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A B S T R A C T

Digital camera monitoring has revolutionised survey designs in many fields, as an important source of infor-
mation. The extended sampling coverage offered by this monitoring scheme makes it preferable compared to
other traditional methods of survey. However, data obtained from digital camera monitoring are often highly
variable, and characterized by sparse periods of zero counts, interspersed with missing observations due to
outages. In practice, missing data of relatively shorter duration are mostly observed and are often imputed using
interpolation techniques, ignoring long-term trends leading to inherent estimation biases. In this study, we
investigated time series forecasting methods that adequately handle intermittency and produced plausible esti-
mates for imputation and forecasting purposes. The study utilised a yearlong digital camera monitoring data set of
hourly counts of powerboat launches at three boat ramps in Western Australia. Several time series forecasting
methods were evaluated and the accuracies of their point estimates of forecasts for various lead times in hours of
up to one week were assessed using cross-validation techniques. Intermittent demand forecasting techniques,
including Croston's method and Syntetos-Boylan Approximation (SBA) models, and count data forecasting
methods including autoregressive conditional Poisson (ACP) models, integer-valued moving average (INMA)
models, and integer-valued autoregressive (INAR) models were evaluated. ACP and INAR models performed
better than intermittent demand forecasting techniques for short forecast horizons and provided some evidence of
their sufficiency in predicting the dynamics in recreational boating activities. This result established that, in as
much as intermittency may be a key feature for a given dataset, it should not override the systemic characteristics
of data in the application of forecasting techniques. Our results provide plausible estimates for short-term missing
data and forecasts for monitoring events, with applications in supporting proper tracking of usage of facilities,
guiding resource allocations and providing insightful perspectives for management decisions.
1. Introduction

The use of digital cameras for events’monitoring is widespread and has
become an integral source of data in many fields of application. For
example, digital cameras are being used to monitor boating traffic at many
recreational fishing sites worldwide for complementary and corroborative
purposes in survey designs (Hartill et al., 2020; Lancaster et al., 2017; Steffe
et al., 2017; van Poorten and Brydle, 2018). This monitoring scheme pro-
vides evidence of events unfolding in real time, in various formats including
videos, and still images. For statistical analytical purposes, these data for-
mats are additionally processed, referred to as data interpretation. Count
data are common outputs from the data interpretation process.
High-volume count data at sufficiently fine granularity are being observed
toenable studies of both short- and long-term trends. Suchdata canreveal or
frifa-Yamoah).
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obscure the various time series components at different data aggregation
levels (Petropoulos and Kourentzes, 2014; Kourentzes et al., 2018).
Particularly, disaggregated time series data of finer resolution will
adequately reveal possible seasonality patterns in the data while compo-
nents such as level, trends and cycles will be more clearly exhibited in
aggregated time series (Petropoulos and Kourentzes, 2014). These compo-
nents are vital in both short- and long-term operational forecasts. Addi-
tionally, data generated in real time are characterised by infrequent
non-zero counts, often of variable size. The characteristics and structure
of such data are comparable to those of intermittent demand datawhich are
characterizedbyslow-moving items (Teunter andDuncan, 2009).Suchdata
are often highly variable and difficult to forecast (Syntetos et al. 2015).

In retail, supply chain, sales and inventory control systems, inter-
mittent demand data are common (Croston, 1972; Snyder et al., 2012;
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Kolassa, 2016). The exponential smoothing framework based on the
normal distribution has been found to perform well in cases where larger
counts, with less variability are observed, however for intermittent de-
mand data, distributions tailored to count data must be considered
(Snyder et al., 2012; Petropoulos and Kourentzes, 2014). For instance,
there is an upward bias in the forecast directly after a non-zero count
when the exponential smoothing technique is applied on intermittent
demand data. Classical autoregressive integrated moving average
(ARIMA) models allow negative integer values and are not suitable for
application on intermittent demand data. Discrete autoregressive moving
average (DARMA)models could be presented as an alternative modelling
option because they are constrained to be non-negative, but they are
limited to stationary intermittent demand data. However, intermittent
demand data are often non-stationary (Syntetos and Boylan, 2005; Syn-
tetos et al., 2015; Kolassa, 2016). Integer-valued moving average (INMA)
and integer-valued autoregressive moving average (INARMA) models
might be viable alternatives for modelling non-stationary series such as
the number of transactions in stocks and insurance applications (Alek-
sandrov andWeiß, 2020; Br€a nn €a s and Shahiduzzaman Quoreshi, 2010).
The INARMA family uses a probabilistic operator called binomial thin-
ning, developed by Steutel and van Harn (1979), as an alternative to the
scalar multiplication used in the ARMA family, to avoid non-integer
value forecasts (Weiß, 2008). Bourguignon et al. (2015) found that the
point predictions of seasonal and non-seasonal integer-valued models
were close to each other and they both seemed to provide reasonable
estimates of the h-step ahead observations. In stationary count data of
high resolution, seasonality is characterised by serial dependence. Weiß
(2008) investigated serial dependence structures of stationary count
processes and found the integer-valued models INAR (p), INMA (q) and
INARMA (p, q) to be useful modelling techniques for such processes.

The work of Croston (1972) with a correction by Rao (1973) is often
cited in the analysis of intermittent demand data. The method is based on
an exponential smoothing scheme for updating the expected time gaps
between non-zero demands and the expected demand for a period with
the assumption that both events are statistically independent. Syntetos
and Boylan (2005) found this method to produce biased forecasts. Sub-
sequently, the authors proposed a combination of the Croston method
with a Bayesian approach known as Syntetos-Boylan approximation
(SBA), which estimates the probability of non-zero demands instead of
interval size, using a Taylor series expansion. Other methods such as the
Autoregressive Conditional Poisson model (ACP, Heinen (2003)), have
been found to be adequate inmodelling relatively rare events. This model
deals explicitly with the discreteness and additional time series proper-
ties of the data, which if neglected could lead to a higher likelihood of
misspecification. For instance, ACP efficiently handles autocorrelation
and over dispersed time series count data (see Heinen 2003).

With the growing usage of digital camera monitoring in applications,
it is imperative to provide statistical modeling support for data man-
agement and analysis. For instance, data obtained often have missing
observations due to camera outages (Afrifa-Yamoah et al., 2020a). In
practice, missing data of relatively shorter duration are mostly recorded
and are often imputed using interpolation techniques (Lepot et al., 2017;
Ryan et al., 2017; Wise and Fletcher, 2013), ignoring long-term trends
leading to inherent estimation biases. More robust statistical modeling
techniques for short-term predictions are required. This study evaluated
time series forecasting methods, usually applied to intermittent demand
and count data, to assess their suitability for data obtained from digital
camera monitoring. A set of year-long hourly count data on recreational
powerboat launch activities were obtained from digital camera moni-
toring of three boat ramps in Western Australia. Five forecasting methods
were evaluated and the accuracy of their point estimates of forecasts for
lead times of 12, 24, 48 and 168 h were compared using cross-validation
techniques. Data were split into training and test data based on the
forecast horizons, with the length of the test data given by the length of
the forecasting horizon. In what follows, we first provide a data
description, then provide background on the methods to be evaluated.
2

We then present and discuss the cross-validation results and lastly pro-
vide concluding comments.

2. Methods

2.1. Data description and study area

Time lapse cameras have been installed together with other hardware
at fields of view to record, store and transmit data on boat launches and
retrievals to the Department of Primary Industries and Regional Devel-
opment (DPIRD) in Western Australia. Counts and times of incidents of
powerboat launches were recorded at three boat ramps (see Figure 1).
Data from Leeuwin (in the West Coast bioregion) were collected between
1 March 2011 and 29 February 2012, whilst Broome (in the North Coast
bioregion) and Denham (in the Gascoyne Coast bioregion) were observed
between 1 May 2013 and 29 April 2014. There were 43.3% and 8.1%
missing observations in the datasets from Broome and Denham respec-
tively. Missing observations in the data were imputed at hourly resolu-
tion using the techniques described in Afrifa-Yamoah et al. (2019, 2020a,
2020b). More specifically, structural time series models with Kalman
filters were used to impute missing data in climatic covariates, including
temperature, humidity, precipitation, and wind speed (Afrifa-Yamoah
et al., 2020b), which were then used in building an imputation model for
the digital camera data. A generalized linear mixed effect model built on
a fully conditional specificationmultiple imputation framework was used
to impute the missing data in the digital camera data sets (Afrifa-Yamoah
et al., 2019; 2020a). Subsequently, the data were aggregated at hourly
resolution for analysis. The proportion of zeros was 47.0% and 75.9% for
Broome and Denham respectively. The Leeuwin data set had 54.7% zero
entries with no incident of missing data.

Figures 2, 3, and 4 present the data and some important features that
are informative for modelling. The month-long time series insert in Fig-
ures 2, 3, and 4 illustrates the intermittency that exists in the dataset. The
behaviours of the autocorrelation functions (ACF) and partial autocor-
relation functions (PACF) (see Figures 2, 3, and 4) indicate that a non-
negative integer-valued time series is stationary with serial depen-
dence, which largely obscures the seasonality component of our data.
The irregular serial dependence in the dataset stems from the nature of
the boat launch activity cycle, in which launches in the early hours of the
day dominate. Weiß (2008) found that non-seasonal integer valued
models provide an appropriate fit for such data. In the case of Poisson
autoregression models, the feedback mechanism terms in the models are
observation-driven, implying that serial dependence is explained by past
observations (Weiß, 2018).
2.2. Modelling techniques

This section presents simplified versions of the time series modelling
techniques evaluated. More detailed information about the respective
time series modelling techniques presented below can be found in Heinen
(2003), Croston (1972), Syntetos and Boylan (2005), Al-Osh and Alzaid
(1988), and Bourguignon et al. (2015). Also note that we are interested in
comparing the point estimates from the models to true observed values,
therefore uncertainties are not considered in evaluating how well the fit
of the models aligns to observed values (although estimation information
has been provided for completeness). The modelling techniques consid-
ered are special tailored for modelling integer-valued time series data,
thus produced forecasts that are bounded below by 0 and are therefore
generally coherent with the data (Freeland and McCabe, 2004).

2.2.1. Autoregressive Conditional Poisson (ACP)
Heinen (2003) proposed the autoregressive conditional Poisson

(ACP) modelling framework to analyse count time series data exhibiting
autoregressive properties. The model ACP(p, q) assumes that the counts
are generated by a Poisson distribution



E. Afrifa-Yamoah, U.A. Mueller Heliyon 8 (2022) e08774
Yt jYt�1 � Pðyt ; μtÞ (1)
with an autoregressive conditional intensity as in the Autoregressive
Conditional Duration (ACD) model of Engle and Russell (1998), such that

EðYt jYt�1Þ¼ μt ¼ωþ
Xp
i¼1

αiYt�i þ
Xq
i¼1

βiμt�i (2)

with ω > 0 and α1;⋯αp, β1;…;βq � 0. Provided that
Pmaxðp; qÞ

i¼0
ðαi þ βiÞ < 1,

a stationary solution of the unconditional mean is obtained as

EðYtÞ¼ μ ¼ ω

1�Pmaxðp; qÞ
i¼0 ðαi þ βiÞ

(3)

The unconditional variance is given by

VarðYtÞ ¼
μ
�
1�Pmaxðp; qÞ

i¼0 ðαi þ βiÞ2 þ
Pp

i¼0αi

�
1�Pmaxðp; qÞ

i¼0 ðαi þ βiÞ2
> μ (4)
Figure 1. Study area showing the locations of the Leeuwin (in hot-summer Medite
climatic zone) boat ramps where digital camera data were analysed (Afrifa-Yamoah
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for positive parameters αi; i ¼ 1;…;p, βi; i ¼ 1;…; q’s, where p and q are
the orders of the autoregressive and feedback mechanism term (repre-
senting the hidden conditional means to enhance the memory of the
model) components respectively (Weiß, 2018, Chapter 4).

Note that all the vectors of time-dependent covariates that influence
the evolution of Eq. (1) is composed by the unobserved process μt .
Therefore, we modelled the dynamics of the process using μt , which is a
function of all information of Y up to t � 1 and of the unknown regression
parameters in Eq. (2). Using likelihood-based inference for linear Poisson
autoregression, fμtg is regressed on past values of the observed process
and past values of fμtg itself (see Heinen, 2003; Fokianos et al., 2009).
Note that Eq. (2) is closely related to the GARCH (p, q) process (Boller-
slev, 1986), since the Poisson distribution assumes equal value for the
mean and variance. In the literature, the ACP modelling framework is
sometimes referred to as INGARCH (Weiß, 2018).

The conditional median has been suggested for its robustness in
analysing time series with heavy tails, as well as adherence to data co-
herency (Freeland and McCabe, 2004). However, the conditional median
forecast can be misleading and may not be very informative, in that
PðX¼ 0Þ ¼ 1� PðX¼ 1Þ ¼ 0:50 has the same median (0) as PðX ¼ 0Þ ¼
rranean climatic zone), Denham (in hot dessert) and Broome (in hot semi-arid
et al., 2021).



Figure 2. a) Time series plots b) ACF and c) PACF of the count of powerboat launches from digital camera monitoring observed at Broome boat ramp between 1 May
2013 and 30 April 2014. The inserted series details the behaviour of the process within the window outlined in red.

Figure 3. a) Time series plots b) ACF and c) PACF of the count of powerboat launches from digital camera monitoring observed at Denham boat ramp between 1 May
2013 and 30 April 2014. The inserted series details the behaviour of the process within the window outlined in red.
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1� PðX ¼ 1Þ ¼ 0:90. Meanwhile, in the second case, there is almost
twice the probability of observing a zero (Freeland andMcCabe, 2004). If
we consider data of hourly distribution of boating retrievals, the upper
tail distributional properties of boating activities are of interest for
management purposes, as this information will help identify unusual
growth patterns in boating activities and appropriately match to sus-
tainability expectations. So long as the forecast estimates provided are
above the zero threshold, meaningful inference can be deduced. For
4

example, a mean estimate of 5.75 boating retrievals per day is mean-
ingful and interpretable in practice. Consequently, the conditional mean
was preferred over the conditional median.

2.2.2. Croston's method
For given time series data with many zeros, the method decomposes

the original time series by constructing two new series using simple
exponential smoothing forecasts, one for the time periods that observed
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non-zero counts and the other for the inter-arrival times between non-
zero counts (Croston, 1972). The models are constructed noting pe-
riods that contain zero and non-zero counts (Shenstone and Hyndman,
2005). Let Yt , for t ¼ 1; ⋯; T, be the count of powerboat retrievals
occurring during period t, and It , an indicator variable for non-zero count
periods, such that It ¼ 0 when zero count occurs at time t and It ¼ 1
otherwise. Further let kt be the number of periods with non-zero counts

between ½0; t�, implying that kt ¼ Pt
i¼1

Ii. Then, let zk represent the kth

non-zero count and ak the interarrival time between yk�1 and yk, and
thus, we can write that Yt ¼ Ityk. Based on data up to count t, the
one-step forecast for ðkþ1Þ count and inter-arrival time from Croston
method is given as

bzkþ1jk ¼ ð1� αÞbzkjk�1 þ αzk (5)

bakþ1jk ¼ð1�αÞbakjk�1 þ αak (6)

where α 2 ½0; 1� is a smoothing parameter, assumed to be the same for
Eqs. (5) and (6). Let t be the time for last observed positive count in the
data, then the h-step ahead forecast for the count at time tþ h, is given by

bY tþhjT ¼ ztþ1jt
�
atþ1jt

(7)

Shenstone and Hyndman (2005) found no algebraic results for the
computation of the prediction interval around bYTþhjT , as there is no
statistical model that corresponds to the Croston method.

2.2.3. Syntetos-Boylan Approximation (SBA)
SBA applies a debiasing factor to the Croston's method to reduce the

error in the final estimate. The resulting estimate for the h-step ahead
forecast for the count at time t þ h from the SBA method is given by

bY tþhjT ¼
�
1� α

2

� ytþ1jt
atþ1jt

(8)

where α is defined in Eqs. (5) and (6).

2.2.4. Integer-valued moving average (INMA)
An INMA (∞) process ðYtÞN follows the recursive

Yt ¼
X∞
i¼0

ðθi ∘tεt�iÞ (9)

where ∘t is a binomial thinning operator at time t, which is a compound of
Bernoulli i.i.d. random variables used (McKenzie 1988). The sequence
fεt : t 2 Ng is integer-valued and i.i.d. with non-negative expected value
EðεtÞ ¼ μ and variance VarðεtÞ ¼ σ2. The parameters satisfy
θ0;⋯; θq�1 2 ½0;1�; θ∞ 2 ð0;1� and usually θ0 ¼ 1. Assuming that ðYtÞN is

a stationary process, such that
P∞
i¼0

θi < ∞, then the unconditional mean

and variance are expressed as

EðYtÞ¼ λ

 
1þ

X∞
i¼1

θi

!
(10)

VarðYtÞ¼ λ
X∞
i¼1

θið1� θiÞ þ σ2

 
1þ

X∞
i¼1

θ2i

!
(11)

The unconditional moments for the process are

EðYt jYt�1Þ¼ λþ
X∞
i¼1

θiεt�i (12)
5

VarðYt jYt�1Þ¼ σ2 þ
X∞

θið1� θiÞεt�i (13)

i¼1

For h � 1, the h-step ahead forecast is obtained as follows

bY tþhjT ¼ λ
Xh�1

i¼1

θi þ
X∞
i¼h

θi bY tþh�ijT (14)

As h → ∞, the limiting value of bYTþhjT is λ
P∞
i¼0

θi, which is the mean of

the process.

2.2.5. Integer-valued autoregressive (INAR)
Let εt be an independent and identically distributed process with

range N0 such that EðεtÞ ¼ με and VarðεtÞ ¼ σ2E . Let α1; ⋯; αp 2 ð0; 1Þ;
with α

▪
¼Pp

i¼1
αi < 1: Then, an INAR(p) process ðYtÞN is defined recur-

sively as

Yt ¼
Xp
i¼1

ðαi ∘tYt�iÞ þ εt (15)

where εt is independent of all Ym and αj ∘mþj Ym with m < t and j ¼ 1;⋯;

p, and all thinnings are performed independently of each other and εt and
past observations of Y , where ∘t denotes the new thinning performed at
time t. The mean and variance of a stationary INAR(p) process obtained
via conditional maximum likelihood estimator (see Bourguignon et al.,
2015) are given by

EðYtÞ¼ μY ¼ με=ð1� α
▪
Þ (16)

VarðYtÞ¼ μY �
 Xp

j¼1

αj
�
1�αj

�þ σ2
ε

με
� ð1�α

▪
Þ
!, 

1�
Xp
i¼1

αi:ρðiÞ
!

(17)

INAR(p) shows the typical AR(p) autocorrelation structure (Weiß,
2013) given by

ρðkÞ¼
Xp
i¼1

αi � ρðjk� ijÞ (18)

for. k � 1:
For practical purposes, the point forecast was taken to be the condi-

tional mean, which is obtained by iteratively applying the law of total
expectation. The h-step ahead forecast is estimated as follows

bYTþhjT ¼ αh ⋅ Yt þ μ
�
1� αh� (19)

for some h � 1. As the process ðYtÞN is assumed to be a discrete-valued
Markov chain, the conditional mean only depends on Yt , but not on
earlier observations (Weiß, 2018, Chapter 2). For strict coherent fore-
casting, Freeland and McCabe (2004) provide an explanation on how to
estimate the transition probability distribution, whose corresponding
conditional median or mode can be used.

The Akaike Information Criterion (AIC) and the Bayesian Information
Criterion (BIC) were used to select the best model among the competing
integer-valued models.

2.3. Point forecast accuracy evaluation

Data were split into training and test sets to evaluate the performance
of the models. In assessing forecast accuracy of single series, mean ab-
solute error (MAE), root mean square error (RMSE) and mean absolute
scaled error (MASE) were identified as the most appropriate performance
metrics (Hyndman, 2014) for intermittent demand data.
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MAE¼
PT

t¼1jYt � bY t j (20)

T

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t¼1ðYt � bY tÞ2
T

s
(21)

MASE¼ 1
K

XK
k¼1

��YTþk � bYTþKjT
�� �Q (22)

where Q is a scaling factor defined using seasonal naïve forecast:

Q¼ 1
T �m

XT
t¼mþ1

jYt �Yt�mj;

and bYTþKjT is an estimate of YTþk given the observations Yt , for t ¼ 1;⋯;

T, m is the seasonal index for the data and K is the number of step(s) for
the forecasts made. We evaluated cases where. K ¼ 12; 24; 48 and 168:

All models were implemented in R software (R Core Team, 2017),
using packages ‘acp (version 2.1)’ (Vasileios, 2015) for fitting the ACP
models, ‘tsintermittent (version 1.9)’ for fitting Croston and SBA models
(Kourentzes and Petropoulos, 2016) and ‘tscount (version 1.4.2)’
(Liboschik et al., 2017, 2020) for the integer-valued models and ‘forecast
(version 8.7)’ (Hyndman et al., 2019; Hyndman and Khandakar, 2008).

3. Results

We evaluated the point estimates of 5 different time series forecasting
models to reconstruct recreational boating effort data that have high
proportion of zeros observed at three different boat ramps. From Fig-
ures 2, 3, and 4, beyond the oscillating behaviour of the ACF for boating
activity at each of the three locations, there is exponential decay in the
autocorrelation for the peak hours of boat launches, suggesting a moving
average of order 1. Also, the PACF highlights the prominence of lag-1
Figure 4. a) Time series plots b) ACF and c) PACF of the count of powerboat launche
2013 and 30 April 2014. The inserted series details the behaviour of the process wi
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estimates in comparison to subsequent lags. The sudden drop in the
PACF estimates at lag 1 and 2 is comparable to a tailing-off behaviour,
making an autoregressive order of 1 a good initial choice. The search for
the order (maximum order ¼ 4) of the integer-valued models and
Autoregressive Conditional Poisson model showed that for each of the 3
locations INMA (1), INAR (2) and ACP (2,1) models were the best ranked
integer-valued models and Autoregressive Conditional Poisson among
competing models based on AIC and BIC.

Table 1 compares the forecasting accuracy of the models for the
respective performance metrics based on the predictions of the training
data and h-steps test data. In cases where the metrics followed divergent
paths in ranking the models, MASE was used in assessing the models
(Hyndman 2006). For the training data, performance metrics diverged in
the selection of the best forecastingmethod. ACP (2,1) and INAR (2) were
the competing models across the forecasting horizons, with ACP (2,1)
ranked best based on MASE in Denham and Leeuwin. However, for
Broome INAR (2) was ranked the best by all performance metrics. The
relatively low differences between the magnitude of error values for the
two best models suggest that ACP (2,1) and INAR (2) produced similar
point estimates of forecast values. The intermittent demand forecasting
methods (Croston and SBA) were the two worst performing models.

Similar results were observed for the models in assessing their pre-
dictive power on the test data. It was observed that, the accuracy of the
techniques investigated deceased with an increase in the forecast horizon
(see Figure 5). While Croston, SBA and INMA (1) produced constant
forecasts for the lead times, ACP (2,1) and INAR (2) produced forecasts
that adequately captured the fluctuations in the original dataset, even at
h ¼ 168 (see Figure 4). Looking in more detail at Figure 5, ACP (2,1)
and INAR (2) performed better for short forecast horizons and provided
some evidence of their sufficiency in forecasting the dynamics in recre-
ational boating activities. ACP (2,1) and INAR (2) were comparable (and
best), with the ACP (2,1) model often ranked the best, especially for data
with high proportion of zeros. Croston's model generally had the greatest
errors with very slight improvements when SBA was used.
s from digital camera monitoring observed at Leeuwin boat ramp between 1 May
thin the window outlined in red.



Table 1. Mean absolute error (MAE), root mean square error (RMSE) and mean absolute scaled error (MASE) values for the performance evaluation of five techniques
used to forecast lead times of 12-, 24-, 48- and 168-hours of recreational boating data for three study locations.

Location h-forecast Performance indicator Training data Test data

Croston SBA ACP(2,1) INMA (1) INAR(2) Croston SBA ACP(2,1) INMA (1) INAR(2)

Broome 12-h MAE 1.7209 2.3302 0.9357 1.5420 0.9354 1.7348 1.9779 1.2179 2.1464 0.6687

RMSE 18558 2.5132 1.5268 2.3929 1.5256 2.4289 2.5504 1.7431 2.2097 0.8521

MASE 1.9013 2.5745 0.6068 1.9694 0.6066 1.9167 2.1852 0.4383 1.7240 0.4337

24-h MAE 2.3317 2.0143 0.9361 1.5431 0.9359 1.9935 2.0992 1.3757 2.1174 0.7076

RMSE 2.4815 2.1708 1.5276 2.3941 1.5263 2.5580 2.6181 1.9870 2.2495 0.9495

MASE 1.9002 2.2539 0.6066 1.6989 0.6065 2.2011 2.3178 0.4915 1.7241 0.4585

48-h MAE 2.1773 2.1437 0.9367 1.5446 0.9364 1.8401 1.8081 1.0734 1.2544 0.5348

RMSE 2.2654 2.2315 1.5287 2.3965 1.5274 2.4764 2.4606 1.5918 1.3278 0.7570

MASE 2.4039 2.3668 0.6064 1.8969 0.6063 2.0315 1.9963 0.6949 1.8121 0.3462

168-h MAE 2.2578 2.2109 0.9350 1.5353 0.9348 1.8288 1.7732 1.0688 1.6283 1.0457

RMSE 2.8099 2.7832 1.5226 2.3856 1.5213 2.4649 2.4383 1.8408 2.5567 1.7478

MASE 2.4983 2.4464 0.6090 1.3989 0.6089 2.0236 1.9620 0.6961 1.0606 0.6811

Denham 12-h MAE 3.1833 2.4157 0.6094 0.9112 0.6097 3.1453 2.2610 0.7711 0.7331 0.6096

RMSE 3.3279 2.6152 1.2447 1.6692 1.2411 3.2581 2.3397 1.1530 0.8906 0.9784

MASE 5.6825 4.3124 0.6689 3.4378 0.6691 5.6147 4.0362 0.8463 2.6265 1.0507

24-h MAE 2.6009 2.4175 0.6096 0.9117 0.6098 2.8717 2.7984 0.7049 2.2167 1.3405

RMSE 2.7843 2.6169 1.2453 1.6702 1.2416 3.4997 3.4777 0.9799 3.7982 2.3423

MASE 4.6421 4.3148 0.6686 2.7848 0.6688 5.1255 4.9947 0.7732 3.8767 1.8489

48-h MAE 2.1308 2.4137 0.6090 0.9120 0.6092 2.5901 2.6950 0.7375 1.9041 1.2047

RMSE 2.3719 2.6138 1.2456 1.6717 1.2419 3.1338 3.1791 1.0473 3.2809 2.1211

MASE 3.8083 4.3138 0.6677 2.9926 0.6680 4.6291 4.8166 0.8086 2.9878 1.5247

168-h MAE 2.7949 2.3168 0.6002 0.8913 0.6005 2.5071 2.3920 1.0392 1.6075 1.0084

RMSE 2.9719 2.5190 1.2294 1.6337 1.2257 2.9697 2.8973 1.8633 2.8665 1.9371

MASE 5.0592 4.1937 0.6734 1.9589 0.6737 4.5383 4.3299 1.1658 1.9906 1.3784

Leeuwin 12-h MAE 2.1082 2.2078 1.0923 1.6776 1.0935 2.3053 2.3930 0.6046 1.1674 0.6567

RMSE 2.7297 2.7817 1.8354 2.5942 1.8348 2.3882 2.4729 0.7337 1.2363 0.7794

MASE 1.9682 2.0612 0.6511 0.9869 0.6518 2.1522 2.2341 0.3604 0.6958 0.3914

24-h MAE 2.1747 2.1387 1.0931 1.6792 1.0943 2.0429 2.0168 0.6397 1.1593 1.0134

RMSE 2.7645 2.7457 1.8365 2.5957 1.8360 2.1860 2.1600 0.7600 1.3116 1.3258

MASE 2.0288 1.9952 0.6510 0.7673 0.6517 1.9058 1.8815 0.3809 0.6904 0.6035

48-h MAE 2.0866 2.2098 1.0934 1.6819 1.0952 2.0279 1.9357 0.7208 1.0810 0.8149

RMSE 2.7212 2.7846 1.8383 2.5986 1.8377 2.8484 2.1205 0.8983 1.2184 1.1040

MASE 1.9456 2.0605 0.6504 0.8881 0.6512 1.7235 1.8049 0.4286 0.6427 0.4845

168-h MAE 2.3696 2.1380 1.0580 1.6622 1.0862 2.2543 2.1644 1.1409 1.6916 1.4139

RMSE 2.8599 2.7216 1.8229 2.5592 1.8227 2.6099 2.5412 1.5862 2.4216 2.3609

MASE 2.2257 2.0081 0.6528 0.9934 0.6535 2.1174 2.0329 0.6864 1.0177 0.8506

The best ranked technique with respect to locations have bold text.
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4. Discussion

We compared intermittent demand and various count data time series
modelling techniques based on forecasting accuracy of observed counts
of recreational powerboat launches using lead times of 12, 24, 48 and
168 h. Here, we evaluated and compared the point estimates of forecasts
obtained from these time series modelling techniques which are noted for
modelling data with characteristics of significant intermittency and
relative low counts of events. With such data, techniques that apply a
continuum approximation fail (Czado et al., 2009). A key result of this
study is that although intermittency is common in recreational boating
effort data, intermittent demand forecasting models performed relatively
badly as forecasting tools and were outperformed by integer-valued and
conditional autoregressive models. Thus, although intermittency may be
a key feature for a given dataset, it should not override the systemic
characteristics of the data in the application of forecasting techniques.
Integer-valued autoregressive (INAR) and autoregressive conditional
Poisson (ACP) models were identified as useful for predicting short-term
behaviour of recreational boating effort. Outcomes of this study provide
7

robust short-term forecasting methods for imputing missing data in
digital camera monitoring, and also provide time series modelling
frameworks for forecasting purposes to guide resources allocation and
management in many different areas of application, including, fisheries
and wildlife management, tourism, and transportation.

In this study, ACP (2, 1) was identified as the best model for short-
term forecasting of counts of recreational boating effort that exhibit
properties of intermittent demand data. ACP models have been found to
sufficiently model rare events, for example, assessing the volatility of the
daily number of price changes in a stock (Heinen, 2003). ACP is a
parametric approach, in which the marginal distribution for the count
process is specified, such that the mean conditional on past observations
is autoregressive. The model adequately addresses discreteness, over-
dispersion and serial correlation. An advantage of using an ACP model is
that it is estimated using maximum likelihood and this enables common
tests to be performed, for instance, testing for autocorrelation and other
standard hypothesis tests (Heinen, 2003). In addition, the autocorrela-
tion and density are modelled explicitly allowing both point and density
forecasting, allowing easy interpretation of results and flexibility in



Figure 5. Reconstruction of test data based on the five time series models formulated using lead times of 12-, 24-, 48- and 168-hours at A) Broome, B) Denham and
C) Leeuwin
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application as ACP can be easily extended to most of the class of models
in autoregressive conditional heteroskedasticity (ARCH) (Bollerslev et al.
(1994); Engle, 1982; Heinen, 2003).

The INAR (2) model was also found to produce adequate forecast
estimates for the recreational boating effort data. INAR models explicitly
account for discreteness of data and have been identified to perform well
in modelling datasets that are characterized by low counts, asymmetric
distributions, excess zeros and overdispersion. These models are easy to
apply and have wide areas of application. There are many approaches to
fitting these models including models based on the theory of generalized
linear models (Kedem and Fokianos, 2002), models where parameters
are estimated on the premise that observed processes are driven by un-
observed processes (Davis and Wu, 2009), models based on renewal
processes for generating a correlated sequence using Bernoulli trials (Cui
and Lund, 2009), and models that are observation-driven (Lu, 2018).
Interestingly, they are linear-like for discrete time series with less
complicated correlation structures and have likelihood functions and
multi-step probabilistic forecasts that are numerically tractable (Lu,
2018; Silva, 2015).

Integer-valued moving average models (INMA) have often been used
to model non-linear and/or non-stationary count data (Br€ann€as et al.,
2002; Br€a nn €a s and Shahiduzzaman Quoreshi, 2010). They typically
produce parameters that take on values in narrower intervals compared
to autoregressive moving average models (ARMA), satisfying the
requirement that each parameter estimate of lagged variables must be
found within a unit interval (Br€a nn €a s and Shahiduzzaman Quoreshi,
2010). In this study, INMA (1) did not perform well compared to ACP (2,
1) and INAR (2) models, although it generally provided better forecasts
than the Croston or SBA methods. In general, the estimation procedure
for INMA models needs to be developed based on both known and un-
known underlying distribution of the data (Quoreshi et al., 2019).
Quoreshi et al. (2019) indicated that in the context of high frequency
data, different applications may not have a known underlying distribu-
tion. Since the distribution of the counting series of high frequency data
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is generally unknown, the application of likelihood-based approaches for
INMA models becomes restricted. The performance of forecasted values
estimated by INMA (1) in this study indicates that an investigation into
different estimation procedures may be required to establish a good fit
for recreational boating effort data. Some inferential procedures for
INMA models have been developed via conditional least squares (CLS),
feasible generalized least square (FGLS) and generalized method of mo-
ments (GMM) approaches Aleksandrov and Weiß (2020); Br€a nn €a s and
Shahiduzzaman Quoreshi (2010); Martin et al. (2014); Quoreshi (2008).
Additionally, the irregular nature of the correlational structure in the
data may require the fit of a long-lag INMA model, which has been
established to satisfy the modelling restriction of parameter estimates
lying within a unit interval (Br€a nn €a s and Shahiduzzaman Quoreshi,
2010). Furthermore, recreational boating effort datasets may also exhibit
the long memory property, looking at the relatively slowly decaying
autocorrelation during peak hours for boat launches (see Figures 2, 3,
and 4). However, the long memory properties of parameters estimated
from INMA models are generally assumed dependent and follow a
gamma function and based on the cyclic nature of the recreational boat
launch dataset, probably other functional forms with cyclical behaviour
may be more appropriate.

The Croston model was originally designed to represent demand
patterns for considerably slow-moving items which are dominant in
service and inventory management industries. The model was developed
to avoid errors inherent in exponential smoothing, which often leads to
excess prediction of stock levels (Croston, 1972). This would ultimately
produce forecasts that would enable reasonable control of stock system,
thus eliminating or reducing the risk of obsolescence of intermittent
items (Syntetos2015). A key component in the forecast estimation is
ascertaining the inter-arrival intervals for the demand process, suppos-
edly recognising the stochasticity of arrivals and differing sizes of de-
mand. However, Shenstone and Hyndman (2005) showed that for this
the technique there is no properly formulated underlying stochastic
model. The original Croston model assumes that the distribution of
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non-zero demand sizes is normal, the distribution of inter-arrival times is
geometric, and that demand sizes and inter-arrival times are mutually
independent. Revised assumptions have resulted in modified estimations
techniques for the Croston model, including SBA (Syntetos and Boylan,
2005) and Shale-Boylan-Johnston (SBJ) (Shale et al., 2006). These
techniques are widely reported as adequate tools for forecasting inter-
mittent demand data (Gardner, 2006; Pennings et al., 2017). Although
intermittent demand series usually contain a significant proportion of
zero values, with non-zero values present randomly, it is important to
note that the mechanism and complexity of the stochasticity of recrea-
tional boating activities within a given period may be different from the
demand process of a stock system. In this study, we have established that
intermittency should not override the overall systemic characteristics of a
data in application of forecasting techniques.

5. Conclusion

Digital camera monitoring has become an established means of data
collection in many fields of study, such as ecology, transportation and
operation systems, and tourism. For example, the non-invasive property
of digital cameras makes them more useful for monitoring rare events in
application, where data generated are characterized by low counts with
intermittencies, with some missing data due to outages. The ability to
accurately predict the short-term temporal distribution would be useful
support for ongoing monitoring programmes, particularly in imputing
missing data. We have demonstrated that short-term forecast of such
events could be performed using integer-valued and autoregressive
conditional Poisson models. These modelling frameworks would be
applicable for making necessary projections in anticipation of the current
and future needs of short-term events.
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