos, as compared to the intensity of wild-type Lem2 (100%) in extracts of
Lemd2+/+ embryos (n = 3 for +/+, 10 for +/Gt, 5 for Gt/Gt). (D) Body weight of Lemd2+/Gt

mice (grey bars) compared to that of age-/sex-matched wild-type mice (white bars). Bars repre-
sent mean ± SD (n = 10 in each group). No deaths or abnormal behavioral phenotypes were
seen in a Lemd2+/Gt mouse population (n> 100) for up to 1 year (not shown). (E) Histological
analysis of skeletal and cardiac muscle from wild-type (control) or heterozygous (Lemd2+/Gt)
mice with H&E and Gomori’s trichrome staining. Localization of myonuclei was normal, and
fibrosis-positive areas (blue) were not observed. Bars: 25 μm.
(TIF)

S2 Fig. Abnormal phenotypes including craniofacial development defects observed in a
minor fraction of Lemd2Gt/Gt embryos. Lateral (left and right) views of whole embryos at
E10.5. Compared to development in the wild-type embryo (left), a minor fraction (~10%) of
the Lemd2Gt/Gt embryos (right) exhibited a lack of the telencephalic vesicles and an abnormal
hindbrain (arrows). Several intracranial hemorrhages also were observed (arrowheads), as well
as an open neural tube at the posterior region of the embryo (asterisk). Posterior and frontal
views show magnified craniofacial structures. Posterior view: the mutant embryo exhibited col-
lapsed hindbrain and midbrain regions, lacking the lumen of the neural tube (arrows). Frontal
view: the Lemd2Gt/Gt embryo exhibited an open neural tube at the midbrain (arrow) and fore-
brain (arrowhead) and lack of telencephalic vesicles. The frontonasal process formation
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appeared normal. f, forebrain; fnp, frontonasal process; h, hindbrain; m, midbrain; tv,
telencephalic vesicle.
(TIF)

S3 Fig. Histological analysis of multiple organs from Lemd2Gt/Gt embryos. Sagittal sections
of Lemd2+/+ (left) and Lemd2Gt/Gt (right) E10.5 embryos stained with H&E. Mutant embryos
exhibited lower mesenchymal cell density (A) and somites with a partially collapsed appear-
ance (B). (C) The Wolffian duct (WD) and the metanephric mesenchyme (MM) appeared nor-
mal in the Lemd2Gt/Gt embryos. The distal forelimb (D) and hindlimb (F) buds showed the
formation of a normal multi-layered AER (apical ectodermal ridge) in the mutants (arrows).
(E) Retina (R) and lens (L) development appeared grossly normal in the Lemd2Gt/Gt embryos
although the density of neuroepithelial cells in the retina appeared to be lower. (G) Pharyngeal
arches in the mutant embryos were grossly normal but smaller in size. (H) Dorsal root ganglia
(brackets) appeared misorganized and had a lower cell density in the Lemd2Gt/Gt embryos.
Bars: 20 μm (A-D, F, H); 50 μm (E, G).
(TIF)
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