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Abstract

Bayesian methods are widely used in the GWAS meta-analysis. But the considerable con-

sumption in both computing time and memory space poses great challenges for large-scale

meta-analyses. In this research, we propose an algorithm named SMetABF to rapidly obtain

the optimal ABF in the GWAS meta-analysis, where shotgun stochastic search (SSS) is

introduced to improve the Bayesian GWAS meta-analysis framework, MetABF. Simulation

studies confirm that SMetABF performs well in both speed and accuracy, compared to

exhaustive methods and MCMC. SMetABF is applied to real GWAS datasets to find several

essential loci related to Parkinson’s disease (PD) and the results support the underlying

relationship between PD and other autoimmune disorders. Developed as an R package and

a web tool, SMetABF will become a useful tool to integrate different studies and identify

more variants associated with complex traits.

Author summary

MetABF is a Bayesian GWAS meta-analysis framework but the efficiency is restricted by

the number of studies included. In this article, we propose SMetABF by introducing SSS,

an improved edition of traditional MCMC, to speed the MetABF algorithm. We develop

an R package and a web tool based on R Shiny to make SMetABF practical for biomedical

research. Comparing with the exhaustive approach and MCMC, we validate the effective-

ness of SSS in terms of speed and accuracy through simulations. We applied SMetABF to

identify several important variants associated with Parkinson’s disease and other autoim-

mune diseases, and explore the relationship between them. We hope this method can ben-

efit future GWAS meta-analyses, help to identify more risk variants associated with

complex traits, and improve the prediction of diseases.
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1 Introduction

Genome-wide association study (GWAS), a powerful tool to find out the associations between

genetic variations and phenotypes, has received more and more attention in the field of statis-

tical genetics and epidemiology [1]. Numerous variants, typically many common single nucle-

otide polymorphisms (SNPs), are identified linked with complex traits. However, since single

variant’s genetic effect on polygenic traits is relatively small, large sample sizes are often

required to increase the statistical power [2]. Besides, due to the population stratification and

other unobserved confounders, the estimated effect sizes in different studies are divided or

even contradictory [3]. Therefore, it has become an increasingly essential challenge to make

sufficient use of summary statistics derived from a wide range of studies and to attain pooled

statistics through meta-analysis [4], especially when the requirement of data security and pri-

vacy makes individual-level data increasingly difficult to obtain [5, 6].

Either the fixed-effect model (FEM) [7] or the random-effect model (REM) [8] is conven-

tionally used to derive a pooled effect size, depending on the assumption on heterogeneity [9].

However, the p-value is dependent on the sample size and minor allele frequency (MAF) of

the variant. Therefore, it is improper to use a single threshold [10]. Besides, the relationships

between true effect sizes in different studies are hard to be considered in both FEM and REM

[11]. On the contrary, it is easy to involve them into the model as a prior in the Bayesian frame-

work. The Bayesian method is also prevalent for researchers for it is more intuitively explain-

able [12]. Recently, a promising method based on the Bayesian framework named MetABF has

already been proposed [13]. With GWAS summary statistics, it could conveniently estimate

the pooled associations between multiple traits and genetic variations in different associated

models across studies. However, with the rapidly increasing data of GWAS, the method also

confronts the challenge of exponential explosion in both time and space consumption. Since it

requires traversing 2n subsets represented by n-dimensional vectors to compute the optimal

ABF, the considerable time and memory consumption required makes the computation

almost impossible as the number of studies n increases.

In this article, we propose SMetABF, a method based on the Markov chain Monte Carlo

(MCMC) method and its extension named shotgun stochastic search (SSS) [14] to speed the

process of subset selection. SSS is proved to be superior in speed, accuracy, and stability

through simulation. Based on SSS, we introduce SMetABF to obtain the maximum ABF in a

large-scale meta-analysis quickly. SMetABF is implemented as an R package and the code is

available at https://github.com/sjl-sjtu/GWAS_meta.

2 Method

2.1 Asymptotic Bayes factor

Different from the traditional statistical framework based on the p-value for statistical infer-

ence, the Bayes factor (BF) is used in Bayesian statistical framework. BF is defined as the rela-

tive size of the likelihood to observe data under the null hypothesis (H0) or the alternative one

(H1),

BF ¼
PðDjH1Þ

PðDjH0Þ
¼

R

b

R

γPðYjb; γÞpðb; γÞdbdγ
R

γPðYjb ¼ 0; γÞpðb ¼ 0; γÞdγ
;

where D stands for the data observed, β is the effect parameter we are interested in, γ is the

parameter vector of confounders, and π(�) stands for the prior of β and γ. In general, BF> 1

means more inclined to accept H1, and on the contrary, 0< BF< 1 means more inclined to

acceptH0. Since BF is difficult to calculate directly in many studies, an asymptotic Bayes factor
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(ABF) is proposed as an alternative [10]. If P(Y|β, γ) is replaced by the asymptotic distribution

Pðb̂; γ̂ jb; γÞ, and the marginal prior for β instead of the joint prior π(β, γ) is considered, the

probability of obtaining the parameter β under a certain hypothesis could replace the probabil-

ity of observing data Y, written as

ABF ¼
PðbjH1Þ

PðbjH0Þ
:

For a study aimed to measure the association between several risk factors and specific out-

comes, like GWAS, let b̂ be the estimated size of the association. It is assumed to obey the nor-

mal distribution

b̂ � Nðb; SE2

b̂
Þ;

where β is the true effect size of the variant, and SEb̂ represents the estimated standard error.

The true effect size β is also assumed to follow a normal distribution

b � Nð0; s2Þ;

where σ2 represents the prior variance of the true effect size. When σ = 0, the distribution of β
degenerates to a point, which means β = 0. In other words, the genetic variant has no effect on

the outcome. UnderH0: σ = 0, ABF can be calculated as

ABF ¼
f ðb̂; 0; SE2

b̂
þ s2Þ

f ðb̂; 0; SE2

b̂
Þ

:

where f(x;m, s2) is the probability density of normal distribution N(m, s2) at x.

Each study included in the meta-analysis provides an estimated effect size, b̂. When there

are n studies in the meta-analysis, let β̂ be the estimated effect vector

bβ ¼ ð bb1 ;
bb2 ; . . . ; bbnÞ

T
;

and β̂ follows a multivariate normal distribution Nðb; Vβ̂Þ, where β stands for the true effect

vector, and V β̂ represents the covariance matrix of the estimated standard errors, expressed as

V β̂ ¼

SE2
1

r1;2SE1SE2 � � � r1;nSE1SEn
r1;2SE1SE2 SE2

2
� � � r2;nSE2SEn

..

. ..
. ..

. ..
.

r1;nSE1SEn r2;nSE2SEn � � � SE2
n

0

B
B
B
B
B
@

1

C
C
C
C
C
A

;

in which SEi is the standard error of b̂i in the i-th study, and ri,j is the correlation between the

i-th and j-th studies. For each study, the prior effect size is σi, and the prior correlation coeffi-

cient between two studies is ρi,j, then the prior matrix S is

Σ ¼

s2
1

r1;2s1s2 � � � r1;ns1sn

r1;2s1s2 s2
2

� � � r1;ns2sn

..

. ..
.

� � � ..
.

r1;ns1sn r1;ns2sn � � � s2
n

0

B
B
B
B
B
@

1

C
C
C
C
C
A

:
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With the estimated effect vector and covariance matrix of the estimated standard errors,

ABF for meta-analysis could be calculated as

ABF ¼
f ðbβ; 0;V β̂ þ ΣÞ

f ðbβ; 0;V β̂Þ
:

Similarly, H0 is defined that S equals to the zero matrix.

2.2 Prior

The assumption on the heterogeneity among studies is critical in prior selection. Table 1 pro-

vides different models for prior under the assumption that σ and ρ remain the same for all

studies included in the meta-analysis.

Since both the null model and the complete model can be regarded as special cases of the

subset model, the subset model is adopted in the meta-analysis. But it also brings a tricky issue

to determine the optimal subsets. It is preferred to get a higher ABF score in the meta-analysis,

for it means thatH0 is harder to be accepted and the probability of the type II error decreases.

In other words, it increases the statistical power, which equals one minus the probability of the

type II error.

2.3 Model selection

2.3.1 Subset-exhaustive. The former study [13] performs model selection by traversing

subsets to select the highest ABF, named the subset-exhaustive method (EXH). For a meta-

analysis including n studies, there are in total 2n different subsets. It requires taking all these

subsets as a prior one by one to calculate ABF, and then find the optimal one. The time con-

sumed will explode exponentially as the number of studies included increases. At the same

time, the memory required to store all subsets (2n n-dimensional 0-1 vectors) has also

expanded dramatically. Therefore, it becomes quite essential to introduce a method to get

higher ABF quickly.

2.3.2 MCMC. A commonly used method to quickly find the best subset is the Markov

chain Monte Carlo method (MCMC). Here MC3 algorithm [15, 16] is used to define the tran-

sition function and the Metropolis-Hastings algorithm is used for sampling. The whole process

is carried out as Algorithm 1.

Algorithm 1 MCMC Pseudocode
Require: Ω: Universe of subsets.
Ensure: x: Sample with stable distribution.
x0  random sample from Ω
for t = 0. . .T do

Table 1. Different models of prior across studies [13].

parameter name set

σ null model σ2 = 0

complete model σ2 > 0

subset model σ2 > 0 for subset I � {1, . . ., n}

ρ fixed effect ρ = 1

independent effect ρ = 0

correlated effect 0 < ρ < 1

https://doi.org/10.1371/journal.pcbi.1009948.t001
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Update nbd(xt) . Neighborhood
PðxtÞ  fPi2nbdðxtÞ ¼

1

jjnbdðxtÞjj
; Pi=2nbdðxtÞ ¼ 0g . Transition Probability

Generate y based on Π(xt) . Alternative Model
h ¼ minf1; ABFðyÞ

ABFðxt� 1Þ
g . Discriminant Function

Generate u from uniform distribution U(0, 1)
if u < h then
xt+1 = y

else
xt+1 = xt

end if
end for

1. Randomly select a subset as the initial prior model x0, and calculate the ABF.

2. For the current model xt, define the neighborhood as a set constituted of subsets formed by

adding or deleting an element from the current subset, as well as the current model itself.

The proposal distribution is defined by equalizing the sampling probability of all models in

the neighborhood. In other words, the sampling probability of all models in the neighbor-

hood remains equal, and the transition probability of all models outside the neighborhood

is 0. Since each model has the same size of the neighborhood, the proposal distribution is

symmetric.

3. Generate the alternative prior model y according to the transition probability, and then cal-

culate the ABF. The discriminant function is defined as h ¼ minf1; ABFðyÞ
ABFðxt� 1Þ

g, where ABF(x)

represents the ABF value with subset x as the prior.

4. Generate a random number u that follows the uniform distribution U(0, 1). If u< h, accept

y as a new step of xt+1, and otherwise, xt+1 = xt.

5. Repeat steps 2-4 until the maximum number of iterations or stable distribution is reached.

The first half of the entire iterative sequence is used for the warm-up and the second for the

final sampling.

2.3.3 Shotgun stochastic search. Here we introduce an extension of MCMC for variable

selection named shotgun stochastic search (SSS) [14]. It can be used to fast detect the optimal

ABF following the procedures as below (see Algorithm 2):

1. Let Γ donate a set containing up to B optimal models. Randomly select the initial model x0,

set Γ = {x0}, and calculate the score of the model S(x) = ABF(x).

2. For the current model xt, define models that add or delete or replace an element from the

current subset to constitute the sets Γ+, Γ−, and Γ�, respectively, and then define the neigh-

borhood

nbdðxtÞ ¼ Gþ [ G� [ G�:

Then update Γ = Γ [ nbd(xt). If |Γ|> B, remove (|Γ| − B) models with the lowest scores.

3. Sample x+, x−, and x� from Γ+, Γ−, and Γ�, with the score S(x) as sampling weight,

respectively.

4. Then take a sample from x+, x−, and x�, with the score S(x) as sampling weight, and let the

sample be the new model xt+1.

5. Repeat steps 2-4 until the maximum number of iterations is reached.
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Algorithm 2 SSS Pseudocode
Require: Ω: Universe of subsets.
Ensure: x: Sample with stable distribution.
x0  random sample from Ω
Γ = {x0}
S(x) ABF(x)
for t = 0. . .T do
Constitute Γ+, Γ−, Γ�

nbd(xt) = Γ+ [ Γ− [ Γ�

Update Γ = Γ [ nbd(xt)
if |Γ| > B then
Remove (|Γ| − B) models with lowest S.

end if
Sample x+ from Γ+, weight = S(x)
Sample x− from Γ−, weight = S(x)
Sample x� from Γ�, weight = S(x)
Sample xt+1 from x+, x−, x�, weight = S(x)
if xt+1 satisfies stable distribution then
break

end if
end for
The former study [13] has provided R code for EXH. Here R functions for meta-analysis by

MCMC and SSS are constructed.

3 Simulation

3.1 The construction of simulated datasets

Several parameters are given to build the simulated datasets, including the incidence of the dis-

ease in the population (p), the frequency of the major allele of the studied variant (f, which

equals to 1-MAF under the assumption that there are only two alleles in the SNP), the effect

size (odds ratio, OR), and the sample size of both case and control groups (which is assumed

to be the same, n). For example, suppose A is the risk allele while G is the non-risk allele. If the

dominant model is applied, both AA and AG can be considered as equivalent risk genotypes

while GG is non-risk. Suppose baseline effect is α, the increased effect on prevalence by risk

genotype is θ, then

PðDjGGÞ ¼ a;

PðDjAAþ AGÞ ¼ að1þ yÞ;

where D represents the outcome (disease). Then we can get

OR ¼
PðDjGGÞ
Pð�DjGGÞ

�
Pð�DjAAþ AGÞ
PðDjAAþ AGÞ

¼
1 � a

a
�

að1þ yÞ

1 � að1þ yÞ
;

and

p ¼ f 2aþ ð1 � f 2Það1þ yÞ:

Then α and θ can be calculated. According to the Bayes Theorem, the probability of risk

and non-risk genotypes in the case and control groups can be calculated.

P GGjDð Þ ¼
PðDjGGÞPðGGÞ

PðDÞ
¼
f 2

p
;
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P GGj�Dð Þ ¼
ð1 � aÞf 2

1 � p
:

And then, the simulated genotypes in both the case and control groups could be randomly

generated under binomial distribution. The estimated cOR can be calculated. The effect size is

defined as β = ln OR, and similarly, b̂ ¼ lncOR. The standard error can be estimated from the

contingency table, as SEb̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n11
� 1

n12
� 1

n21
� 1

n22

q
.

Suppose there are N studies included in the meta-analysis. For each study, the true effect

ORi obeys the normal distribution N(OR, SE2). The sample size ni in each study is generated as

a random integer in a given range, and p and f remain the same for all studies. Through the

process above, b̂i and SEb̂i of each study can be estimated.

3.2 Results

The ABFs calculated under different true ORs are shown in Fig 1. The overall trends of the

ABF obtained by EXH, MCMC, and SSS remain consistent, corresponding to the p-value

obtained by the traditional method. When the true OR approaches 1, the p-value increases,

while the ABF value decreases to 0. However, when the sample size of the study included is

small (Fig 1A), the change of p-value will be unstable if true OR is near to 1, which will affect

the analysis. Besides, the ABF calculated by SSS almost coincides with the optimal ABF curve

obtained by EXH, which shows the validity of SMetABF.

Figs 2 and 3 show the performance of each algorithm in accuracy and speed under different

priors and iterations, respectively. Since in SSS, ABF is calculated under all models in the

neighborhood in one iteration, much more models will be calculated by the SSS with the same

number of iterations. Therefore, the number of iterations of SSS is set to be 100, 200, 500, 1000

and 2000; while that of MCMC is set to be 1000, 5000, 10000 and 20000. To compare the aver-

aged ABF and time consumed, the algorithm is repeated 100 times under each condition. The

Fig 1. The comparison under various true ORs. Curves representing ABF (EXH) and ABF (SSS) are nearly coincide. Curves

representing p-value (FEM) and p-value (REM) are nearly coincide as well. The parameters are set as follows: p = 0.05, f = 0.8

(which equally means MAF = 0.2), the number of studies included (N) is set to be 20 (Fig 1A) and 25 (Fig 1B) respectively. For the

i-th study, ORi* N(OR, 0.01), the sample size ni is sampled from 100 to 2000 and 100 to 5000, respectively.

https://doi.org/10.1371/journal.pcbi.1009948.g001
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SSS algorithm can reach the maximum ABF in a short time with a small number of iterations.

On the contrary, the MCMC algorithm can hardly find the maximum ABF in even longer

time.

When repeating 100 times of MCMC (10000 and 20000 iterations) and SSS (500 and 1000

iterations), as shown in Fig 4, the ABF values obtained by MCMC are relatively small, while

the results of SSS are relatively stable, very close to the maximum ABF.

4 Application

4.1 Meta-analysis on the variants related to PD and other autoimmune

disorders

Here an application is performed to measure the risk variants associated with Parkinson’s dis-

ease (PD), a common chronic neurodegenerative disease among the elderly population. Its

Fig 2. The comparison in accuracy and speed of the three algorithms under different priors. Priors setting: corr 1 (correlated

model, σ = 0.5, ρ = 0.7); corr 2 (correlated model, σ = 0.5, ρ = 0.3); corr 3 (correlated model, σ = 0.8, ρ = 0.7); fixed (fixed model, σ =

0.5); indep (independent model, σ = 0.5).

https://doi.org/10.1371/journal.pcbi.1009948.g002

Fig 3. The comparison in accuracy and speed of the three algorithms under different iterations.

https://doi.org/10.1371/journal.pcbi.1009948.g003
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common clinical manifestations include tremors, slow movement, and disorders in balance

and movement posture. PD has been reported to be associated with both genetic variations

[17] and environmental factors like personal lifestyles such as smoking and drinking [18, 19],

but the detailed mechanism remains unclear. Recent studies discuss the potential relationship

between PD and autoimmune disorders [20]. To explore the underlying relationships, we con-

duct a GWAS meta-analysis across PD and three common autoimmune disorders: inflamma-

tory bowel disease, multiple sclerosis, and systemic sclerosis.

Through the websites accommodating GWAS datasets, including DistiLD [21] (http://

distild.jensenlab.org), Open Targets Genetics [22] (https://genetics.opentargets.org/) and

GWAS Catalog [23] (https://www.ebi.ac.uk/gwas/), 59 studies in which the summary statistics

(b̂ and SEb̂ ) are provided or can be calculated are included in this application. Tables 2 and 3

show detailed information about the studies included. A pure meta-analysis across 29 studies

on PD is conducted firstly, and then all 59 studies are analyzed jointly to obtain a mixed associ-

ation pattern. The effects of over 10 million variants are assessed through parallel computing.

The Manhattan plots for both the pure pattern and the mixed pattern are shown in Fig 5.

We can find PD is highly associated with several loci located within gene SCNA on chromo-

somes 4. A peak also appears on chromosome 17, around geneMAPT, KANSL1, and NSF.

When other autoimmune disorders are included in the meta-analysis, the peaks appear on

chromosomes 1 and 6 in the mixed pattern. Some significant variants can also be found on

chromosome 4. Table 4 shows several SNPs identified in the analysis. Detailed results are avail-

able at https://figshare.com/articles/dataset/Table_S_zip/19179179.

The results supports the previous reports on several essential loci related to PD, such as

SCNA,MAPT and KANSL1 [17]. Additionally, some degree of underlying relationships

between PD and other autoimmune disorders are revealed by comparing the mixed pattern to

Fig 4. The comparison in stability of MCMC and SSS.

https://doi.org/10.1371/journal.pcbi.1009948.g004
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the pure pattern, for they have some shared risk variants. For example, variants on BTNL2
have high ABF in both the pure pattern (*1017) and the mixed pattern (*10127), and the sub-

sets indicates that BTNL2 is associated with all four disorders. For the top 4 variants on BTNL2
in the mixed pattern, on average 66.7% studies on PD, 65.7% studies on inflammatory bowel

disease, 100% studies on multiple sclerosis, and 62.5% studies on systemic sclerosis are

included in the final subsets to calculate ABF. However, although variants on SCNA also have

a high ABF value in both pure pattern and mixed pattern, we found most of the studies in the

final subsets to calculate ABF are from those studies on PD and the ABF values remain similar

(*10135) in both patterns. In other words, SCNA has weaker associations with other autoim-

mune disorders. The same is also true for those variants onMAPT. These two loci may relate

more to the diseases in nervous system instead of autoimmune disorders. On the contrary, var-

iants on KANSL1, reported as a factor in the immune system [71], show associations with both

PD and other autoimmune disorders. In breif, he results of the meta-analysis indicate the pres-

ence of potential biological pathways and functional interactions between PD and

Table 2. The information of studies on PD included in the application.

First author Published year Ancestry Sample Size (cases/controls)

Maraganore DM [24] 2005 European (US) 332/332

Pankratz N [25] 2008 European (US) 857/867

Satake W [26] 2009 East Asian (Japan) 2,011/18,381

Simn-Snchez J [27] 2009 European 1,713/3,978

Sutherland GT [28] 2009 European (Australia) 331/296

Edwards TL [29] 2010 European (US) 1,752/1,745

Hamza TH [30] 2010 European (US) 2,000/1,986

Saad M [31] 2010 European 4,271/9,048

Do CB [32] 2011 European 3,426/29,624

Liu X [33] 2011 Ashkenazi Jewish 2,050/1,836

Nalls MA [34] 2011 European 5,333/12,019

Spencer C [35] 2011 European (UK) 1,705/5,175

Simn-Snchez J [36] 2011 European (Dutch) 772/2,024

Lill CM [37] 2012 World 16,452/48,810

Nalls MA [38] 2014 European (US) 13,708/95,282

Hill-Burns EM [39] 2014 European (US) 1,986/2,000

Foo JN [40] 2017 East Asian 5,125/17,604

Chang D [41] 2017 World 26,035/403,190

Bandres-Ciga S [42] 2019 European (Spain) 4,639/2,949

Blauwendraat C [43] 2019 World 17,996 cases

Nalls MA [44] 2019 European 33,674/449,056

Blauwendraat C [45] 2020 European 1,588/7,584

Alfradique-Dunham I [46] 2021 European 1,570/1,259

Backman JD [47] 2021 European (UK) 828/330,926

Jiang L [48] 2021 European (UK) 294/456,054

Rodrigo LM [49] 2021 European 5,167/5,366

Smeland OB [50] 2021 European 20,184/975,838

Sakaue S [51] 2021 European & East Asian (Japan) 2,978/653,168

CIDR dataset1 - World 1,048/943

1 Details of the dataset can be found at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000126.v2.p1

https://doi.org/10.1371/journal.pcbi.1009948.t002
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autoimmune disorders. Tools like GESLM can use the shared variants to further identify

causal variants [72].

4.2 Software

We implement all the algorithms as an R package named GWASmeta. Besides, to help

researchers to use SMetABF to quickly find key SNPs, we develop a web tool based on R Shiny

as well. The requirements of the file uploaded can be found in the website. Multiple variants

can be analyzed at once. This tool is accessible at https://sunjianle-sjtu.shinyapps.io/analycode.

Table 3. The information of studies on other autoimmune disorders included in the application.

First author Published year Ancestry Sample Size (cases/controls)

inflammatory bowel disease

Anderson CA [52] 2011 European 6,687/19,718

Jostins L [53] 2012 European 12,924/21,442

Juli A [54] 2014 European 7,483/21,211

Liu JZ [55] 2015 European 25,273/26,715

Liu JZ [55] 2015 Iranian 548/342

Liu JZ [55] 2015 Indian 1,423/990

Liu JZ [55] 2015 East Asian 2,824/3,719

Ostrowski J [56] 2016 European (Poland) 1,118/582

Yang SK [57] 2016 East Asian (Korea) 1,505/4,041

de Lange KM [58] 2017 European 25,042/34,915

Backman JD [47] 2021 European (UK) 5,650/298,738

Dnerta HM [59] 2021 UK 4,101/480,497

Glanville KP [60] 2021 European (UK) 5,105/324,074

Jiang L [48] (Crohn’s disease) 2021 European (UK) 1,342/455,006

Jiang L [48] (ulcerative colitis) 2021 European (UK) 2,569/453,779

Sakaue S [51] 2021 European & East Asian (Japan) 5,685/590,936

Wu Y [61] 2021 European 7,045/449,282

multiple sclerosis

Hafler DA [62] 2007 European 931/2,431

De Jager PL [63] 2009 European 2,624/7,220

Patsopoulos NA [64] 2011 European 5,545/12,153

Sawcer S [65] 2011 European 9,772/16,849

Beecham AH [66] 2013 European 14,498/24,091

Andlauer TF [67] 2016 European (German) 4,888/10,395

IMSGC [68] 2019 World 14,802/26,703

Backman JD [47] 2021 European (UK) 1,596/330,158

Glanville KP [60] 2021 European (UK) 1,683/324,074

Jiang L [48] 2021 European (UK) 775/455,573

systemic sclerosis

Mayes MD [69] 2014 European 1,833/3,466

Lpez-Isac E [70] 2019 European 9,095/17,584

Jiang L [48] 2021 European (UK) 104/456,244

IMSGC: International Multiple Sclerosis Genetics Consortium

https://doi.org/10.1371/journal.pcbi.1009948.t003
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5 Discussion

Meta-analysis has been widely conducted on GWAS data to discover essential loci associated

with some complex genetic diseases during recent years [73–75], satisfying the requirements

of large sample size in GWAS. However, the traditional p-value method used in meta-analysis

is facing increasing criticisms. For example, it is not proper to use a single threshold since p-

value is dependent on the MAF and sample size [10]. Moreover, the sophisticated relationships

Fig 5. Manhattan plots. A. Results of pure meta-analysis, which includes 29 studies on PD. B. Results of mixed meta-analysis, which

includes 59 studies on PD, inflammatory bowel disease (including its two subtypes: Crohn’s disease and ulcerative colitis), multiple

sclerosis, and systemic sclerosis. lg ABF: log10ABF.

https://doi.org/10.1371/journal.pcbi.1009948.g005

Table 4. Some key variants identified in analysis.

CHR Gene SNP

pure pattern 4 SCNA rs2736990, rs356165, rs356203, rs356168, rs356200, rs2737029

17 MAPT rs17649553, rs62056850, rs8070723, rs62062279

17 KANSL1 rs2532276, rs2696664, rs56406462, rs2532275, rs2532278, rs2532281, rs2696658

17 NSF rs199447, rs199451, rs169201

1 ASH1L rs71628662, rs145330152, rs12734374, rs145331499

6 BTNL2 rs3763309, rs3763312, rs3793127, rs9268491, rs3817963

mixed pattern 6 TSBP1-AS1 rs3130320, rs926070

6 TSBP1 rs2395150, rs6904636, rs3129908, rs502626, rs477005

6 BTNL2 rs3129954, rs3129955, rs2076530, rs3817963

6 BAG6 rs3130050, rs2242656, rs3130617, rs1077394

1 IL23R rs11465804, rs80174646, rs75328060, rs11805303, rs7539625, rs1004819

4 SCNA rs2736990, rs356165, rs356203, rs356168, rs356200, rs2737029

https://doi.org/10.1371/journal.pcbi.1009948.t004
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between different studies are tricky to deal with in traditional methods. FEM relies on the

assumption that all studies in the meta-analysis share a common true effect size. The true effect

size is allowed to vary in different studies in REM, but the detail information is hard to be

included in the model. And the test for heterogeneity to determine whether FEM or REM

should be used is often regarded poor in power [11]. Instead, the structure among different

studies can be easily integrated into the Bayesian model as a prior. The BF compares the rela-

tive size between P(H0|Y) and P(H1|Y), and therefore is a better alternative to the p-value.

Based on the Bayesian framework, a useful statistical model named MetABF has been pro-

posed, which could easily measure the associations between multiple phenotypes and variants

at the same time using GWAS summary statistics but confronts challenges in computation.

In this article, we propose SMetABF, an improved tool to attain the optimal ABF in a large-

scale meta-analysis efficiently. Through simulation, we confirm that SSS is superior to MCMC

in terms of speed, accuracy, and stability. To a certain extent, our improvements effectively

overcome the calculation problems due to the increase in the number of studies included. We

performe an application to PD and other autoimmune disorders, illustrating the effectiveness

of SMetABF. With more research conducted on various traits among a larger population and

the increasing accumulations of GWAS summary statistics, the large-scale multi-phenotypic

meta-analyses will be possible through SMetABF. Another possible application is to analyze

the effect size across different variants in one study, where σi represents the prior variation of

the i-th variant on the outcome, and ρi,j stands for the linkages between different variants. Fur-

thermore, since many traits related to some complex diseases are correlated, it is necessary to

consider the effect of multiple loci on the outcome across a large number of studies simulta-

neously [76]. In this case, the prior correlation matrix S will transform to a three-dimensional

array, which will bring more challenges in computation.

The method still confronts many challenges. The choice of prior parameters is an example.

Sensitive analysis reveals that different values of σ and ρ will affect the ABF values but seem not

to change the relative effect size between different variants. Besides, the considerable size of

human genome still brings challenges in computation.

The pooled statistics derived through meta-analysis can be further used for other post-

GWAS analysis, for example, to identify causal genes through statistical fine-mapping [77] or

to infer the causal relationships between traits by Mendelian randomization [78]. GWAS sum-

mary statistics from different studies can be conveniently integrated to a powerful pooled sta-

tistic by SMetABF. We believe the method will benefit to the integration of previous studies

and help to reveal the genetic mechanisms of complex diseases.
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41. Chang D, Nalls M, Hallgrı́msdóttir I, Hunkapiller J, van der Brug MP, Cai F, et al. A meta-analysis of

genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nature Genetics.

2017; 49:1511–1516. https://doi.org/10.1038/ng.3955 PMID: 28892059

42. Bandres-Ciga S, Ahmed S, Sabir MS, Blauwendraat C, Adarmes-Gmez AD, Bernal-Bernal I, et al. The

Genetic Architecture of Parkinson Disease in Spain: Characterizing Population-Specific Risk, Differen-

tial Haplotype Structures, and Providing Etiologic Insight. Movement disorders: official journal of the

Movement Disorder Society. 2019; 34(12):1851–1863. https://doi.org/10.1002/mds.27864 PMID:

31660654

43. Blauwendraat C, Heilbron K, Vallerga CL, Bandres-Ciga S, Von Coelln R, Pihlstrøm L, et al. Parkinson’s

disease age at onset genome-wide association study: defining heritability, genetic loci, and α-synuclein

mechanisms. Movement Disorders. 2019; 34(6):866–875. https://doi.org/10.1002/mds.27659 PMID:

30957308

44. Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S, Chang D, et al. Identification of

novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-

wide association studies. The Lancet Neurology. 2019; 18(12):1091–1102. https://doi.org/10.1016/

S1474-4422(19)30320-5 PMID: 31701892

45. Blauwendraat C, Reed X, Krohn L, Heilbron K, Bandres-Ciga S, Tan M, et al. Genetic modifiers of risk

and age at onset in GBA associated Parkinson’s disease and Lewy body dementia. Brain. 2020; 143

(1):234–248. https://doi.org/10.1093/brain/awz350 PMID: 31755958

46. Alfradique-Dunham I, Al-Ouran R, von Coelln R, Blauwendraat C, Hill E, Luo L, et al. Genome-wide

association study Meta-analysis for Parkinson disease motor subtypes. Neurology Genetics. 2021; 7

(2). https://doi.org/10.1212/NXG.0000000000000557 PMID: 33987465

47. Backman JD, Li AH, Marcketta A, Sun D, Mbatchou J, Kessler MD, et al. Exome sequencing and analy-

sis of 454,787 UK Biobank participants. Nature. 2021; 599(7886):628–634. https://doi.org/10.1038/

s41586-021-04103-z PMID: 34662886

48. Jiang L, Zheng Z, Fang H, Yang J. A generalized linear mixed model association tool for biobank-scale

data. Nature genetics. 2021; 53(11):1616–1621. https://doi.org/10.1038/s41588-021-00954-4 PMID:

34737426

49. Rodrigo LM, Nyholt DR. Imputation and Reanalysis of ExomeChip Data Identifies Novel, Conditional

and Joint Genetic Effects on Parkinson’s Disease Risk. Genes. 2021; 12(5):689. https://doi.org/10.

3390/genes12050689 PMID: 34064523

50. Smeland OB, Shadrin A, Bahrami S, Broce I, Tesli M, Frei O, et al. Genome-wide Association Analysis

of Parkinson’s Disease and Schizophrenia Reveals Shared Genetic Architecture and Identifies Novel

Risk Loci. Biological psychiatry. 2021; 89(3):227–235. https://doi.org/10.1016/j.biopsych.2020.01.026

PMID: 32201043

51. Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S, et al. A cross-population atlas of

genetic associations for 220 human phenotypes. Nature genetics. 2021; 53(10):1415–1424. https://doi.

org/10.1038/s41588-021-00931-x PMID: 34594039

52. Anderson CA, Boucher G, Lees CW, Franke A, D’Amato M, Taylor KD, et al. Meta-analysis identifies 29

additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nature

genetics. 2011; 43(3):246–252. https://doi.org/10.1038/ng.764 PMID: 21297633

53. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host–microbe interactions

have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012; 491(7422):119–

124. https://doi.org/10.1038/nature11582 PMID: 23128233

54. Julià A, Domènech E, Chaparro M, Garcı́a-Sánchez V, Gomollón F, Panés J, et al. A genome-wide

association study identifies a novel locus at 6q22. 1 associated with ulcerative colitis. Human molecular

genetics. 2014; 23(25):6927–6934. https://doi.org/10.1093/hmg/ddu398 PMID: 25082827

55. Liu JZ, Van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, et al. Association analyses identify

38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across popula-

tions. Nature genetics. 2015; 47(9):979–986. https://doi.org/10.1038/ng.3359 PMID: 26192919

56. Ostrowski J, Paziewska A, Lazowska I, Ambrozkiewicz F, Goryca K, Kulecka M, et al. Genetic architec-

ture differences between pediatric and adult-onset inflammatory bowel diseases in the Polish popula-

tion. Scientific reports. 2016; 6(1):1–10. https://doi.org/10.1038/srep39831 PMID: 28008999

PLOS COMPUTATIONAL BIOLOGY A rapid algorithm for Bayesian GWAS meta-analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009948 March 14, 2022 16 / 18

https://doi.org/10.1186/1471-2164-15-118
http://www.ncbi.nlm.nih.gov/pubmed/24511991
http://www.ncbi.nlm.nih.gov/pubmed/28011712
https://doi.org/10.1038/ng.3955
http://www.ncbi.nlm.nih.gov/pubmed/28892059
https://doi.org/10.1002/mds.27864
http://www.ncbi.nlm.nih.gov/pubmed/31660654
https://doi.org/10.1002/mds.27659
http://www.ncbi.nlm.nih.gov/pubmed/30957308
https://doi.org/10.1016/S1474-4422(19)30320-5
https://doi.org/10.1016/S1474-4422(19)30320-5
http://www.ncbi.nlm.nih.gov/pubmed/31701892
https://doi.org/10.1093/brain/awz350
http://www.ncbi.nlm.nih.gov/pubmed/31755958
https://doi.org/10.1212/NXG.0000000000000557
http://www.ncbi.nlm.nih.gov/pubmed/33987465
https://doi.org/10.1038/s41586-021-04103-z
https://doi.org/10.1038/s41586-021-04103-z
http://www.ncbi.nlm.nih.gov/pubmed/34662886
https://doi.org/10.1038/s41588-021-00954-4
http://www.ncbi.nlm.nih.gov/pubmed/34737426
https://doi.org/10.3390/genes12050689
https://doi.org/10.3390/genes12050689
http://www.ncbi.nlm.nih.gov/pubmed/34064523
https://doi.org/10.1016/j.biopsych.2020.01.026
http://www.ncbi.nlm.nih.gov/pubmed/32201043
https://doi.org/10.1038/s41588-021-00931-x
https://doi.org/10.1038/s41588-021-00931-x
http://www.ncbi.nlm.nih.gov/pubmed/34594039
https://doi.org/10.1038/ng.764
http://www.ncbi.nlm.nih.gov/pubmed/21297633
https://doi.org/10.1038/nature11582
http://www.ncbi.nlm.nih.gov/pubmed/23128233
https://doi.org/10.1093/hmg/ddu398
http://www.ncbi.nlm.nih.gov/pubmed/25082827
https://doi.org/10.1038/ng.3359
http://www.ncbi.nlm.nih.gov/pubmed/26192919
https://doi.org/10.1038/srep39831
http://www.ncbi.nlm.nih.gov/pubmed/28008999
https://doi.org/10.1371/journal.pcbi.1009948


57. Yang SK, Hong M, Oh H, Low HQ, Jung S, Ahn S, et al. Identification of loci at 1q21 and 16q23 that

affect susceptibility to inflammatory bowel disease in Koreans. Gastroenterology. 2016; 151(6):1096–

1099. https://doi.org/10.1053/j.gastro.2016.08.025 PMID: 27569725

58. De Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, et al. Genome-wide association

study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nature

genetics. 2017; 49(2):256–261. https://doi.org/10.1038/ng.3760 PMID: 28067908

59. DönertaşHM, Fabian DK, Fuentealba M, Partridge L, Thornton JM. Common genetic associations

between age-related diseases. Nature aging. 2021; 1(4):400–412. https://doi.org/10.1038/s43587-021-

00051-5 PMID: 33959723

60. Glanville KP, Coleman JR, O’Reilly PF, Galloway J, Lewis CM. Investigating pleiotropy between

depression and autoimmune diseases using the UK Biobank. Biological psychiatry global open science.

2021; 1(1):48–58. https://doi.org/10.1016/j.bpsgos.2021.03.002 PMID: 34278373

61. Wu Y, Murray GK, Byrne EM, Sidorenko J, Visscher PM, Wray NR. GWAS of peptic ulcer disease impli-

cates Helicobacter pylori infection, other gastrointestinal disorders and depression. Nature communica-

tions. 2021; 12(1):1–17. https://doi.org/10.1038/s41467-021-21280-7 PMID: 33608531

62. Consortium IMSG. Risk alleles for multiple sclerosis identified by a genomewide study. New England

Journal of Medicine. 2007; 357(9):851–862. https://doi.org/10.1056/NEJMoa073493

63. De Jager PL, Jia X, Wang J, De Bakker PI, Ottoboni L, Aggarwal NT, et al. Meta-analysis of genome

scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci.

Nature genetics. 2009; 41(7):776–782. https://doi.org/10.1038/ng.401 PMID: 19525953

64. Patsopoulos Nikolaos A, Bayer Pharma MS Genetics Working Group, the Steering Committees of Stud-

ies Evaluating IFNβ-1b & a CCR1-Antagonist, Consortium A, GeneMSA, International Multiple Sclero-

sis Genetics Consortium, et al. Genome-wide meta-analysis identifies novel multiple sclerosis

susceptibility loci. Annals of neurology. 2011; 70(6):897–912. https://doi.org/10.1002/ana.22609 PMID:

22190364

65. Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, et al. Genetic risk and

a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011; 476

(7359):214. https://doi.org/10.1038/nature10251 PMID: 21833088

66. Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A, Cotsapas C, et al. Analysis of

immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature genetics.

2013; 45(11):1353. https://doi.org/10.1038/ng.2770 PMID: 24076602

67. Andlauer TF, Buck D, Antony G, Bayas A, Bechmann L, Berthele A, et al. Novel multiple sclerosis sus-

ceptibility loci implicated in epigenetic regulation. Science advances. 2016; 2(6):e1501678. https://doi.

org/10.1126/sciadv.1501678 PMID: 27386562

68. International Multiple Sclerosis Genetics Consortium, ANZgene, IIBDGC, WTCCC2, Patsopoulos N,

Baranzini S, Santaniello A, Shoostari P, et al. Multiple sclerosis genomic map implicates peripheral

immune cells and microglia in susceptibility. Science. 2019; 365 (6460).

69. Mayes MD, Bossini-Castillo L, Gorlova O, Martin JE, Zhou X, Chen WV, et al. Immunochip analysis

identifies multiple susceptibility loci for systemic sclerosis. The American Journal of Human Genetics.

2014; 94(1):47–61. https://doi.org/10.1016/j.ajhg.2013.12.002 PMID: 24387989
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