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Abstract

For many biological applications, a macroscopic (deterministic) treatment of reaction-drift-diffusion systems is insufficient.
Instead, one has to properly handle the stochastic nature of the problem and generate true sample paths of the underlying
probability distribution. Unfortunately, stochastic algorithms are computationally expensive and, in most cases, the large
number of participating particles renders the relevant parameter regimes inaccessible. In an attempt to address this
problem we present a genuine stochastic, multi-dimensional algorithm that solves the inhomogeneous, non-linear, drift-
diffusion problem on a mesoscopic level. Our method improves on existing implementations in being multi-dimensional and
handling inhomogeneous drift and diffusion. The algorithm is well suited for an implementation on data-parallel hardware
architectures such as general-purpose graphics processing units (GPUs). We integrate the method into an operator-splitting
approach that decouples chemical reactions from the spatial evolution. We demonstrate the validity and applicability of our
algorithm with a comprehensive suite of standard test problems that also serve to quantify the numerical accuracy of the
method. We provide a freely available, fully functional GPU implementation. Integration into Inchman, a user-friendly web
service, that allows researchers to perform parallel simulations of reaction-drift-diffusion systems on GPU clusters is
underway.
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Introduction

Complex reaction-diffusion systems, as they appear in the

context of biological, chemical and social research, are micro-

scopically governed by Langevin-type stochastic differential

equations, where a deterministic process is modulated by random

noise [1,2]. For numerous applications, the assumptions of spatial

homogeneity and vanishing drift field cannot be satisfied and need

to be relaxed. A large class of complex systems can be described as

an ensemble of interacting species where the interaction is

modelled by a drift field generated by the individual entities [3].

For instance, a mathematical model of trail formation in

pedestrian traffic or ant foraging can be achieved with a Langevin

equation that includes various drift terms [4].

A prominent application for a mesoscopic reaction-drift-

diffusion approach of the type presented here can be found in

molecular biology, more specifically, migration of brain neurons

during the developmental stage of the construction of the nervous

system in vertebrates [5]. It is well established that cell migration of

neurons in the brain is guided by a secreted protein, called Slit [6].

However, experimental data remains ambiguous to the exact

nature of its effect on cell motion. In particular, it is unclear

whether Slit simply decreases the motility of the migrating cells or

if it provides directional guidance cues [5–7]. In an attempt to

clarify the effects of directional guidance and motility regulation, a

compartmentalized random walk model of cell migration, where

the transition probabilities between neighboring cells are affected

by the presence of an inhibiting or repelling signalling molecule,

was developed by Cai et al. [8]. The effect of Slit can be easily

captured by imposing a state-dependent, spatially inhomogeneous

drift-diffusion field on the migrating neurons. In particular, the

strength and direction of the guidance field as well as the motility

of the neurons are determined by the local density and density

gradient of the signalling molecule. We present some preliminary

results of this application after the discussion of the test problems

below.

To simulate reaction-diffusion models, researchers can choose

among a multitude of spatial stochastic solvers. Broadly, one can

distinguish between three classes of algorithms with each of them

working on a different level of scale. Firstly, microscopic methods

emphasize the stochastic nature of the problem by focusing on the

behavior of individual entities, termed agents [9]. These models

track the position and state of each particle individually and

therefore provide an exact representation of the underlying

problem. Data-parallel implementations of microscopic models

can improve runtime performance by two orders of magnitude

[10,11]. The first-passage kinetic Monte Carlo algorithm further

improves on this method by introducing disjoint spatial domains

(protected zones) where single particles propagate individually and

independently until collisions occur [12–14]. Needless to say, these

algorithms are computationally expensive and are best suited for
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problems with a low number of individuals, for example, highly

diluted solutions. Mesoscopic approaches, secondly, sacrifice accu-

racy for computational speed by discretizing the computational

domain into subvolumes. Instead of treating particles individually,

these algorithms keep track of the total number of particles of each

species per subvolume. Inside each subvolume, reactions can be

modelled stochastically by solving the chemical Master equation

(CME) [15–19]. Diffusion is regarded as transition between

subvolumes and is treated either by integrating diffusion terms

into the CME [20–24] or separately in a stochastic-stochastic

hybrid approach [25–27]. The later method, also termed operator

splitting in the context of applied mathematics [28], is especially

suited for implementations on parallel computing architectures

[27]. A stochastic-stochastic operator splitting approach based on

first-passage time transition rates was presented for pure reaction-

diffusion processes without drift on unstructured meshes [29] and

extended to include fiber-bound molecular transport in the context

of cell physiology [30]. Finally, macroscopic algorithms neglect the

probabilistic nature of the problem and solve the Fokker-Planck

equation for the probability distribution of the particle position, an

approach which is only valid if a large number of reacting particles

is present [31,32].

Compartment-based (mesoscopic) stochastic simulation algo-

rithms suffer from the major limitation that they cannot recover

the continuous reaction-(drift-)diffusion equation if bimolecular or

higher order reactions are involved [33]. Broadly speaking, the

problem is that, in the limit of vanishing subvolume size, the

reaction probability for bimolecular reactions approaches zero and

hence, without renormalization of the reaction rate, the probabil-

ity density approaches the continuum solution for a freely diffusing

particle [34]. Consequently, the subvolume size is bounded from

below to guarantee a satisfactory performance of the algorithm.

Quantitative bounds are discussed in [33]. For the purpose of this

article, however, the operator splitting approach, where reactions

and spatial motion are treated separately, allows us to concentrate

on numerically solving the drift-diffusion Langevin equation. The

integration of reactions into the reaction-diffusion algorithm has

been discussed and tested extensively elsewhere [27]. There is no

reason to assume that the accuracy of this integration suffers from

merely extending the functionality of the diffusion module and, for

the sake of readability and to clearly isolate the main results, we

choose to omit test problems which explicitly include reactions. A

detailed study of this algorithm including reactions will be

presented in a future publication.

Generally, stochastic algorithms are computationally expensive

and hardware limitations severely restrict their applicability to

realistic models and, consequently, parallel implementations are

called for [35]. In recent years, graphics processing units (GPUs)

have matured sufficiently to provide an accessible hardware

platform for general scientific computing in the systems biology

community [36]. GPU implementations of spatial stochastic

solvers provide tremendous speed ups of up to several orders of

magnitude even on standard work station hardware [10,11,19,27].

We present, for the first time, a stochastic algorithm to solve multi-

dimensional, inhomogeneous drift-diffusion-reaction problems. While

many components of this algorithm have been described previously, no

integrated high-performance solution has been presented and

evaluated yet. We designed this algorithm as an extension to an

existing GPU implementation of a stochastic reaction-diffusion solver

[27]. The source code is freely available at http://code.google.com/p/

gpgmp/http://code.google.com/p/gpgmp/. We demonstrate the

feasibility of our approach with a variety of test cases.

Throughout this article we model microscopic motion as a

space-jump process. However, in many biological applications,

such as movement of bacteria, the microscopic behavior is

mathematically described in terms of a velocity jump process

and extensive literature is devoted to the subject [37–40]. In this

scenario, individual particles change their direction by turning at

random, Poissonian-distributed times. Since the direction after the

turning event depends on the velocity vector before turning, the

positions are now correlated and the random walk looses its

Markov property. Provided the correlation time is finite and short

with respect to the other time scales involved, we recover an

uncorrelated random walk in the long term limit [38,39]. We will

return to this issue in the Methods section.

This article is structured as follows. After briefly introducing the

mathematical context and summarizing previous work, we

describe our approach in the methods section. In particular, we

compare the accuracy of our algorithm with similar methods

which are based on discretizing the Fokker-Planck equation. We

then provide several test problems which fully explore the

capabilities of our implementation in the results section. We

conclude with a brief summary of the main results.

Methods

We aim to solve the general Ito stochastic differential equation

(SDE)

dXt~q(Xt,t)dtzb(Xt,t)dWt, ð1Þ

where Xt is a stochastic process. Here, Xt is the position of a

particle in space and Wt denotes a multi-variable Wiener process.

We do not pose any restrictions on the form of the drift and

diffusion coefficients, q(Xt,t) and b(Xt,t), respectively. We will

demonstrate below that the algorithm is capable of dealing with

general functions. Unlike the algorithm presented in [41–43] our

approach is readily applicable to multiple dimensions. The

implementation we provide, however, is currently restricted to

two dimensions and we hope to remove this limitation in a future

release. For the purpose of this article, all test problems are

simulated on a two-dimensional domain.

An alternative formulation of the same stochastic process can be

obtained by computing the conditional probability

p(x,tDx0,t0):p(x,t) for a particle that is initially located at x0 to

be found at x at a later time t. By a transformation of variables in

Eq. (1) , one arrives at the Fokker-Planck equation (FPE) for the

time evolution of p(x,t) [44]:

L
Lt

p(x,t)~{
X

i

L
Lxi

qi(x,t)p(x,t)½ �z

1

2

X
i,j

L2

LxiLxj

b(x,t):bT(x,t)
� �

i,j
p(x,t)

n o
:

ð2Þ

The mesoscopic approach that we follow here consists of

discretizing the computational domain into subvolumes of side

length l and collectively tracking the number of particles in each

subvolume over time. If the diffusivity and drift are smooth

functions of x, we can obtain an approximate solution by keeping

q(x,t) and b(x,t) constant inside each subvolume. The drift-

diffusion process is then modelled by allowing particles to jump to

neighboring cells (note that the multinomial algorithm permits

jumps to higher-order neighbors as well [26]) or stay put according

to a certain probability distribution ( Fig. 1 ).

Stochastic Reaction-Drift-Diffusion Simulations
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The aim of this section is to detail the jump and rest

probabilities that correctly reproduce trajectories of Eq. (1) .

Owing to the mathematical equivalence of Eqs. (1) and (2) [44],

two different approaches present themselves. One possibility is to

solve the first-passage time problem for Eq. (1) inside each

subvolume to obtain the mean first-passage time and the

associated splitting probability [44,45]. Alternatively, the equiva-

lent Fokker-Planck equation Eq. (2) can be discretized directly and

the transition probabilities from the resulting multivariate master

equation can be derived [8,44]. In this work, we present an

algorithm which is based on the solution of the first-passage time

problem.

Calculating the transition rates by discretizing the correspond-

ing Fokker-Planck equation is straightforward and this will be the

starting point of our exposition. The first-passage time algorithm is

then described in the following subsection, where we start by

briefly recapping the one-dimensional continuous-time and

discrete-time algorithms as they were presented in [41–43] and

then proceed to extend the algorithm to general, inhomogeneous

drift-diffusion fields and multiple dimensions. We also compare

our method to algorithms based on the discrete FPE formulation.

Details about the implementation on graphics-processing units are

presented in the last subsection.

Discrete Fokker-Planck equation
An important class of algorithms, such as the implementation

presented in [8], derive the transition probabilities for a particular

stochastic differential equation via directly discretizing the

equivalent Fokker-Planck equation. For the sake of simplicity,

we restrict ourselves here to a one-dimensional problem and note

that the multi-dimensional generalization through dimensional

splitting, as explained below, is straightforward.

Consider a one-dimensional Fokker-Planck equation with

constant diffusivity and drift,

L
Lt

p(x,t)~{q
L
Lx

p(x,t)zD
L2

Lx2
p(x,t), ð3Þ

where the diffusivity is defined as D~b2=2. A straightforward

discretization with a centered-differencing scheme for L2
x yields the

transition probabilities during a time step t [8],

PFPE

/
? ~

D

l2
+

q

2l

� �
t: ð4Þ

The same numerical scheme can be applied to the more general

case of spatially dependent diffusivity and drift and the question

arises how the direct discretization method differs from the first-

passage time algorithm. We will return to this question below.

In the more general case,

L
Lt

p(x,t)~{
L
Lx

q(x)p(x,t)½ �z 1

2

L2

Lx2
b2(x)p(x,t)
� �

, ð5Þ

centered-differencing discretization results in a loss of locality for

the transition probabilities. For example, [8] consider FPEs of the

form

L
Lt

p(x,t)~
L
Lx

D(x)
L
Lx

p(x,t)

� �
, ð6Þ

which is equivalent to Eq. (5) if we make the substitution

b(x)~½2D(x)�1=2
and q(x)~D’(x). A centered-differencing dis-

cretization of Eq. (6) provides the transition probabilities [8]

PFPE

/
? (i)~

t

2l2
D(i)zD(i+1)½ �, ð7Þ

where D(i)~D(xi) and xi denotes the center of the corresponding

grid cell.

These results are well established in the theory of stochastic

processes. By means of an expansion in a suitable parameter it can

be shown [44] that a master equation with a transition probability

to neighboring cells given by

P(i+1Di)~
Di

l2
+

qi

2l

� �
t ð8Þ

approximates a diffusion-type FPE of the form Eq. (5) in the limit

l?0.

First-passage time algorithm
Continuous-time random walk algorithm in one

dimension. Consider a one-dimensional Ito SDE with

globally constant drift and diffusion coefficients (both of these

restrictions will be relaxed below):

dXt~qx dtzbx dWt: ð9Þ

We solve Eq. (9) on an unbounded domain which is discretized

into intervals (side length l) forming a cell-centered grid. The one-

dimensional first-passage time problem can be solved analytically

for this case [43,46,47]. The splitting probabilities (time-integrated

jump probabilities) are then [46]

Figure 1. Transition probabilities on a cell-centered grid. The
particle jumps to the neighboring grid cells with probabilities P/, P?,
P: and P; . The probability to stay put is given by s0 .
doi:10.1371/journal.pone.0033384.g001
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P
?
/~

1

1ze+lqx=D
ð10Þ

and the exit time probability-distribution function (PDF) is given by

y(t)~
pD

2l2

X?
m~0

({1)m(2mz1) e
lqx
D z1

� �

exp {
Dp2(2mz1)2t

4l2
{

qx(2lztqx)

4D

" #
:

ð11Þ

As above, the diffusivity D is related to the noise coefficient bx in Eq.

(9) through D~b2
x=2.

We can construct a simple algorithm to solve Eq. (9) as follows.

Initially, we place a particle at x~0. Each time step, we advance

the clock by a random increment drawn from the distribution y(t)
[ Eq. (11) ] and subsequently pick the jump location according to

Eq. (10) , where only jumps to the nearest neighbors are permitted.

This algorithm constitutes a Montroll-Weiss continuous-time

random walk (CTRW) on a lattice. The theory of these models

is well understood and we follow the exposition in [48] to compute

the first two moments of the displacement.

We start by computing the Laplace transform of the exit time

PDF [ Eq. (11) ]:

ŷy(s)~L½y(t); s�~ cosh
lqx

2D

� �
sech

lqx

2D
(1z4Ds=q2

x)1=2

� �
: ð12Þ

We can expand this expression around s~0,

ŷy(s)~1{vTwsz
vT2

w

2
s2zO(s3), ð13Þ

where

vTw~{
L
Ls

ŷy(s)

����
s~0

~
l

qx

tanh
lqx

2D

� �
ð14Þ

and

vT2
w~

L2

Ls2
ŷy(s)

����
s~0

~

2
l2

q2
x

tanh2 lqx

2D

� �
z2D

l

q3
x

tanh
lqx

2D

� �
{

l2

q2
x

ð15Þ

are the familiar expressions for the first two moments of the exit

time [46].

It can be shown [48] that the diffusivity and mean velocity of the

lattice CTRW are given by

vvw~ lim
t??

vX (t)w

t
~

m

vTw

ð16Þ

and

vDw~ lim
t??

vX (t)2
w{vX (t)w2

2t
~

m2(vT2
w=vTw

2{1)zs2
� �

2vTw

,

ð17Þ

where

m~l(P?{P/) ð18Þ

and

s2zm2~l2(P?zP/) ð19Þ

are the mean displacement and mean-square displacement per step,

respectively. Upon inserting Eqs. (14) , (15) , the according

expressions for m and s2 and the transition probability, Eq. (10) ,

into Eqs. (16) and (17) , we can indeed recover vvw~qx and

vDw~D.

Eq. (17) is, albeit derived differently, the central result of [43].

For a non-vanishing drift, qx=0, the mean diffusivity depends on

the mean jump time as well as on the variance of the jump time.

Consequently, a naive algorithm with a fixed time step,

vT2
w~0, will fail to correctly reproduce the diffusivity. We

will see in the next section how an algorithm with a fixed time step

can be devised by allowing the particle to stay at rest with a certain

probability.

The results presented above are valid for any uncorrelated

random walk on a lattice and similar expressions can be derived

for correlated random walks [37,38,40,49]. While an uncorrelated

biased random walk approaches a (parabolic) drift-diffusion

equation in the macroscopic limit, the corresponding macroscopic

equation for a correlated random walk is a hyperbolic equation (the

telegraph equation in one dimension or the linear transport

equation in higher dimensions) [37,40]. The fundamental solution

of the drift-diffusion equation with constant coefficients is a

uniformly moving Gaussian kernel [cf. Eq. (32) below] which

clearly exhibits a positive probability density everywhere. In other

words, even for tv?, the particle has a non-vanishing (albeit

small) probability to be found anywhere in the infinite domain.

This is a consequence of the infinite signal propagation speed for

parabolic equations. Hyperbolic equations, on the other hand, do

not show this unphysical behavior and it can be demonstrated

that, in the long term limit, any influence of short-term

correlations is lost and the solution approaches the limiting

solution of a diffusion equation. Whether short-term correlations

can be safely neglected strongly depends on the system in question.

We note, however, that many biological applications allow a

description as a Markov random process [44].

We finally remark that the basic model of a biased random walk

can be extended in several ways. A comprehensive, comparative

review of alternative models, such as anomalous diffusion and

velocity jump random walk models can be found in [40].

Discrete-time random walk. [43] demonstrate how to

construct a fixed time step algorithm that correctly reproduces

the diffusivity and mean velocity. The formalism established in the

previous subsection allows an alternative derivation of these results

which we present here. To this end, the particle is allowed to stay

at rest with a probability s0 during each time step. The probability

to move after exactly n time steps is then (1{s0)sn{1
0 and the jump

time PDF can be written as

y(t)~
X?
n~1

(1{s0)sn{1
0 d(t{nt), ð20Þ

where t is the duration of the fixed time step and d denotes the

Dirac delta function. The Laplace transform is easily computed

and, just as in the previous section, can be expanded around s~0:

Stochastic Reaction-Drift-Diffusion Simulations
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ŷy(s)~
1{s0

est{s0
~1{

t

1{s0
sz

t2

2

(1zs0)

(1{s0)2
s2zO(s3): ð21Þ

A comparison of the coefficients with Eq. (13) reveals that the

choice

t~(1{s0)vTw ð22Þ

and

s0~
vT2

w{vTw
2

vTw
2

ð23Þ

yields the equivalent discrete-time random walk. This constitutes

the fixed time step algorithm for highly biased random walks as

devised by [43].

Dimensional splitting. The fixed time step algorithm

described in the previous subsection can be extended to two

dimensions under the restriction that the drift field is parallel to

one coordinate axis [43]. Here, we show how to relax this

restriction and present a general multi-dimensional algorithm.

The key idea for solving the two-dimensional problem is to treat

jumps in x and y direction separately, an approach termed

dimensional splitting in the context of numerical algorithms for

deterministic PDEs. That is, instead of having one diffusion sweep

for both directions, we have two separate one-dimensional sweeps

for each direction. The benefit of this approach is that we can use

the formalism from the previous subsection which ensures that

both, the diffusion constant and the velocity, are reproduced

correctly. When applied to deterministic PDEs, dimensional

splitting is known to be second-order accurate only if

LxDy~LyDx~Lxqy~Lyqx~0, where we assume that the diffu-

sivity matrix is diagonal [50]. Moreover, the operator splitting

approach used to integrate reactions will be second-order accurate

only if the velocity field is divergence free and the reaction rates

are homogeneous. Generally, neither of these assumptions holds

and we therefore expect a first-order splitting error. However, it is

not obvious how these considerations transfer to a stochastic

algorithm. We therefore restrict ourselves to quantify the

numerical error of our implementation with suitable test problems.

The transition probabilities for one-dimensional left/right

transitions are given by Eq. (10) , the survival probability is

computed according to Eq. (23) and the sweep times are set by Eq.

(22) . The mean and variance of the transition time are given by

Eq. (14) and Eq. (15) . Written in pseudo code, the algorithm looks

as follows:

Compute tx and ty [from Eq. (22) ].

Initialize global time t~0 and set alarm times tx~tx, ty~ty.

while (tvtend)

if (txvty)

Perform x sweep.

Set global time t~tx. Set next alarm time tx~txztx.

elseif (txwty)

Perform y sweep.

Set global time t~ty. Set next alarm time ty~tyzty.

elseif (tx~ty)

Perform x sweep.

Perform y sweep.

Set global time t~tx. Set next alarm time

tx~txztx, ty~tyzty.

endif

endwhile

The sweeps consist of redistributing the available particles in

each cell to the neighboring cells. Each particle can either rest

[with probability s0 from Eq. (23) ] or jump [with probabilities P/?

given by Eq. (10) ]. The pseudo code for the diffusion sweep looks

as follows:

forall cells do
forall particles in cell do

Draw random number j0[U(0,1).
if (j0ws0)

Draw random number j1[U(0,1).
if (j1ƒP/) jump left.

else jump right.

endif
enddo particles

enddo cells
Inhomogeneous drift-diffusion. While the two-

dimensional algorithm works well if D and q are constant over

the whole integration domain, we need to extend it to incorporate

inhomogeneous drift and diffusivity. The main issue on the

algorithmic side is that the time step t, as defined by Eqs. (22) and

(14) , now implicitly depends on the cell location through D(r) and

q(r). On the other hand, a GPU implementation requires a

common global time step to avoid synchronization issues. This is

because the highly-specialized graphics card architecture only

allows very restricted communication between individual cells. We

elaborate on the particular GPU architecture and the problems

associated with it in the implementation section below.

A simple approach to inhomogeneous problems is to compute the

time step t(x) for each cell, find the minimum tmin over the whole

domain, set tmin as the common global time step and scale the

transition and rest probabilities for each cell accordingly. For the

convenience of the reader, we first collect the important equations.

From Eqs. (16) , (17) [along with the definition of m and s2, Eqs.

(18) and (19) ], and (21) , we can compute the macroscopic drift

and diffusivity for any lattice random walk with a fixed time step t
as a function of the transition probabilities P/? and the rest

probability s0:

qx~(1{s0)(P?{P/)
l

t
ð24Þ

and

D~(1{s0) (P?zP/){(1{s0)(P?{P/)2
� � l2

2t
: ð25Þ

Note that P? and P/ are the conditional probabilities for a

transition to a neighboring cell, provided that the particle actually

jumps (rather than stay at rest during the time step). Hence, we

have the additional requirement

P?zP/~1, ð26Þ

which algebraically closes the system. We can solve (24)–(26) for

P?, P/, and s0, finding:

s0~1{(2Dzq2
xt)

t

l2
ð27Þ

and

P
/
?~

1

2
1+

lqx

2Dzq2
xt

� �
: ð28Þ

Stochastic Reaction-Drift-Diffusion Simulations
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Eqs. (27) and (28) allow us to compute the transition and rest

probabilities for an arbitrary time step tƒvTw, where vTw is

defined by the one-dimensional first-passage problem [cf. Eq. (14) ].

Indeed, if we plug in the canonical time step [Eqs. (22)–(23) ] [43],

t~
lqxcoth lqx=2Dð Þ{2D½ �

q2
x

, ð29Þ

we can recover the splitting probabilities Eq. (10) . A one-

dimensional implementation in pseudo code is presented below.

The extension to multiple dimensions via dimensional splitting is

obvious.

Compute tx(x).

Find tmin~mintx(x).

Initialize global time t~0 and set alarm time tx~tmin

while (tvtend)

Compute tx(x).

Find tmin~mintx(x).

Perform x sweep with global time step tmin and probabilities

P/?(tmin) and s0(tmin).

Set global time t~tx. Set next alarm time tx~txztmin.

endwhile

How do the transition probabilities derived here compare to

directly discretizing the corresponding FPE? The connection

becomes obvious if we write down the Taylor expansion of the

unconditional transition probabilities (1{s0)P/
? , with s0 and P/

?

given by Eqs. (27) and (28) , respectively. We find

(1{s0)P
/
?~

D

l2
+

q

2l

� �
tz

q2

2l2
t2, ð30Þ

and confirm that Eq. (4) provides a first-order approximation to

the complete transition probabilities. The missing second-order

contribution q2=2l2 naturally corresponds to the variance of the

jump time and vanishes for q~0. As we will see later, neglecting

this second-order contribution leads to higher inaccuracies if the

problem in question is drift dominated.

Implementation
We implement the algorithm described above as an extension to

an existing program package, gpgmp [27]. gpgmp is a mesoscopic,

stochastic solver for homogeneous reaction-diffusion problems and

separately treats reactions and diffusion in an operator-splitting

fashion. This modular design allows us to easily exchange the

homogeneous diffusion module with these extensions while leaving

the reaction module untouched.

The GPU implementation of the inhomogeneous drift-diffusion

module closely follows the design of its homogeneous equivalent

[27]. The computational domain V is divided into equally spaced

cubical subvolumes with common side length l. Currently gpgmp

and the deterministic solver module only support two-dimensional

domains. Each cell is assigned to exactly one thread on the GPU.

They are executed in parallel. In order to reduce memory access

overhead, the GPU architecture groups two-dimensional units of

threads into blocks, which operate independently. Global synchro-

nization across block boundaries is not permitted and hence can

only be achieved by returning control to the host CPU. We omit a

detailed description of the reaction algorithm here as it has been

described elsewhere [27].

The main loop is executed on the host CPU and is responsible

for calling the various GPU kernels. Whenever global synchroni-

zation across block boundaries is required, program control is

returned to the host. The main responsibility of the outermost loop

is to handle dimensional splitting for all species involved. This is

done by sorting the diffusion events for each species and each

direction in a global time line. Whenever the simulation

encounters a diffusion event, the corresponding species is diffused

and the next diffusion time (for the species and direction in

question) is computed.

forall species i

Compute D(r,i) and q(r,i) in kernel COMPUTEDIFFUSIONCON-

STANTS.

Compute time step in x direction tx(r,i) [ Eq. (29) ] in kernel

COMPUTEINDIVIDUALTIMESTEP.

Reduce over blocks and find minimum tx,i~ minr[V tx in

kernel REDUCEBLOCKS.

Compute time step in y direction ty(r,i) [ Eq. (29) ] in kernel

COMPUTEINDIVIDUALTIMESTEP.

Reduce over blocks and find minimum ty,i~ minr[V ty in

kernel REDUCEBLOCKS.

endfor

Find first diffusion event time tD~ minx,y,i.

while tƒtmax

if next event is x diffusion for species i

Perform x sweep for species i according to probabilities

(27)–(28) for t~tD{t in kernel DIFFUSE

Update particle count over block boundaries in kernel

UPDATESTATE.

Compute D(r,i) and q(r,i) in kernel COMPUTEDIFFUSION-

CONSTANTS.

Compute time step in x direction tx(r,i) [ Eq. (29) ] in

kernel COMPUTEINDIVIDUALTIMESTEP.

Reduce over blocks and find minimum tx,i~ minr[V tx in

kernel reduceBlocks.

endif

if next event is y diffusion for species i

Perform y sweep for species i according to probabilities

(27)–(28) for t~tD{t in kernel DIFFUSE

Update particle count over block boundaries in kernel

UPDATESTATE.

Compute D(r,i) and q(r,i) in kernel COMPUTEDIFFUSION-

CONSTANTS.

Compute time step in y direction ty(r,i) [ Eq. (29) ] in

kernel COMPUTEINDIVIDUALTIMESTEP.

Reduce over blocks and find minimum ty,i~ minr[V ty in

kernel REDUCEBLOCKS.

endif

Set global time t~tD.

Find next diffusion event time tD~ minx,y,i.

endwhile

The implementation of the various kernels is straightforward.

With the exception of the reduceBlocks kernel, each thread works

on exactly one subvolume. The COMPUTEDIFFUSIONCONSTANTS

routine computes the diffusivity and drift for each cell according

to the specific problem. computeIndividualTimestep calculates the

time step [ Eq. (29) ] for each species (and direction) in the

particular subvolume. In order to find the global minimum time

step of the whole domain (‘‘reduce’’ over all blocks), we implement

a standard parallel scan algorithm which requires two sweep

phases [51]. The up-sweep phase of the parallel scan is performed

in the computeIndividualTimestep kernel, while the reduceBlocks

kernel is responsible for the down-sweep phase. The diffusion

kernel works exactly as its homogeneous counterpart [27] except

that the transition probabilities are computed according to Eqs.

(27)–(28) . We then perform a random experiment for each

particle of the species in question in the subvolume to determine if
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and where it moves. Finally, we need to update the particles at the

block boundaries in updateState.

Results

In this section, we are concerned with the accuracy of our

implementation. It is sufficient for our purpose to test the diffusion

module separately. The integration with the Gillespie algorithm

that performs reactions has been described elsewhere [27] and

remains unchanged in our implementation.

We performed comprehensive tests trying to encompass the

most common situations. All simulations are set up on a two-

dimensional, square grid with side length L~32mm, with varying

granularity Nx|Nx, where Nx denotes the number of subvolumes

per dimension. The cell-centered physical coordinate system is

mapped to the subvolume index i by a linear transformation, viz.

xi~l i{
Nx

2

� �
, ð31Þ

such that the origin is located at the center subvolume

(Nx=2,Nx=2).

We start with a simple two-dimensional homogeneous drift-

diffusion problem and progressively add more functionality to the

tests by implementing a geometric Brownian motion problem (to

test inhomogeneous diffusivity and drift), a two-dimensional

Ornstein-Uhlenbeck process (which demonstrates the validity of

dimensional splitting) and a fully non-linear problem. We conclude

this section with a biological application where we model the

influence of the signalling molecule Slit on migrating neurons.

Homogeneous biased diffusion
We set up a test problem with a globally homogeneous

diffusivity and drift, i.e. b and q are constant over the whole

domain. We assume b~diagf(2Dx)1=2,(2Dy)1=2g. Initially a

number N0 of particles is located in the center at r~(0,0). It is

straightforward to show that the solution of the corresponding

Fokker-Planck equation at time t is then given by

Nanalytic(x,y)~
N0l2

4pt(DxDy)1=2
exp {

(x{qxt)2

4Dxt
{

(y{qyt)2

4Dyt

" #
, ð32Þ

where N(x,y) denotes the number of particles in the cell centered at

(x,y).

The analytic solution, Eq. (32) , allows us to obtain a

quantitative estimate for the accuracy of the simulation via the

root-mean square error (RMSE),

RMSE~

P
i,j

½N(xi,yj ,t){Nanalytic(xi,yj ,t)�2
( )1=2

N0NxNy

: ð33Þ

We distribute N0~106 particles over the whole domain which is

divided into 64|64,128|128, and 256|256 lattice cells, re-

spectively. The diffusivity is Dx~1mm2s{1 and Dy~2mm2s{1

and the drift field is given by qx~Emms{1 and qy~2Emms{1,

where E is varied from 10{2 to 10. Each simulation is carried out

100 times and we average over all runs. We chose outflow

boundary conditions and stop each run at t~0:5 s to ensure that

boundary effects are excluded.

The results are presented in Fig. 2 (left panel) which displays the

RMSE for 64|64 (blue), 128|128 (green), and 256|256 (red)

subvolumes. We compute results for simulations where the

transition probabilities are derived from the first-passage-time

problem (solid curves) and from a discretization of the Fokker-

Planck equation (dashed curves). In both cases, the accuracy

improves with a finer granularity. Overall, the code performs

satisfactory, with a slight tendency for the accuracy to worsen in

the drift-dominated (high E) set up. As expected, the FPE-based

implementation performs worse for high E, i.e. if the problem is

drift dominated. For comparison, we display the results for fixed

drift contributions E~10 (blue), E~1 (green), and E~0:01 (red)

and varying grid spacing 0:1ƒl=mmƒ1 in the right panel of the

figure.

We compare our simulations with recent results achieved for

uncorrelated, biased, space-continuous random walks with varying

speed [52]. These authors consider a random walker who, at the

end of each step, changes the speed and direction according to a

general distribution. It can be shown that, in the long term limit,

this particular model results in a drift-diffusion equation, where the

drift and diffusion coefficients are determined by the distribution

of the velocity changes [52]. An important result of this work is the

observation that diffusion in this case is typically anisotropic,

where the component of the diffusion tensor along the preferred

direction is smaller than the perpendicular contribution if the

speed of the random walker is fixed and larger in the opposite case.

Geometric Brownian motion
We implement this test problem to assess the capability of the

code to handle inhomogeneous diffusivity and drift. The geometric

Brownian motion (GBM) process is defined by the SDE

dXt~mXtdtzsXt dWt, ð34Þ

with m~diagfmx,myg and s~diagfsx,syg diagonal matrices

which are held constant over the whole domain.

It can be shown that the corresponding FPE prescribes a log-

normal type PDF,

p(x,y; tDx0,y0; 0)~
1

2psxsytxy
ð35Þ

exp {
s2

y t=2 s2
x{2mx

	 

z log x=x0ð Þ

� �2
zs2

x t=2 s2
y{2my

� �
z log y=y0ð Þ

h i2

2s2
xs2

yt

8><
>:

9>=
>;,

that allows us to compute the RMSE for our simulation outputs.

In order to avoid the pathological case of vanishing diffusivity in

the center subvolume, we shift the origin of the coordinate system

by the width L of the domain, i.e. the coordinate system is given by

xi~l i{
Nx

2

� �
zL: ð36Þ

We simulate the multiplicative noise problem with initially

N0~106 particles located at x0~L=4,L=4. The diffusivity

coefficient is held constant at s2
x=2~0:1s{1 and s2

y=2~0:15s{1.

We vary the drift field coefficient m~E(1s{1,1s{1) over

0:1ƒEƒ1. The results are presented in Fig. 3 (left panel) which

shows the RMSE of the simulation output. We compute solutions
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with different granularities, where the number of subvolumes

varies from 64|64 (blue curves) over 128|128 (green curves) to

256|256 (red curves), for an FPT (solid curve) and an FPE

(dashed curve) algorithm. The relative error is acceptable and

generally increases along with increasing contribution of the drift

field. The benefit of a higher granularity on the accuracy of the

solution is obvious and can be ascribed to the zeroth-order

approximation of the inhomogeneous fields. Finally, the FPE

algorithm (dashed) curve performs similarly well as its FPT

counterpart (dashed curve). For comparison, we include results for

fixed drift contributions E~1 (blue), E~0:3 (green), and E~0:1
(red) and varying grid spacing 0:1ƒl=mmƒ1 in the right panel of

the figure.

Ornstein-Uhlenbeck
In order to assess the accuracy of the dimensional splitting

approach, we implement an Ornstein-Uhlenbeck process, which is

an ordinary Wiener process amended by a drift term. It can be

described by the stochastic differential equation

dXt~{ªXtdtzbdWt, ð37Þ

where ª is a constant matrix (not necessarily diagonal) and

b~diagf2Dx,2Dyg encodes the diffusivity. The theory of

Ornstein-Uhlenbeck processes is well understood [44,53] and the

time evolution of the mean vector and covariance matrix are

known to be

Figure 2. RMSE for the biased diffusion test problem. The root mean-square error of the simulation output is calculated relative to the analytic
solution, with Dx~1mm2 s{1 and Dy~2mm2 s{1 at t~0:5s. The solid curves indicate results from simulations which were done with transition
probabilities computed from the FPT. The dashed curves, in contrast, displays the RMSE from simulations based on a discretization of the FPE. In both
cases, N0~106 molecules are located in the center subvolume initially. (left) We display the RMSE as a function of 10{2

ƒEƒ10 for 64|64 (blue
squares), 128|128 (green circles), and 256|256 (red triangles) subvolumes. (right) Shown is the RMSE as a function of subvolume side length
0:5ƒlƒ0:125 for E~10 (blue squares), E~1 (green circles), and E~0:01 (red triangles).
doi:10.1371/journal.pone.0033384.g002

Figure 3. RMSE for the geometric Brownian motion test problem. The root mean-square error of the simulation output is calculated relative
to the analytic solution as a function of the drift field contribution E (left panel) and the subvolume side length l (right panel). Initially N0~106

molecules are distributed at x~(L=4,L=4). (left) Shown are results for 64|64 (blue squares), 128|128 (green circles) and 256|256 (red triangles)
subvolumes. We vary E over 0:1ƒEƒ1. (right) We display the RMSE for E~1 (blue squares), E~0:3 (green circles), and E~0:1 (red triangles), where l is
varied over 0:5ƒlƒ0:125.
doi:10.1371/journal.pone.0033384.g003
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vXw~G(t):X0, ð38Þ

and

v Xi(t){vXi(t)w½ �wv Xj(t){vXj(t)w
� �

w~ðt

0

Gik(t0)Gjs(t
0)bks dt0,

ð39Þ

respectively. Here, the Green’s function G(t) is given by the matrix

exponential G(t)~exp({ªt). Integration of Eq. (39) is straight-

forward and the corresponding PDF is a Gaussian distribution,

p(x,y,t)~
1

2p Sj j1=2
exp (X{m):S{1:(X{m)
� �

, ð40Þ

with the mean m and covariance matrix S given by (38) and (39).

This expression provides us with the means to quantify the

accuracy of our implementation for a process involving an

inhomogeneous drift field.

We set up a simulation with Dx~Dy~1mm2s{1 and ª given by

cxx~0:4Es{1, cxy~0:3Es{1, cyx~0:4Es{1, and cyy~0:2Es{1,

where we vary the parameter E over 0:01ƒEƒ10. Initially,

N0~106 particles are located at the center subvolume, which

constitutes the origin of the coordinate system. We then compute

the RMSE from the simulation output (averaged over 100 runs)

and the theoretical solution Eqs. (38)–(40) . The results are

presented in Fig. 4 (left panel), which displays the RMSE as a

function of E. We perform simulations for different granularities,

viz. 64|64 (blue curves) over 128|128 (green curves) to

256|256 (red curves), where we distinguish between an FPT

implementation (solid curve) and an FPE algorithm (dashed

curve). For comparison, we display the results for fixed drift

contributions E~10 (blue), E~0:3 (green), and E~0:01 (red) and

varying grid spacing 0:1ƒl=mmƒ1 in the right panel of the

figure.

The accuracy of all simulations improves with finer granularity.

If the problem is drift-dominated (high E), the accuracy worsens for

a coarse granularity. There is no clear trend when comparing the

FPE implementation (solid curve) to the FPT implementation

(dashed curve). We attribute this behavior to the fact that the

numerical noise is dominated by the poor (zero-th order)

approximation of the inhomogeneous drift field for this test

problem.

Non-linear
We conclude the test series presented here with a genuine

nonlinear benchmark model, which has been used previously to

assess the accuracy of algorithms for solving the nonlinear, time-

dependent Fokker-Planck equation [54,55]. The time evolution of

this test problem is governed by the one-dimensional, nonlinear

SDE

dXt~{ vXtzhvx(t)w½ �dtz
ffiffiffiffiffiffiffi
2D
p

dWt, ð41Þ

where the drift field implicitly depends on the probability

distribution f (x,t) through its first moment

vx(t)w~

ð?
{?

xf (x,t)dx ð42Þ

and the particle is initially located at x~x0. An analytic solution

for the FPE corresponding to Eq. (41) can be constructed, viz. [55]

f (x,t)~
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps(t)
p exp {

x{vx(t)w½ �2

2s(t)

( )
, ð43Þ

where the moments are given by

vx(t)w~x0 exp {(vzh)t½ � ð44Þ

and

Figure 4. RMSE for the Ornstein-Uhlenbeck test problem. The root mean-square error of the simulation output is calculated relative to the
analytic solution. Initially N0~106 molecules are distributed at x0~(0,0). Simulations are run with the FPT implementation (solid curve) and the FPE
implementation (dashed curve). (left) Shown are results for 64|64 (blue squares), 128|128 (green circles) and 256|256 (red triangles) subvolumes.
We vary the drift field parameter over 0:01ƒEƒ10. (right) We display the RMSE for E~10 (blue squares), E~0:3 (green circles), and E~0:01 (red
triangles), where l is varied over 0:5ƒlƒ0:125.
doi:10.1371/journal.pone.0033384.g004
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s(t)~
D

v
(1{e{2vt): ð45Þ

This solution allows us to evaluate the accuracy of our

implementation by computing the RMSE between our simulation

output and the analytical solution Eqs. (43)–(45) . Similar to the

previous test problems, we set up a model where the drift field and

diffusivity is given according to Eq. (41) . Since the drift

component is implicitly time dependent, it needs to be evaluated

after each diffusion time step. For this purpose, we provide an

additional GPU kernel which computes the first moment vx(t)w
from the current particle state. We initialize the simulation with

N0~106 particles located at x0~4mm. We shift the coordinate

system by an amount L=8, i.e.

xi~l i{
Nx

2

� �
zL=8: ð46Þ

We fix the parameters h at h~0:2s{1 and vary v over

0:1ƒvsƒ1. We run all simulations until the system approaches

the asymptotic state, i.e. the maximum runtime is given by

tmax~max½5=(hzv),5=(2v)�. We average over 100 runs and

compare the output to the analytical solution. Fig. 5 (left panel)

displays the RMSE as a function of v for several granularities.

Shown are results for 64|64 (blue curves), 128|128 (green

curves) and 256|256 (red curves) subvolumes, where we

distinguish between the FTP (solid curve) and FPE (dashed curve)

algorithms. For comparison, we display the results for fixed drift

contributions v~1 (blue), v~0:3 (green), and v~0:1 (red) and

varying grid spacing 0:1ƒl=mmƒ1 in the right panel of the

figure.

The accuracy improves with higher granularity. For 256|256
subvolumes (red curves), the accuracy of the code is comparable to

the accuracy of a (deterministic) method to solve the non-linear

FPE based on distributed approximating functionals [54,55]. For

lower granularities (blue and green curves), a slight trend for the

accuracy to worsen with increasing v is perceivable. The FPE

implementation tends to perform slightly worse than the FPT

algorithm, in particular for higher v.

A biological application: cell migration of neurons
We conclude our discussion with an example from the field of

mathematical biology that serves to illustrate a biological problem

that requires inhomogeneous, state-dependent, drift-diffusion. It

also underlines the increasing importance of a synergetic interplay

between experiment and computer simulations to unequivocally

interpret seemingly ambiguous experimental results. We note that

the purpose of this presentation is merely illustrative. The aim of

this subsection is to reproduce literature results in the framework

of our algorithm. We will present comprehensive results in an

upcoming publication.

The question we are addressing here concerns the influence of

the signalling molecule Slit on cell migration of neurons in the

brain. A signalling molecule can affect the motility of the migrating

cell, the direction of its motion or a combination of both. Motility

regulators are divided into inducers or inhibitors depending on

whether they promote or reduce the cell motility. Characteristic

for motility regulators is that they can be effective even if they are

present in a constant concentration. If, on the other hand, the

signalling molecule provides directional guidance cues it is termed

either an attractant or a repellent. With these molecules, the

directional information is encoded in the concentration gradient

with attractants imposing a motion along the gradient, i.e. towards

the source, onto the migrating molecules while repellents cause the

cells to move towards a lower concentration of the repellent [8].

Whether a particular substance acts as motility regulator or

provides directional guidance is often difficult to decide experi-

mentally.

Early experiments provided evidence for a repellent [6] as well

as inhibiting [5] effect of Slit on migrating neurons. In an attempt

to resolve the ambiguity, Ward et al. designed a time-delayed

experimental setup [7]. A circular explant from postnatal rat

brains serves as a source of migrating neurons. Without an

application of Slit, these neurons propagate symmetrically over

time. After 24 h, an aggregate of Slit was placed at one edge of the

domain which provides a steady concentration gradient of the

signalling molecules. After another 24 h passed, the spatial

Figure 5. RMSE for the non-linear test problem. The root mean-square error of the simulation output is calculated relative to the analytic
solution as a function of the diffusivity v (left panel) and subvolume side length l (right panel) for the nonlinear test problem. We display results for
an FTP implementation (solid curve) and the FPE counterpart (dashed curve). Initially, N0~106 molecules are distributed at x0~4mm. (left) We plot
the RMSE for 64|64 (blue squares), 128|128 (green circles) and 256|256 (red triangles) subvolumes and vary the diffusivity over 0:1ƒvsƒ1.
(right) We display results for v~1 (blue squares), v~0:3 (green circles), and v~0:1 (red triangles), where l is varied over 0:5ƒlƒ0:125.
doi:10.1371/journal.pone.0033384.g005
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distribution of neurons was observed to be clearly skewed away

from the Slit source. Furthermore, instead of aggregating at some

point between the Slit source and the explant (as would be

expected if Slit had a purely inhibiting effect) the neurons moved

away from the Slit aggregate. This experiment provided conclusive

evidence for the assumption that Slit is a repellent of neurons.

Complementing these results, Cai et al. performed Monte-Carlo

simulations of the experimental set up [8]. The particular focus of

their work was the question if data of population-level cell

distributions and individual-level cell movement would allow to

draw conclusions about the underlying microscopic behavior. In

this section, we reproduce their main results using our computa-

tional framework.

Cell migration on a microscopic level is typically modelled as a

continuous-time, discrete-space Markov process [56–60] and is

hence well suited for the approach presented here. Following

[56,57], we start with a continuous-space stochastic differential

equation of the form Eq. (1) where q(Xt,t) and b(Xt,t) are now

termed the chemotaxis coefficient and motility, respectively.

During migration, the cell can interact with environmental cues

and various cell-sensing strategies have been discussed in the

literature [58,59]. The nature of the interaction can be either

strictly local, where only local field variables are considered, neighbour

based, i.e., the cell makes ‘‘decisions’’ based on field variables in the

neighboring subvolumes, local average, where the interaction is

modelled as some sort of average between neighboring subvo-

lumes, or gradient based, where the cell responds to gradients of field

variables. We choose a variant of the local average model which

encapsulates the interactions in a single, state-dependent, scalar

field variable d(x,y) and write down the two-dimensional SDE

dXt~{+d(Xt)dtz 2d(Xt)½ �1=2
IdWt, ð47Þ

where I~diag 1,1f g denotes the two-dimensional identity matrix

and we compute the spatial derivatives of d(Xt) with a standard

centered-difference. The corresponding master equation can then

be derived by computing the transition probabilities (4) or (28) .

Using the limiting procedure described in [58,59] we can easily

recover the macroscopic FPE

Lu(r,t)

Lt
~+: d(u)+u(r,t)½ �, ð48Þ

which corresponds to a classical (minimal) Keller-Segel model with

vanishing chemotactic sensitivity [56].

The behavior of a migrating cell in our model is determined by

(i) cell-cell interactions and (ii) interactions with a signalling

molecule. Following [8], we adapt the contact inhibition of cell

locomotion model [61,62] in the simple form

dcc(u)~D0
A

Azu
, ð49Þ

where A is a saturation parameter and D0 denotes the motility of a

single cell. We then incorporate the interaction of neurons with the

signalling molecule Slit as an exponential function

dcs(s)~ exp ({bs), ð50Þ

where s denotes the Slit concentration. After application at t~ta,

the distribution of Slit quickly attains a steady state [8] and we can

simplify

s(x)~
0, 0ƒtvta,

s0 exp({lDx{LD), t§ta,

�
ð51Þ

where we choose s0~1 M and treat the scale length l, which is

determined by the diffusivity of Slit and the source strength, as a

free parameter. We assume that slit is applied at the edge of the

computational domain (x~L). We finally combine the interaction

terms (49) and (50) into a single expression

d(u,x,t)~dcc(u)dcs(x,t), ð52Þ

where we emphasize the explicit spatial and temporal dependence

and note that the quantity u(x,y) is evaluated in each subvolume

through u(x,y)~N(x,y)=l2 where N(x,y) denotes the number of

particles in that particular subvolume and l is the grid spacing.

Eq. (47) in conjunction with Eqs. (49)–(52) provides all the

ingredients to reproduce the experiment presented in [7]. For

convenience, we collect all model parameters in Table 1. We start

the simulation by placing a circular explant of neurons (diameter

d~100 mm) at the origin and let the cells migrate freely, i.e.

restricted only to the contact-inhibition cell-cell interaction. The

left panel of Fig. 6 displays the copy count of neurons per

subvolume at t~24 h. As expected, the cells are symmetrically

Figure 6. Density map of the cell distribution for a cell migration simulation. We show the number of cells per subvolume for unregulated
migration (left) and after placement of the signalling molecule Slit at the bottom edge of the domain (right). The Slit aggregate is placed at t~24h
and the repelling effect on the migrating cells is clearly visible.
doi:10.1371/journal.pone.0033384.g006
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distributed in a manner similar to uninhibited diffusion. At

t~24 h, we add the Slit aggregate at the bottom edge of the

computational domain and let the simulation proceed for another

24 h. The spatial cell distribution is presented in the right panel of

Fig. 6 . We clearly observe how neurons avoid the bottom part of

the domain and, more importantly, that some neurons have

reverted direction and migrated away from the Slit source. The

latter observation is characteristic for the repellent character of Slit

as it was observed in the experiment [7,8].

Discussion

In this article, we present, for the first time, a stochastic,

mesoscopic, cellular-automaton type algorithm that, based on

solutions of the first-passage time problem inside subvolumes,

computes sample paths of the corresponding probability distribu-

tion function for inhomogeneous, non-linear, drift-diffusion

problems. In conjunction with an operator-splitting approach for

separating reaction chemistry from spatial motion [25,27], our

implementation provides a powerful tool to compute stochastic

solutions to fully non-linear, reaction-drift-diffusion problems.

The contributions of the present approach are three-fold. (i) We

extend the first-passage time algorithm [43] to higher dimensions

without restrictions on the drift field. (ii) We allow inhomogeneous,

non-linear, drift-diffusion fields. (iii) We present a data-parallel

implementation on GPUs which allows for a considerable

performance gain. To the best of our knowledge, this has not

been achieved before. Existing stochastic algorithms either neglect

drift fields altogether [23–25,63], severely restrict their applicabil-

ity to coordinate-axis aligned fields [43] or are optimized for a low

particle number approximation [12–14].

In this article, we introduce a method that is based on a

microscopic description of the particle dynamics. We start with a

stochastic differential equation and compute the transition rates

for the mesoscopic algorithm from the corresponding first-passage

times. This approach correctly reproduces the diffusivity and drift

coefficients on a discrete mesh. In contrast, an approach based on

discretizing the macroscopic Fokker-Planck equation looses accuracy

in the limit of small subvolume size. Apart from being conceptually

more satisfying, our method hence proves to be more accurate for

coarse grids and high drift fields.

We demonstrate the validity of our approach with a variety of

test problems where an analytic solution is available. The accuracy

of our implementation matches, or outperforms, the accuracy of

existing macroscopic solvers. An obvious improvement of our

algorithm can be attained by relaxing the assumption of constant

diffusivity and drift inside each subvolume. Instead, one could

imagine to allow a linear (or higher order) spatial variation of the

drift and diffusion coefficients in order to approximate the global

inhomogeneous field by a piecewise-linear function. It is then

possible to derive the transition probabilities by solving the first-

passage-time problem for an Ornstein-Uhlenbeck process. This

task seems feasible, albeit not trivial, and we plan to enhance the

implementation accordingly in future work.

A main objective of this project is to provide researchers with

‘‘barrier-free’’ access to high-performance computational resourc-

es for large-scale stochastic modelling. Our current effort hence

focuses on integrating the algorithm at hand into Inchman, a

convenient easy-to-use web interface to gpgmp (available at

http://www.csse.monash.edu.au/ berndm/inchman/). Inchman

allows users to upload chemical reaction networks, specified in the

popular systems-biology markup language (SBML), amend them

with information about the spatial structure and run large-scale

simulations. Inchman builds on the Nimrod toolkit (http://www.

messagelab.monash.edu.au/Nimrod) and hence allows versatile

parameter exploration, such as parameter sweeps [64].
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