
a	 Corresponding author: Grace Tang, Department of Medical Physics, Memorial Sloan Kettering Cancer 
Center, 1275 York Ave., New York, NY 10065, USA; phone: (212) 639 5036; fax: (212) 717 3010; email:  
tangg@mskcc.org 

Low-dose 2.5 MV cone-beam computed tomography with 
thick CsI flat-panel imager

Grace Tang,1a Christopher Moussot,2 Daniel Morf,3 Edward Seppi,4 and 
Howard Amols1

Department of Medical Physics,1 Memorial Sloan Kettering Cancer Center, New York, 
NY, USA; Varian Medical Systems,2 Cranston, NJ, USA; Varian Medical Systems iLab 
GmbH,3 Baden-Dättwil, Switzerland; Varian Medical Systems,4 Ginzton Technology 
Center, Palo Alto, CA, USA
tangg@mskcc.org 

Received 29 October, 2015; accepted 16 March, 2016

Most of the treatment units, both new and old models, are equipped with a megavolt-
age portal imager but its use for volumetric imaging is limited. This is mainly due 
to the poor image quality produced by the high-energy treatment beam (> 6 MV). 
A linac at our center is equipped with a prototype 2.5 MV imaging beam. This 
study evaluates the feasibility of low-dose megavoltage cone-beam imaging with 
the 2.5 MV beam and a thick cesium iodide detector, which is a high-efficiency 
imager. Basic imaging properties such as spatial resolution and modulation transfer 
function were assessed for the 2.5 MV prototype imaging system. For image quality 
and imaging dose, a series of megavoltage cone-beam scans were acquired for the 
head, thorax, and pelvis of an anthropomorphic phantom and were compared to 
kilovoltage cone-beam and 6X megavoltage cone-beam images. To demonstrate 
the advantage of MV imaging, a phantom with metallic inserts was scanned and 
the image quality was compared to CT and kilovoltage cone-beam scans. With a 
lower energy beam and higher detector efficiency, the 2.5 MV imaging system 
generally yields better image quality than does the 6 MV imaging system with 
the conventional MV imager. In particular, with the anthropomorphic phantom 
studies, the contrast to noise of bone to tissue is generally improved in the 2.5 MV 
images compared to 6 MV. With an image quality sufficient for bony alignment, the 
imaging dose for 2.5 MV cone-beam images is 2.4–3.4 MU compared to 26 MU 
in 6 MV cone-beam scans for the head, thorax, and pelvis regions of the phantom. 
Unlike kilovoltage cone-beam, the 2.5 MV imaging system does not suffer from 
high-Z image artifacts. This can be very useful for treatment planning in cases 
where high-Z prostheses are present.

PACS number(s): 87.57.Q-
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I.	 INTRODUCTION

With the continual development of image-guided radiation therapy (IGRT) and the increasing 
popularity of stereotactic and hypofractionation treatments, the use of kilovoltage cone-beam 
computed tomography (kVCB) for accurate patient setup and localization has vastly increased 
in the past decade. Although kV/kV or kV/MV planar image pairs are sufficient for bony align-
ment, 3D kVCB systems are often capable of facilitating the ability to register images with soft 
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tissues as well. More importantly, these kV imaging systems are fully integrated to treatment 
units and are readily available. However, kV image quality can be significantly perturbed by 
high-Z materials, especially for patients with metallic implants such as dental fillings, hip 
prosthesis, and prostate seeds. These high-Z image artifacts are greatly reduced in MV X-ray 
imaging. Past efforts of using the therapeutic MV beams for imaging have proven its feasibility 
especially in the area of portal imaging while the implementation of megavoltage cone-beam 
imaging (MVCB) has also been studied by several different groups(1-9) and is commercially 
available (MVision, Siemens Medical Solutions USA, Malvern, PA).

Since most linacs are already equipped with a MV portal imager, one would expect that 
MVCB can be readily implemented in the clinic with minimal additional cost or modification 
to the treatment units. Unfortunately, MVCB has yet to be widely implemented, in part because 
high-energy photons from the therapeutic MV beams (typically 6 MV) often produce images 
with poor tissue contrast and the imaging doses are relatively high. While this can be resolved 
by lowering the energy of the MV beam, it can be mechanically challenging to produce a stable 
and sufficiently low-energy MV beam that attains similar imaging quality to kV X-rays for 
current waveguide designs. The lowest energy beam for portal imaging in a modern linac of 
3.5–4 MV has been reported(7-8,10) with the use of thin low-Z target, which was first proposed 
by Galbraith in 1989.(11) A low-Z target increases the portion of low-energy photons in the 
output spectrum due to the decrease in photoelectric absorption in low-Z material. The thinner 
thickness of the target also decreases the amount of self-absorption and any further attenuation 
of these low-energy photons can be eliminated by removing the flattening filter. This beamline 
configuration subsequently improves the image contrast as demonstrated by several previous 
studies.(10,12-15)

A new TrueBeam (Varian Medical Systems, Palo Alto, CA) at our center is equipped with a 
prototype 2.5 MV unflattened imaging beam. To further improve imaging efficiency, a prototype 
portal imager consisting of an 8 mm–thick cesium iodide (CsI) scintillator is also being tested. 
This study demonstrates the feasibility and image quality of low-dose MVCB using 2.5 MV 
X-rays with a highly efficient CsI detector.

 
II.	 MATERIALS AND METHODS

A. 	 Prototype MV imaging system in TrueBeam
A nonclinical prototype MV imaging system was installed on a Varian TrueBeam linac. Both 
hardware and software controls were fully integrated into the linac control console. The con-
figuration of the MV imaging beamline is similar to the treatment beamline but the imaging 
beamline uses a thin copper target without a flattening filter, as illustrated in Fig. 1. The 2.5 MV 
beam is generated with a 2.5 MeV monoenergetic electron beam incident on a 2 mm–thick 
copper target. In place of a flattening filter, a 0.81 mm-thick brass plate is used as the port cover 
on the rotatable carousel. Downstream the brass plate, the unflattened 2.5 MV beam traverses 
the rest of the treatment head components such as monitor chambers and jaws before exiting 
the Mylar glass window. The allowable dose rates of this low-energy MV imaging beam are 5, 
10, 20, 30, and 50 MU/min. The output of the 2.5 MV beam is nominally calibrated to 1 cGy/
MU at 0.5 cm depth in water for a 10 × 10 cm2 field.

Another key component of this prototype MV imaging system is the high-efficiency CsI 
detector, comprised of an 8 mm–thick pixelated thallium-doped CsI scintillation layer coupled 
to an array of amorphous silicon thin film transistors (TFTs). The active area of the crystal 
layer is 38.8 × 28.5 cm2 with a pixel size of 0.38 × 0.38 mm2. The TFTs array is the same as 
that in the aS1000 portal imager model (Portal Vision, Varian Medical Systems), which has a 
pixel matrix of 2048 × 1536. However, the panel was operated at a 2 × 2 bin mode, resulting in 
an effective pixel matrix of 1024 × 769 for all the images acquired in this study (i.e., with an 
effective pixel size of 0.38 × 0.38 mm2). The electronic operation control of both detectors is the 



237    Tang et al.: Low-dose 2.5X MVCB	 237

Journal of Applied Clinical Medical Physics, Vol. 17, No. 4, 2016

same with a maximum frame rate of 9 frames per second and a readout time of 100 μs. Details 
of the construction of this high-efficiency detector can be found in Seppi et al.(16) Compared to 
the conventional aS1000 model, which consists of a 0.4 mm–thick layer of gadolinium oxy-
sulfide scintillator, the CsI detector has an 8 mm–thick CsI crystal, which has a higher X-ray 
absorption efficiency.(16) Hence, the imaging dose is expected to be reduced with the thick CsI 
detector. To evaluate the overall performance and efficiency of the system, image quality and 
imaging dose of MVCB using the prototype system (i.e., 2.5 MV beam with CsI detector) was 
compared to the conventional MV imaging system (i.e., 6 MV beam with aS1000).

B. 	 Image acquisition
MVCB scans were acquired in continuous mode where individual frames were read out between 
beam pulses as the linac performed a short “beam hold”. The number of beam pulses per frame 
or the dose per frame (DPF) is defined by the user, using Varian proprietary XML commands 
in the Developer mode of TrueBeam. The minimum dose per beam pulse for the 2.5 MV beam 
is 0.0025 MU, but the minimum DPF used in the MVCB scans was 0.005 MU (i.e., 2 beam 
pulses per frame) to improve signal-to-noise ratio (SNR). Regardless of the DPF, the gantry 
rotates at its maximum speed of approximately 1 revolution per minute. Thus, the number of 
projections in a MVCB scan can only be controlled by the dose rate for a given DPF configura-
tion. To demonstrate the variation of image quality and imaging dose, two sets of 2.5X MVCB 
scans were acquired using two different DPF settings (i.e., low-dose and high-dose). A differ-
ent dose rate was used in each set of the images, such that an average of 450 projections was 
collected in each 360° scan. Calibration procedures for the CsI detector are similar to those 
for the conventional imager and are performed online. Calibration images, such as the dark 
field, flood field, and pixel defect map, were obtained to facilitate any electronic offsets and 
field uniformity corrections to the raw projections. In addition, isocenter offset was corrected 
by IsoCal, which is the isocenter calibration procedure for cone-beam computed tomography 
(CBCT) modality on TrueBeam. All raw projections were exported and reconstructed offline 
using research software based on the Feldkamp back-projection algorithm(17) (iTools, Varian 
Medical Systems iLab GmbH, Baden-Dättwil, Switzerland).

A series of MVCB phantom scans were acquired of the RANDO phantom (Radiology Support 
Devices, Long Beach, CA) at a source to imager distance (SID) of 150 cm with a field size of 
26 × 20 cm2. Depending on the size of the scanning object, either the full-fan scanning mode 
or the half-fan scanning mode was used. For half-fan scanning, there was a lateral offset of the 
detector (typically 6–8 cm) to increase the field-of-view; that is to say, the thorax and pelvis 
regions of the RANDO phantom were scanned in the half-fan setting while the head region was 
scanned with a full-fan setting (i.e., no detector offset). Different from kVCB, both full-fan and 
half-fan MVCB images were scanned with a full 360° rotation. The image quality of the 2.5X 
MVCB scans was assessed and compared to that of 6X MVCB and kVCB. The DPF used for 

Fig. 1.  Schematics of the 2.5 MV imaging beamline in comparison to the treatment beamline in the treatment head (not 
to scale).
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6X MVCB was chosen such that the resultant image quality matched the low-dose 2.5X MVCB 
imageset. 6 MV and 2.5 MV projections were exported from the linac and 3D images were 
reconstructed offline. However, for kVCB, all images were acquired with the typical clinical 
settings and reconstructed online using the conventional kV imaging system that is integrated 
into the linac (On-board Imager, Varian Medical Systems). To further investigate the imaging 
properties of the 2.5 MV X-rays, scans were acquired of a polymethyl methacrylate (PMMA) 
phantom with different inserts of air, brass, aluminum, and steel. Image artifacts of the high-Z 
materials were compared to the corresponding kVCB scans and kV fan beam (kVFB) scans, 
which are typically used in patient simulation.

C. 	 Imaging dose
Doses for 2.5X MVCB were measured in a computed tomography dose index (CTDI) head 
and body phantom (CSP Medical, London, Ontario, Canada) using a 0.6 cc Farmer chamber 
(Exradin A12, Standard Imaging, Middleton, WI). Based on AAPM-TG51,(18) the 2.5X MVCB 
dose to water  is:

	 	 (1)

where M is the corrected measurement reading, and  is the dose calibration factor. The 
beam quality of the 2.5 MV X-rays is similar to a cobalt 60 beam with a dmax of 0.5 mm. From 
a 10 × 10 cm2 depth-dose measurement in water, it was found that the %dd(10) for the 2.5 MV 
imaging beam is 52.0%. Extrapolating the plot for Exradin A12 chamber in Fig. 4 of the TG-51 
protocol, the kQ for the 2.5 MV beam is expected to be within 1% from unity (c.f. kQ for 6 MV 
beam is 0.996, while the %dd(10) of 6 MV beam is 66.0% and 58.0% for cobalt). Therefore, 
the kQ for the 2.5 MV beam is assumed to be 1 in the dose measurements. 

The CTDI head phantom has a radius of 8 cm and dose was measured at the isocenter and 
1 cm below surface. Two different sets of measurements were performed with a full-fan scan 
using 3 MU and 8 MU. Similar measurements were taken for the CTDI body phantom, which 
has a radius of 16 cm, using the half-fan scan setting. Dose was measured at the isocenter and 
1 cm below surface for two sets of MVCB scan using 8 MU and 14 MU. The same measure-
ments were repeated for kVCB but using the standard clinical acquisition parameters and a kV 
chamber (Accu Pro and Accu kV, Radcal Corporation, Monrovia, CA).

D. 	 Image resolution
Spatial resolution was quantified by determining the modulation transfer function (MTF) of 
the prototype system. Planar images of a spatial resolution phantom were acquired. The spatial 
resolution phantom consists of six different brass inserts with line-pair patterns of 1.000, 0.500, 
0.333, 0.250, 0.167, and 0.125 lp/mm embedded in a slab of Lucite. The phantom was placed 
directly on top of the detector, which was located at SID 150 cm. Each insert was irradiated 
separately by shifting the center of the insert to the isocenter. A high-resolution projection (1024 × 
768) was acquired for each insert with 3 MU. For comparison, the same measurements were 
repeated for the conventional 6 MV imaging system. For contrast resolution, the contrast-to-
noise ratios (CNRs) between tissue and bones were quantified for the RANDO phantom scans 
and were compared between 2.5X MVCB, 6X MVCB, and kVCB. Furthermore, both contrast 
and spatial resolution were qualitatively measured using a contrast detail phantom (Las Vegas 
Phantom, Varian Medical Systems).
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III.	 RESULTS 

A. 	 System characteristics
The contrast resolving power of the 2.5X/CsI and 6X/aS1000 systems were subjectively 
investigated using a contrast-detail phantom, which has a series of holes with different size 
and depths for detail and contrast tests, respectively. Contrast-detail curves were generated 
qualitatively based on the projection images of the phantom that were acquired with 1 MU. 
As shown in Fig. 2, the 2.5X/CsI system is better able to resolve smaller and lower-contrast 
objects than the 6X/aS1000 system because of the lower energy of the imaging beam and the 
higher efficiency of the image detector. 

Spatial resolution was quantified by the MTF, which was measured using an in-house phan-
tom. The phantom consists of multiple brass inserts that have different bar patterns: 0.125 lp/
mm, 0.167 lp/mm, 0.250 lp/mm, 0.333 lp/mm, 0.500 lp/mm, and 1.000 lp/mm. The MTF 
indicates that the 8 mm–thick scintillation crystal layer in the CsI panel degrades the spatial 
resolution compared to aS1000, which has a much thinner scintillation layer, as shown in Fig. 3. 
For smaller objects that are of spatial frequency higher than approximately 0.35 cycle/mm, the 
resolution is decreased by about 25% with the CsI detector.

Fig. 2.  Contrast-detail curves of 2.5X/CsI and 6X/aS1000 systems.
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B. 	 Phantom studies
Figures 4 to 6 show the CBCT comparisons for the head, thorax, and pelvis phantoms, respec-
tively. In general, 2.5X MVCB system requires approximately 10 times less dose than the 6X 
MVCB system to achieve sufficient image quality for patient setup purposes using bony align-
ment. This is due to several factors: 1) higher efficiency of CsI detector, 2) higher absorption 
coefficient of 2.5 MV beam, and 3) higher photoelectric cross section for 2.5 MV X-rays. As 
shown in Fig. 4, the 6X MVCB scan was acquired with 26 MU while only 2.4 MU was used 
in the corresponding 2.5X MVCB scan. Although these low doses of 2.5X MVCB scans were 
sufficient for bony alignment, comparable tissue contrast to kVCB can only be achieved by 
increasing the dose to approximately 9 MU. By qualitative observation, the 2.5X MVCB images 
do not show any blurring, due to the thick CsI detector. On the other hand, some blurring was 
observed in the 6X MVCB images owing to the ring artifact correction applied during recon-
struction. Similar results were seen in the thorax and pelvis scans, which are shown in Figs. 5 
and 6. To quantify the image quality of the CBCT images, CNR was calculated as:

		  (2)
	

where  and  are the mean pixel values of regions of interest (ROIs) in tissue and bone, 
respectively, and  is the standard deviation or noise of the ROI in tissue. The CNR of bone 
to tissue for all scans are given in Table 1. Compared to 6X MVCB, CNR of bone to tissue is 
superior for 2.5X MVCB scans. However, for the pelvic region, the low-dose 2.5X MVCB 
scan has lower CNR than the 6X MVCB scan. This might be due to both the increase in scat-
ter (i.e., increased size of scanning region) and decrease in SNR (i.e., low dose used) in the 
2.5X MVCB images. The increased noise in the 2.5X MVCB scan may be introduced by the 
imperfection of the scintillation crystal pixelation and calibration correction. As an example, this 
effect can be observed in Fig. 2, where the 2.5X image embeds the crystal structure of the CsI 
panel while this is not seen in the 6X image that was acquired with aS1000. Nonetheless, with 
less than 3.4 MU, 2.5X MVCB yields acceptable images for bony registration in patient setup.

Another advantage of the 2.5X imaging system is the reduction in high-Z image artifacts, 
as shown in Fig. 7, where a kVFB, kVCB, and a 2.5X MVCB scan of a PMMA phantom with 
inserts of air, brass, aluminum, and steel were compared. While the kV images show significant 
artifacts, the image quality of 2.5X MVCB was not affected by these high-Z materials.

Fig. 3.  MTF of 2.5X MVCB and 6X MVCB systems.
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Fig. 4.  CBCT scans of the RANDO head phantom.

Fig. 5.  CBCT scans of the RANDO thorax phantom.

Fig. 6.  CBCT scans of the RANDO pelvis phantom.
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C. 	 MVCB dose
Intuitively, the use of a high efficiency detector can effectively reduce the imaging dose. With 
the same beam energy, the dose required to achieve the same image quality is approximately 
five times lower when the CsI panel is used instead of the aS1000 detector. This is demonstrated 
in Fig. 8, where 30 MU and 50 MU was used in 2.5X MVCB scan with aS1000 for a head and 
pelvis phantom, respectively, while only 9 MU was used with the CsI panel.

The absolute imaging dose was measured for the 2.5X MVCB imaging system with CsI detec-
tor using the CTDI phantoms. Table 2 tabulates the point doses per MU at isocenter and 1 cm 
below surface for the high- and low-dose 2.5X MVCB scans. As a reference, the imaging dose 
for kVCB was also measured and is tabulated as the total dose of the scan. The range of kVCB 
dose for the body phantom represents the imaging dose from different scan techniques. MVCB 
dose is listed in cGy per MU and the nominal total dose is stated in cGy, which is calculated 
based on the low-dose scan setting for the head and body phantoms. For a low-dose 2.4 MU 
MVCB head scan with a full-fan scan setting, the absolute imaging dose at the isocenter is 
approximately 2.4 MU × 0.56 cGy/MU = 1.34 cGy, which is about three times higher than the 
kVCB dose but slightly lower than a single MV planar image dose (~ 2 cGy). For a low-dose 
3.4 MU MVCB body/pelvis scan with a half-fan scan setting, the absolute imaging dose at 
the isocenter is approximately 3.4 MU × 0.41 cGy/MU = 1.39 cGy, which is also about three 
times higher than the kVCB dose. However, depending on the kVCB technique used, a body 
scan or pelvis scan can result in lower dose using 2.5X MVCB; for example, for the pelvis 

Table 1.  CNR of different tissues and regions of RANDO for 2.5X MVCB, 6X MVCB, and kVCB. For the low dose 
2.5X MVCB scan, 2.4 MU, 2.6 MU, and 3.4 MU were used for the head, thorax, and pelvis, respectively; while for 
the high dose 2.5X MVCB scan, 8.8 MU, 9.0 MU, and 8.9 MU were used, respectively. For 6X MVCB, 26 MU were 
used for all three phantom regions.

	 Contrast-to-Noise Ratio (CNR)
			   2.5X MVCB	 2.5X MVCB	 6X
	 Phantom/Region		  low dose	 high dose	 MVCB	 kVCB

	 RANDO Head	 Bone – Tissue	 11.6	 30.3	 4.7	 49.5

	RANDO Thorax	 Bone – Tissue	 3.5	 3.3	 2.6	 18.1
		  Bone – Lung	 7.3	 22.1	 12.3	 69.5
	 RANDO Pelvis	 Bone – Tissue	 2.9	 7.4	 5.4	 39.5

Fig. 7.  Fan-beam CT (kVFB), kVCB, and 2.5X MVCB of a PMMA phantom with metallic inserts.
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spotlight technique in kVCB, the imaging dose can be as high as 2.22 cGy at isocenter and 
6.28 cGy at 1 cm below surface. Furthermore, due to the MV energy range, the dose to bone is 
expected to be lower in MVCB than in kVCB and the MVCB dose can be easily incorporated 
into treatment plan optimization.(13,19)

 
IV.	 DISCUSSION

Image-guided applications have become a standard practice in radiotherapy in the recent years. 
With the increased use of kV X-rays for patient setup and intrafractional motion management 
purposes, new treatment units often have fully integrated kV imaging systems for online imag-
ing. On the other hand, almost all treatment units (either old or new models) are equipped with 
MV portal imager, but MV imaging is underutilized due to the poor image quality introduced 
by the high-energy treatment beam (> 6 MV). This study investigates the feasibility of MVCB 
with a prototype low-dose 2.5 MV imaging system. With lower energy, the contrast produced 
by the 2.5 MV imaging system is improved compared to the 6 MV beam. However, the spatial 
resolution seems to suffer with smaller objects. This may be caused by the increased thickness 
of the scintillation material, although CsI has a columnar needle-like crystal structure that acts 
as a light-photon tunnel and minimizes dispersion.(16,20) Nonetheless, this observation does 
not transform into obvious effects such as blurring on phantom images, as seen in Figs. 4 to 8.

Fig. 8.  For similar image quality, the imaging dose of MVCB with CsI imager is approximately 3-5 times less than MVCB 
with aS1000, as demonstrated in a head scan and a pelvis scan.

Table 2.  Imaging dose of 2.5X MVCB and kVCB with a head and a body CTDI phantom. The nominal MVCB dose 
is calculated based on the low-dose scan setting for a head phantom and pelvis phantom, at 2.4 MU and 3.4 MU, 
respectively.

				    Nominal
	Phantom/Scan		  MVCB Dose	 MVCB Dose	 kVCB Dose
	 Setting	 POI	 (cGy/MU)	 (cGy)	 (cGy)

	 Head,	 Isocenter	 0.56	 1.34	 0.39
	 full fan	 1 cm below surface	 0.73	 1.75	 0.60
	 Body,	 Isocenter	 0.41	 1.39	 0.37–2.22
	 half fan	 1 cm below surface	 0.42	 1.43	 0.54–6.28
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From the phantom studies, it was shown that the prototype 2.5 MV imaging system can 
provide better image quality with lower dose compared to 6X MVCB. This echoes the finding 
in the study by Beltran et al.,(21) where they compared 4X MVCB with 6X MVCB. Ideally, 
comparison of image quality for 2.5 MV and 6 MV beams would be done at either identical 
doses or similar image quality (as measured by some standard parameters such as CNR, SNR, 
MTF). However, the ability to make exact comparisons was somewhat limited by constraints 
in the current version of the TrueBeam prototype control software, which limits control over 
several key parameters, such as number of projections and frame rate. A different approach was 
taken instead, where MVCB images were compared based on the minimum image quality for 
bony alignment. Intuitively, images were first generated with the lowest dose possible: each 
projection consists of multiple (integers of) beam pulses. With a dose per pulse of 0.0025 MU 
for the 2.5 MV beam, the lowest dose of a MVCB scan is approximately 1.1 MU, with an 
average of 450 projections for each MVCB scan. Similarly for the 6X beam, with a dose per 
pulse of 0.03 MU, the lowest dose of a MVCB scan is 13 MU (with ~ 450 projections). After 
several iterations with different imaging doses, it was found that the minimum dose to produce 
images with sufficient quality for bony alignment is 2–3 MU for 2.5X MVCB and 26 MU for 
6X MVCB (i.e., 2–3 beam pulses per projection). In addition, for each phantom, 2.5X MVCB 
images were also acquired using a higher dose of approximately 9 MU to assess the extent to 
which image quality might be improved in terms of CNR.

It is undeniable that kVCB will always achieve better image quality than MVCB, owing to 
the laws of physics. The photoelectric effect that is responsible for the enhanced bone-to-tissue 
contrast in kV images is also the culprit for the prominent image artifacts for patients with 
metallic implants. With higher beam energy, MVCB is not affected by the high-Z materials used 
in prosthesis. The minimization in metal artifacts can be very useful for treatment planning, 
as the streaking artifacts from high-Z medium perturb the image quality of the surrounding 
regions in kV simulation images, especially in compact anatomical regions such as head and 
neck (with dental fillings). In addition, different from kV, MV images can directly yield true 
electron density values for purposes of inhomogeneity corrections in MV treatment planning. 

 
V.	 CONCLUSION

A prototype MV imaging system using unflattened 2.5 MV X-rays with a thick CsI detector 
was tested. 2.5X MVCB scans were acquired and sufficient image quality for patient setup 
can be obtained with less than 3 MU. Overall, our results show that the prototype system is 
clinically feasible and may even have advantages over kVCB in some cases, such as imag-
ing metallic objects. 2.5X MVCB is an economical alternative to kVCB, and provides better 
image quality than 6X with lower dose, making it particularly useful in developing countries. 
Continued development of the CsI detector, especially its control system, should lead to further 
improvements in image quality. Further developments for the image reconstruction are under 
progress, in particular with the use of noise filter and the optimization of the scatter correction 
and beam-hardening correction.
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