
micromachines

Article

Experimental Investigation on Direct Micro Milling
of Cemented Carbide

Xian Wu 1,*, Liang Li 2, Ning He 2, Guolong Zhao 2 and Jianyun Shen 1

1 College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China;
jianyun@hqu.edu.cn

2 College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China; liliang@nuaa.edu.cn (L.L.); drnhe@nuaa.edu.cn (N.H.); zhaogl@nuaa.edu.cn (G.Z.)

* Correspondence: xianwu@hqu.edu.cn

Received: 14 January 2019; Accepted: 19 February 2019; Published: 22 February 2019
����������
�������

Abstract: Cemented carbide is currently used for various precise molds and wear resistant parts.
However, the machining of cemented carbide still is a difficult challenge due to its superior mechanical
properties. In this paper, an experimental study was conducted on direct micro milling of cemented
carbide with a polycrystalline diamond (PCD) micro end mill. The cutting force characteristics,
surface formation, and tool wear mechanisms were systematically investigated. Experimental results
show that cemented carbide can be removed with ductile cutting utilizing the PCD tool with a large
tool tip radius. Micro burrs, brittle pits, and cracks are the observed surface damage mechanisms.
The tool wear process presents microchipping on the cutting edge and exfoliating on the rake face in
the early stage, and then severe abrasive and adhesive wear on the bottom face in the following stage.

Keywords: micro milling; cemented carbide; surface quality; tool wear mechanism

1. Introduction

Mold technology is an important method of mass production in various fields [1,2]. Cemented
carbide offers many excellent features such as high hardness, high temperature resistance, and
corrosion resistance. It is widely applied as mold materials and wear resistant parts. More and
more molds are made of cemented carbide instead of steel to fulfill the demands of long mold life
and high product quality [3–5]. Micromechanical cutting can produce miniature parts that have
three-dimensional features such as narrow grooves, microcavities, and an aspheric surface [6–9].
After finishing, it can achieve the optical machining quality requirements for both geometric
accuracy and surface roughness. Liu et al. [10] developed a prediction model and then studied
the effects of cutting velocity and edge radius on the minimum uncut chip thickness in micro milling.
Przestacki et al. [11] also proposed an approach to estimate the minimum uncut chip thickness during
laser-assisted turning of tungsten carbide/nichrome (WC/NiCr) clad layers. Twardowski et al. [12]
developed a surface roughness model considering dynamical cutter displacements in high-speed
milling of hardened steel. Zhang and To [13] studied the effect of spindle vibration on surface
generation based on the specialized model under the excitation of an intermittent cutting force during
ultra-precision raster milling. Wojciechowski and Mrozek [14] investigated the dynamics of micro ball
end milling with various tool inclination angles and optimized the machining parameters to obtain the
minimization of cutting forces, vibrations, and surface roughness.

However, compared with other materials, the superior mechanical properties of cemented
carbide bring significant challenges such as excessive tool wear and poor surface quality during
the microcutting process. However, with the development of ultra-hard tools, the direct cutting on
cemented carbide becomes possible and attracts growing concern [15–17]. To obtain the machined
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surface of mirror quality, many previous studies have been focused on ductile cutting of cemented
carbide. Liu et al. [18] reported that the ductile cutting surface and chip formation can be obtained
when the uncut chip thickness is small enough during high-speed cutting of cemented carbide. Then,
they [19] found the transition from ductile to brittle cutting as the cutting depth increased from zero to a
critical value in the grooving of cemented carbide. Based on the energy balance criterion, Arif et al. [20]
proposed an analytical model to predict the critical uncut chip thickness for a ductile-brittle transition in
end milling of cemented carbide. Ultra-precision diamond turning has been commonly applied in the
machining of cemented carbide as well. Bulla et al. [21] analyzed the effects of machining parameters
and tool geometries during ductile turning of cemented carbide. Nath et al. [22] investigated ultrasonic
vibration turning of cemented carbide with a polycrystalline diamond (PCD) tool and found it results
in better machining performances compared to conventional turning.

Micromilling of cemented carbide also attracts more and more attention due to its great potential
in industrial applications [23]. Suzuki et al. [24] developed the PCD tool with twenty cutting edges
to machine the aspheric lens mold made of cemented carbide. Cheng et al. [25] designed the PCD
tool with a straight edge and then performed evaluative milling experiments on cemented carbide.
Nakamoto et al. [26] studied the surface quality of micromilled cemented carbide utilizing the PCD tool
with a small diameter of 0.2 mm. Zhan et al. [27] investigated the influences of machining parameters
on the surface quality during micromilling of cemented carbide. Compared to the ductile turning
of cemented carbide, the micromilling operation is more complex due to its small scale. However,
the mentioned studies are still at the exploratory stage or evaluation of diamond tool performances.
The machining mechanisms in micromilling of cemented carbide are rare at present.

After the manufacturing problem of the diamond micro end mill has been generally solved, as in
the literature mentioned above, machining mechanism studies such as multiphase material removal,
tool geometries optimization, and tool wear mechanism become more and more important [28,29].
The motivation of this paper is to conduct a systematical experimental investigation on the micromilling
of cemented carbide with a PCD micro end tool. The cutting force characteristics, surface formation, and
tool wear mechanisms were investigated in detail. It is desirable to further improve the micromilling
process of cemented carbide mold to promote its industrial applications.

2. Experimental Procedure

The commercial cemented carbide WC-15Co was adopted as the workpiece material.
With superior mechanical properties of high strength, good toughness, and sufficient wear resistance,
it is widely used as stamping molds and extrusion molds in mass production. The large cutting force,
excessive tool wear, and bad surface quality are the main problems that are faced in the micromilling
process. The micrograph of used cemented carbide is shown in Figure 1. The average size of WC
grains was about 4–6 µm. The cemented carbide material properties are listed in Table 1.
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Table 1. Cemented carbide properties.

Properties. Density (g/cm3) Hardness (HV10) Elastic Modulus (GPa) Fracture Toughness (MPa·m1/2)

Value 13.9 1607 498 9.1

A single flute PCD micro end mill that is prepared by wire electrical discharge machining (WEDM)
was employed for the experiments, as shown in Figure 2. The tool diameter was 0.7 mm. It is expected
to reduce the tool flection with the small ratio of length to diameter during micromilling. Therefore,
the tool length was designed to be 0.5 mm. The tool tip radius was about 20 µm. The tool’s geometric
accuracy of the same batch is ±1 µm. The bottom cutting edge presented an inclination angle of 10◦,
rake angle of 0◦, and flank angle of 10◦. The cutting edge radius was measured using Leica DVM500
microscope (Leica Microsystems, Buffalo Grove, IL, USA) to about 3 µm.
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Figure 2. Polycrystalline diamond (PCD) micro end mill. (a) Overview of the tool geometry;
(b) enlarged view of the tool tip.

The experiments were conducted on a micromilling machine, as shown in Figure 3a. The machine
can provide a positional accuracy of ±1 µm. The air-bearing spindle can rotate up to 100,000 rpm, and
its radial runout is less than 1 µm. The workpiece that has been pre-polished to ensure the smooth
initial surface was held on dynamometer Kistler 9256C1 to record the cutting force. The sampling
rate was set at 20 kHz. Before micro milling, a fine dial test indicator was employed to guarantee the
workpiece’s flatness was less than 1 µm. The stereo microscope was employed for process monitoring
and tool setting. The direct micromilling experiments were performed under the condition of dry
cutting to avoid the pollution of cutting coolant [30].
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groove milling.

The different milling depth and feed per tooth levels were selected to contain both the ductile and
brittle removal of cemented carbide during micromilling, as listed in Table 2. The spindle rotating speed
was fixed at 20,000 rpm, and the corresponding cutting speed v was 44 m/min. Two fresh PCD micro
end mills were used. First, a set of grooves were milled with the listed machining parameters to study
their effect. Then, another PCD tool was used for continuous grooves milling with fixed parameters
to study the tool wear, as shown in Figure 3b. The machined surface was cleaned ultrasonically in
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water, and then the surface roughness was measured in the middle of milled grooves along the feed
direction. All the measurements were repeated four times and then averaged to obtain the results.
Both the machined surface morphology and tool wear morphology were observed utilizing a scanning
electron microscope.

Table 2. Micromilling parameters.

Parameters Cutting Speed v (m/min) Milling Depth ap (µm) Feed per Tooth fz (µm)

Value 44 2, 4, 6 0.3, 0.9, 1.5, 2.1, 2.7

3. Results and Discussion

3.1. Cutting Force Analysis

The cutting force signal contains fundamental information regarding the cutting process [31].
Figure 4 shows the cutting force varying with the feed per tooth and milling depth. In the three cutting
force components, the axial force Fz is the maximum, the normal force Fx is the second, and the feed
force Fy is the minimum. In micromilling, the milling depth is very small and far less than the tool
tip radius. Only a small segment of the cutting edge at the tool tip bottom participates in cutting the
workpiece material. This is similar to how the tool cutting edge angle is very small in the orthogonal
cutting process, and it causes a very large component in the axial direction. Therefore, the recorded
axial force is far greater than the other two cutting force components. In addition, the feed per tooth is
also less than the cutting edge radius, and there is severe plowing under the cutting edge arc during
micromilling. It may also cause the larger cutting force components in the axial direction.

With the increase of machining parameters, the three cutting force components grow in different
degrees. The axial force rapidly grows from 2 N to more than 6 N. However, the growth of the normal
force and feed force is relatively slight. Their changes are lower than 2 N. During micromilling, there is
serious friction between the tool bottom surface and workpiece. The friction will rapidly increase with
the lager machining parameters and cause a greater increase in the axial force.
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3.2. Surface Formation Mechanism

As a hard and brittle material, cemented carbide is commonly removed with a brittle fracture in
conventional cutting. It usually generates brittle damages such as micro-pits and cracks on the surface
morphology. However, if the uncut chip thickness is small enough, cemented carbide can be removed
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with ductile cutting and obtain a surface morphology without brittle damages as well. The critical
uncut chip thickness dc can be estimated using the empirical formula [32]:

dc = 0.15
(

E
H

)(
KIC
H

)2
(1)

where E is elastic modulus, H is material hardness, and KIC is fracture toughness. Thus, the critical
uncut chip thickness for ductile cutting is calculated to be about 1.49 µm utilizing the material
properties in Table 1.

Figure 5 shows the surface morphology with different feed per tooth. When fz = 0.3 µm, the surface
morphology characteristic exhibits regular and smooth cutting marks without any brittle damages.
The surface textures confirm the material removal mode is plastic deformation, just like in the case
of the machining of plastic metal. Some scale-stab can be observed on the surface morphology as
well. Due to the fact that the feed per tooth is much lower than the cutting edge radius, the effective
rake angle is actually large negative value. The severe plowing becomes important during the milling
process. The cutting force signal also reflects the notable plowing phenomenon. Some plastic deformed
material is bonded and accumulated under the cutting edge arc due to the plowing. When the
accumulated material falls off, some of them will then adhere to the machined surface and form a
micro scale-stab. Moreover, the small feed per tooth is comparable to the minimum uncut thickness.
Some material that failed to form chips due to the minimum uncut thickness phenomenon also form a
micro scale-stab on the machined surface [33].
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It has been calculated that the critical uncut chip thickness dc for ductile cutting of cemented
carbide is 1.49 µm. Although the feed per tooth fz increases to 1.5 µm, there are still no brittle damages
on the surface morphology, as shown in Figure 5b. Because the tool tip radius γε is larger than milling
depth ap, the actual uncut chip thickness is less than the nominal feed per tooth fz, as shown in Figure 6.
Therefore, cemented carbide is still removed with plastic deformation. It seems that the PCD tool with
large tool tip radius γε is conducive to perform ductile cutting of hard and brittle material. In addition,
there are some side-flow burrs apparent on the surface morphology. These micro burrs are attributed
to material that was subjected to high cutting stress flowing to the side of the feed mark.
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The instantaneous uncut chip thickness gradually grows from the bottom of the tool tip arc and
reaches the maximum at the intersection point of the cutting edge and material surface. Through
geometric calculation, the maximum uncut chip thickness hmax is derived with the formula listed below:

hmax = γε −
√

γε
2 + fz2 − 2 fz

√
2γεap − ap2 (2)

From the above formula, when fz = 2.7 µm, the maximum uncut chip thickness hmax reaches
1.5 µm and exceeds the critical uncut chip thickness dc. Thus, the brittle damages are exhibited on the
surface morphology and greatly deteriorated the surface quality, as shown in Figure 5c. The typical
brittle damages on the surface morphology are shown in Figure 7. When brittle fracture occurs, the WC
particle is broken into several pieces, forming brittle cracks in itself. The broken pieces that are exposed
on the machined surface are loose because they are not held by the binding phase. Then, these broken
pieces fall off and the micro-pit is formed on the surface morphology, as shown in Figure 7a. The broken
pieces under the machined surface are held by the binding phase and remained in micro-pit. The brittle
cracks and broken pieces are still visible on the bottom of the micro-pit. Figure 7b shows that the whole
WC particle is severely broken into very fine fragments. Almost all the fine fragments are dropping
out and the larger pit is generated. The micro-pits and cracks greatly affect the surface quality and
usually cause great surface roughness.
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As a multiphase material, there are also some non-cutting behaviors that affect the surface quality.
As shown in Figure 8a, if there is only a small segment of WC particle left on the machined surface
during the tool cutting process, it may rotate and be pulled out from the surface due to the insufficient
binding strength. The pulling of the WC particle can cause a micro-pit on the surface morphology.
As shown in Figure 8b, if the binding phase becomes very thin during the tool cutting process,
the binding phase may tear and then exfoliate due to the severe plowing. The tearing and exfoliating
behaviors can cause micro burrs or pits on the surface morphology. This surface damage mechanism
may occur both in the ductile and brittle cutting.
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Figure 9 shows the surface roughness gradually growing with the machining parameters. It is
revealed that surface roughness growth is relatively lower since cemented carbide is removed with
plastic deformation utilizing the small machining parameters. When the milling depth is 2 µm, surface
roughness grows from 0.03 µm to 0.07 µm with increasing feed per tooth from 0.3 µm to 2.7 µm.
The surface roughness growth is just 0.04 µm. Since cemented carbide is removed with brittle fracture
utilizing the large machining parameters and surface roughness growth becomes higher relatively.
When the milling depth is 6 µm, surface roughness grows from 0.05 µm to 0.13 µm with increasing feed
per tooth from 0.3 µm to 2.7 µm. The surface roughness growth reaches 0.07 µm. It is indicated that
surface roughness is more greatly affected by the machining parameters when the material is removed
with brittle fracture rather than plastic deformation. The surface morphology mainly consisted of feed
marks during ductile cutting. However, the brittle pits and cracks become significant during brittle
cutting. They may rapidly propagate when increasing the machining parameters and then severely
deteriorate the surface quality. This can explain the larger surface roughness growth.
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3.3. Tool Wear Mechanism

The tool wear experiments were performed with the fixed parameters of ap = 4 µm and fz = 1.5 µm.
The tool tip morphology after removing cemented carbide of 3.2 mm3 volume is shown in Figure 10.
It is seen that the PCD tool suffers serious tool wear due to the high hardness of cemented carbide.
Because only a small segment of the bottom cutting edge makes contact with the workpiece, the tool
wear region mainly occurred on the bottom cutting edge in the vicinity of the tool tip, including the
rake face and bottom surface. There is a large piece of PCD material loss, forming a small concave
on the rake face. The bottom surface is worn and becomes a rough plane. The electrical erosion pits
which are left in the WEDM process are even worn flat and disappear. The cutting edge is bumpy and
blunt, and the cutting edge radius has largely increased. However, the tool tip radius actually reduces
due to tool wear at the bottom cutting edge. This serious tool wear usually causes an unsatisfactory
machining quality. The PCD tool is invalid and in need of repair.
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The tool wear mechanisms of the PCD tool mainly include microchipping, exfoliation, abrasive
wear, and adhesive wear. On the bottom cutting edge, micro notches that are caused by microchipping
are visible. Actually, there are only several- or even single-layer diamond particles on the cutting edge
due to its sharp characteristic. Because the milling process is interrupted with the spindle rotating,
the cutting edge undertakes a high-frequency mechanical crash upon the process of the tool going
in and out. The periodic mechanical crash easily induces the diamond particles on the cutting edge
to break inside it or peel off along its bonding surface. Subsequently, microchipping occurs, and it
causes a small amount of PCD material to fall from the tool body and leads to the bumpy cutting edge,
as shown in Figure 10b.

The wearing concave is the main wear characteristic on the rake face. However, there are no
obvious scratching marks or adhesions on the rake face. It is indicated that the abrasive or adhesive
wear are not the main wear mechanisms on the rake face. The exfoliation is assumed to be the possible
wear mechanism on the rake face. In micromilling of cemented carbide, the chips are powder sharp
and include hard WC fragments. When these hard chips flow out along the rake face, they seriously
damage the rake face at the same time. This behavior is sustained throughout the whole machining
process and results in a serious mechanical crash on the rake face as well. Some microelectrical erosion
defects that were generated in the WEDM process exist on the rake face. In addition, microchipping on
the cutting edge may also induce some microcracks that propagate on the rake face. Under the serious
mechanical crash, these microdefects gradually develop into material exfoliation on the rake face.
The exfoliating behavior causes a large piece of PCD material to drop from the tool body. Because the
serious mechanical crash that was induced by the hard chips is only focused on the bottom of the rake
face, the exfoliating pits are mainly formed on the bottom of rake face as well, as shown in Figure 10b.

The scratching marks are clear to see on the bottom face. This indicates the severe abrasive
wear during the micromilling process due to the high hardness of cemented carbide. Moreover, there
are many visible adhesions on the bottom surface, as shown in Figure 11a. It is just like the state
of the machining process of plastic metal. These adhesions are identified to be cemented carbide
material which is in a serious plastic deformation state, based on the energy dispersive spectrometer
(EDS) results in Figure 11b. This illustrates that the hard and brittle material is removed with ductile
cutting during micromilling as well. From the cutting force results, it can be seen that the axial force
component is very large. Because the machining parameters are only several microns, the axial force
load is concentrated on the cutting region of only a few square microns. This generates very high
cutting stress on the bottom surface. Cemented carbide material is adhered and embedded into the
tool surface under the high cutting stress. With the accumulation of adhesive material, the adhesive
layer becomes the bulgy part on the tool surface. The bulgy adhesive layer suffers severe friction and
a high-frequency of attacks. This leads to some adhesions fracturing and falling from the tool body.
Meanwhile, some diamond particles also peel from the tool surface and form a rough region on the
tool surface, as shown in Figure 11c. Then, the new adhesive layer will generate and the adhesive
wear process will occur again. The severe adhesive wear is the dominant wear mechanism on the
bottom surface.

With a continuous milling process, more and more material has been removed, and the tool wear
is gradually increasing as well. Figure 12 shows the PCD tool wear process varying with material
removal volume V. Although only a 0.4 mm3 volume of cemented carbide is removed, a large wear
area appeared on the rake face; however, there is just slight wear on the bottom surface. In the early
stage, due to the electrical erosion defects on the tool surface, the tool wear behaviors are mainly
microchipping on the cutting edge and exfoliating on the rake face. After the electrical erosion pits
have disappeared, these two kinds of tool wear behaviors are reduced and become minor. With the
increase of the material removal volume to 1.6 mm3, the wear area on the rake face has increased
little. However, the bottom surface wear is obvious due to its large increase, as shown in Figure 12b.
The severe abrasive and adhesive wear behaviors are dominant at this stage with the increasing
contact between the bottom surface and workpiece. When the material removal volume reaches 3.2
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mm3, tool wear is very serious both on the rake face and bottom surface, as shown in Figure 12c.
The extrusion and friction between the worn tool and workpiece are rising rapidly. This results in the
adhesive wear process becoming more notable.Micromachines 2019, 10, x 9 of 12 
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The cutting force variation as a function of the material removal volume is shown in Figure 13.
It is seen that the cutting force almost linearly grows with the material removal volume. Respectively,
the normal force Fx, feed force Fy, and axial force Fz grows from 1.3 N, 1.2 N, and 3.5 N to 6.4 N,
5.6 N, and 12.3 N, respectively, after removing cemented carbide with a volume of 4 mm3. They have
increased almost four times due to severe tool wear. The large cutting force can greatly increase the
flection deformation and breakage risk of the PCD tool due to its small diameter and low strength.

Figure 14 shows that the surface roughness increases with the material removal volume as
well. When the PCD tool is fresh and sharp, the surface roughness is very low, at about 0.07 µm.
After 4 mm3 of cemented carbide was removed, the PCD tool was sufficiently worn to become blunt,
and the surface roughness increased to 0.24 µm. The surface quality severely deteriorated with the
tool wear. This indicates that the PCD tool is invalid and unsuitable for continuous machining.
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4. Summary and Conclusions

This paper presents an experimental investigation on the direct micromilling of cemented carbide
with a PCD tool that was prepared by WEDM. Based on the results, the following conclusions can
be drawn:

• The PCD tool with a large tool tip radius is conducive to perform ductile cutting of cemented
carbide. The damage features on the ductile cutting surface are micro scale-stab and burrs that
are attributed to the severe plowing and material side-flow. Micro-pits and cracks are the main
damage features on the brittle cutting surface morphology. The machining parameters present
a greater influence on the surface roughness when material is removed with brittle fracture
compared to plastic deformation due to the different surface morphology characteristics.

• The PCD tool wear region is focused on the bottom cutting edge near the tool tip. The tool wear
mechanisms mainly include microchipping on the cutting edge, exfoliation on the rake face, and
abrasive and adhesive wear on the bottom face. The tool wear process shows microchipping
and exfoliating in the early stage, and subsequently, severe abrasive and adhesive wear in the
later stage.
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