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Abstract: Future space exploration missions require increased autonomy. This is especially true for
navigation, where continued reliance on Earth-based resources is often a limiting factor in mission
design and selection. In response to the need for autonomous navigation, this work introduces
the StarNAV framework that may allow a spacecraft to autonomously navigate anywhere in the Solar
System (or beyond) using only passive observations of naturally occurring starlight. Relativistic
perturbations in the wavelength and direction of observed stars may be used to infer spacecraft
velocity which, in turn, may be used for navigation. This work develops the mathematics governing
such an approach and explores its efficacy for autonomous navigation. Measurement of stellar spectral
shift due to the relativistic Doppler effect is found to be ineffective in practice. Instead, measurement of
the change in inter-star angle due to stellar aberration appears to be the most promising technique
for navigation by the relativistic perturbation of starlight.

Keywords: StarNAV; autonomous navigation; space exploration; stellar aberration; relativistic
Doppler effect; velocity-only orbit determination

1. Introduction

This work presents a method—referred to here as StarNAV—for using perturbations in observed
starlight to autonomously navigate a spacecraft in the Solar System. Compared to a reference
observer, such as a fictitious stationary observer at the Solar System barycenter (SSB), the starlight
measured by a sensor aboard a moving spacecraft will change in both frequency and apparent
direction. While there are many phenomena that contribute to these changes, the dominant source
for changes in both frequency and apparent direction is due to the Special Theory of Relativity
and is explainable within the framework of a Lorentz transformation. The Lorentz transformation,
which relates the spacetime coordinates seen by two observers moving relative to one another, depends
on the relative velocity between the two observers. Therefore, if relativistic perturbations of starlight
in frequency (relativistic Doppler effect) and in apparent direction (stellar aberration) can be measured,
these perturbations may be used to infer the spacecraft velocity. In many cases it is possible for
a spacecraft to navigate autonomously using only velocity measurements [1,2]. In other cases,
such as autonomous navigation with images [3], the addition of direct measurements of velocity
may significantly enhance performance.

This work explores two categories of StarNAV measurements: those due to the relativistic Doppler
effect (StarNAV-DE measurements) and those due to stellar aberration (StarNAV-SA measurements).
These measurement types complement each other, since the Doppler effect (mostly) provides
information on the velocity in direction of the observed star while stellar aberration (mostly) provides
information on the velocity components in the plane perpendicular to the direction to the observed
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star. Thus, the velocity-related information content of StarNAV-DE and StarNAV-SA measurements for
a single star sighting are (mostly) orthogonal to one another—and together they provide a description
of the full three-dimensional (3D) spacecraft velocity. Alternatively, a complete 3D velocity vector may
be constructed from just one measurement type (StarNAV-DE or StarNAV-SA) using simultaneous
observations of different stars.

Both StarNAV-DE and StarNAV-SA measurement types are now briefly introduced.
While the Doppler effect may appear at first to be the most obvious means of obtaining velocity
information from starlight, a closer analysis reveals that stellar aberration measurements are almost
always preferable.

The spectrum of a star observed by a moving spacecraft is altered by cosmological redshift
(due to expansion of the Universe), gravitational redshift/blueshift (due to potential fields near
the source and observer), and the relativistic Doppler effect (due to kinematic velocity between
the source and observer). Each of these natural phenomena contain numerous contributing effects,
with the kinematic relative velocity being the most troublesome due to the active nature of stellar
surfaces at short timescales. From a navigation perspective, it is best to separate the effects that may
be built into the star’s reference spectrum from the effects that must be considered within the state
estimation framework.

Although the concept of using the observed shift of certain spectral lines or of the entire spectrum
for navigation is not new—having been considered for navigation within our Solar System [4,5]
and beyond [6,7]—many prior studies neglect the essential challenges to such a framework arising from
stellar oscillations, granules, and other forms of stellar surface activity (despite many of these challenges
being known since nearly the beginning [8]). Indeed, this work demonstrates that autonomous
navigation using StarNAV-DE measurements is likely to be ineffective for near-term applications due to
instability in the spectral signature of most stars and challenges with instrument calibration. Thus, after
a brief development to justify this decision, StarNAV-DE measurements are usually discarded in
favor of StarNAV-SA measurements. A few special cases where StarNAV-DE measurements remain
competitive (e.g., interstellar flight) are also discussed.

The apparent direction to a star as measured by a moving spacecraft is primarily altered from
its nominal star catalog value by (1) the star’s proper motion, (2) parallax, (3) stellar aberration,
and (4) the gravitational deflection of light. The first two effects are primarily geometric and are well
explained (to the accuracy required here) within a classical Newtonian framework. The latter two
effects necessarily require a relativistic framework—with stellar aberration being explainable using
only the Special Theory of Relativity and the gravitational deflection of light requiring the General
Theory of Relativity. All four of these effects are considered in this work.

As will be shown, the effects of proper motion and parallax can be reduced to below the noise floor
required for navigation with information that is readily available in most practical cases. The remaining
two effects are both state dependent: stellar aberration is (mostly) a function of the spacecraft velocity
and the gravitational deflection of light is (mostly) a function of spacecraft position. The change in
apparent star direction from stellar aberration (up to 10 s of arcseconds (arcsec); e.g., ∼26 arcsec in
low Earth orbit (LEO)) is generally a few orders of magnitude larger than from the gravitational
deflection of light (microarcseonds (µas) to a few milliarcseconds (mas)). Consequently, only
the perturbation from stellar aberration is large enough to display usable sensitivity in the vehicle
state from the standpoint of autonomous spacecraft navigation. Although the perturbation from
the gravitational deflection of light is small and its sensitivity to the spacecraft position is too
weak for practical use as a navigation observable (at least with contemporary sensors), the effect
is still large enough that it must be explicitly accounted for in any reasonable navigation system.
The gravitational deflection of light manifests itself as a small bias, which can usually be estimated by
a single scalar parameter.

When collected with suitable accuracy, stellar aberration measurements (i.e., StarNAV-SA
measurements) permit the direct estimation of the vehicle’s inertial velocity which, in turn, may be
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used for navigation. The fundamental concept of using stellar aberration for autonomous navigation
was also suggested in [9]. However, this earlier work presented only a cursory analysis, considered
only first-order stellar aberration effects (despite requiring measurement accuracy corresponding to
third-order relativistic effects), and neglected entirely the gravitational deflection of starlight (which is
also orders of magnitude larger than the required measurement accuracy). The idea appears to have
been largely lost with the passing of time, but is given new life by recent advancements in velocity-only
orbit determination [2], an elegant mathematical framework for microarcsecond astrometry [10],
and improved astrometric data in modern star catalogs [11]. This work provides evidence that
the StarNAV-SA approach is a feasible means of autonomous navigation that may offer an alternative
(or a complement to) other autonomous navigation systems under development today (e.g., X-ray
Pulsar Navigation (XNAV)).

This work shows that navigation performance suitable for many common mission types
may be achieved when star directions are measured with errors on the order of 0.1–1 mas.
Particular mission scenarios—in Earth orbit or elsewhere—may require better or worse sensor
performance. Hence, undue importance should not be ascribed to the choice of 0.1–1 mas of sensor
error used throughout this work; it is a reasonable number for the preliminary analysis of the StarNAV
framework and nothing more.

The remainder of this work is organized as follows: Section 2 provides background and historical
context. Section 3 develops mathematical models for the underlying natural phenomena. Section 4
considers StarNAV feasibility by considering how well the natural phenomena outlined in Section 3
may be measured in practice. The remaining sections consider the efficacy of StarNAV for navigation:
Section 5 considers an instantaneous velocity fix, Section 6 considers initial orbit determination (IOD),
and Section 7 considers real-time navigation with an extended Kalman filter (EKF).

2. Background

2.1. Need for Autonomous Spacecraft Navigation

Autonomous spacecraft navigation is an enabling technology for a wide variety of
future spaceflight missions, ranging from LEO constellations to interplanetary science missions.
Low-cost autonomous navigation in LEO is made possible by the prevalence of global navigation
satellite systems (GNSS), such as the United States’ Global Positioning System (GPS) or the European
Union’s Galileo. However, there is sometimes a need for autonomous navigation capability in LEO
when GNSS is unavailable. There is also a need for autonomous navigation when traveling to
destinations beyond LEO (e.g., Earth’s moon, other planets, asteroids, comets, Earth-Sun libration
points) where no GNSS-type observables exist.

These demands for autonomous navigation have led to substantial investment in autonomous
navigation technologies in recent decades. Three such technologies are highlighted here as illustrative
examples. First is XNAV, which uses the time-of-arrival of pulses from stable millisecond pulsars
to estimate the spacecraft’s position [12–14]. Real-time, on-board XNAV was recently demonstrated
with the SEXTANT experiment [15,16] on the International Space Station (ISS). Second is classical
spacecraft optical navigation (OPNAV), which uses images of nearby celestial bodies against a star field
background. Autonomous OPNAV with horizon-based methods [3] works well with resolved imagery
of ellipsoidal bodies and will be demonstrated on NASA’s Artemis 1 mission [17]. Autonomous
OPNAV with unresolved imagery (e.g., of asteroids [18,19] or moons [20]) may be used for kinematic
positioning (essentially triangulation), a procedure that was demonstrated using JPL’s AutoNav system
on the Deep Space 1 mission [21]. Third is enabling one-way ranging using radio frequency (RF)
signals from the Deep Space Network (DSN) through the Deep Space Atomic Clock (DSAC) [22–24],
which was launched during the writing of this manuscript (June 2019).
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2.2. Remarks on the History of Star-Based Navigation

Celestial navigation and the practice of using star sightings for navigation has existed since
antiquity [25,26]. The utility of stars for navigation must have been plainly obvious, as similar techniques
were independently developed by European [27], Arabian [28], Chinese [29], and Polynesian [30]
explorers. The earliest explorers—on both land and sea—are known to have navigated by observing
the elevation of the Pole Star and by memorizing the location of guide stars as they rose or set.
With time and the advent of written language, memorization gave way to carefully curated star charts
and tables [31]. Meanwhile, star sightings were collected with ever improving instrumentation [27]
(e.g., astrolabe [32,33], sextant [34]). Expert navigators trained in the arts of cartography, astrometry,
and chronometry became essential members of all types of expeditions (e.g., exploration, scientific,
mercantile), especially on the open sea where there were no roads or geographic features to follow.
The practice of manual celestial navigation remained a critical skill for the professional mariner until
it was largely replaced with global navigation satellite systems (GNSS) in the late twentieth century.
While the proliferation of GNSS-based navigation systems has led to the complete abandonment of
celestial navigation in many sectors, celestial navigation still enjoys support in niche applications and has
seen notable mathematical and technological advances in the past 25 years [35–39].

Given humanity’s long history of navigation by stars, it comes as no surprise that some of
the first methods for autonomous spacecraft navigation relied on astronauts manually taking star
sightings with a space sextant [40–44]. While this practice continues to modern day (e.g., a new space
sextant is currently under development for future human space exploration [45]), the prevalence
of robotic (uncrewed) spacecraft provided ample motivation to automatically collect celestial
navigation measurements with a camera. The use of images of celestial bodies against a starfield
background—generally referred to as optical navigation (OPNAV)—has been studied extensively [3,46]
and has been a critical component of most outer planet exploration missions [47–52].

Conventional star sightings—either manually with a sextant or automatically with
a camera—fundamentally provide information about an inertially fixed reference direction.
Positional information (e.g., estimation of a ship’s latitude or a spacecraft’s orbit) comes not from
the star direction, but the observed direction of a feature belonging to a foreground celestial object
(e.g., the Earth’s horizon) relative to the inertially fixed star field. These relative directions (which form
an angle), together with time and a model of the celestial body’s motion, permit estimation of
the observer’s location. Therefore, images of star fields with no foreground body, such as those
acquired by a star tracker [53,54], are generally used for attitude estimation only [55].

Modern (circa 2019) star trackers and OPNAV cameras are capable of determining attitude with
errors on the order of 1–10 arcsec [56–58]. Estimation of attitude at this level requires the sensor
system be supplied with the vehicle’s inertial velocity (relative to the star catalog’s reference frame) to
remove the attitude bias introduced by stellar aberration [59], which can amount to about 26 arcsec for
a spacecraft in LEO. The stellar aberration generally manifests itself as an attitude bias because most
star trackers have a relatively narrow field-of-view (FOV) and all the observed stars experience a similar
perturbation. Consequently, the vehicle’s inertial velocity and the resulting attitude bias from stellar
aberration are a nuisance parameter that must be compensated for to achieve state-of-the-art pointing
knowledge. In contrast to the conventional use of stars for navigation (or attitude determination),
this work follows the suggestion of [9] and takes the nuisance parameter of stellar aberration and turns
it into the navigation observable.

While spacecraft navigation using star bearing measurements has been practiced since the very
first days of spaceflight, navigation by the shift in stellar (or solar) spectra due to the Doppler
effect has only been suggested and (to the author’s knowledge) never implemented in practice.
While the possibility of spacecraft navigation by the Doppler shift of spectra was recognized by
at least the early 1960s [4], the practical difficulties in such an approach were quickly realized [8].
Despite these challenges, numerous studies were subsequently performed on the efficacy of navigation
using Doppler shift from the Sun [60–62] and from stars [5,63]—with some authors (e.g, [62]) ultimately
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abandoning the approach for reasons similar to [8]. Of note is that many of these complications may
be avoided within the context of relative navigation by comparing the spectra observed at more
than one location, thus, allowing one to estimate the relative velocity between the two observers.
Applications of this approach include formation flying [64] or orbit determination by reflected
sunlight [65–67]. However, the comparison of simultaneously recorded spectra at two different
locations is not compatible with the philosophy of autonomous navigation and is not explored further
in this work.

Finally, discussion of both stellar aberration and the relativistic Doppler effect as navigation
observables also appears in the few serious papers that exist on the topic interstellar navigation
(e.g., [6,68]), although detailed analysis appears to be lacking in the published record of these works.
As with conventional celestial navigation, many interstellar navigation studies still consider stellar
aberration as a nuisance parameter to be corrected instead of a navigation observable in its own
right [69–71]. Autonomous interstellar navigation concepts generally estimate velocity exclusively
by the relativistic Doppler effect [6,7] and rarely address the practical challenges associated with
the stability stellar spectra. There are examples of concept studies that do use stellar aberration to
estimate velocity (e.g., [72]), but these appear to be few in number.

3. Mathematical Models for the Observation of Starlight by a Moving Spacecraft

3.1. Reference Star Models

If one is to use the relativistic perturbation of starlight to determine the observer (spacecraft) velocity,
it is first necessary to have an accurate model of star spectra and directions in the absence of such effects.
These models are generally referenced to a fictitious stationary observer at the SSB in the absence of
general relativistic perturbations from Solar System’s potential field (i.e., at zero potential).

Models for star direction make use of data tabulated in star catalogs that are painstakingly
constructed from astrometric observations. Likewise, models of star spectra may be cataloged. Further,
in addition to directions and spectra, models for stellar photon flux are essential for understanding
sensor performance. The following subsections address key aspects of these three reference models
(directions, spectra, photon flux).

3.1.1. Star Catalogs and Astrometric Models

Astrometry—the branch of astronomy concerned with measuring the position and motion of
celestial objects—is one of the oldest known branches of the physical sciences [73]. Indeed, astrometric
data has long been recorded in star catalogs to capture our best knowledge of star locations [31,74].
The present work assumes the use of modern catalogs as exemplified by the Hipparcos Catalog [75,76]
and Gaia Catalog [11,77], which were produced by European Space Agency (ESA) space astrometry
missions of the same name [78,79]. At the time this paper was written, the state-of-the-art is best
represented by the Gaia Data Release 2 [77], whose astrometric data can produce star line-of-sight
(LOS) unit vectors with bearing errors below 0.1 mas [11].

Modern catalogs generally store astrometric data with respect to a particular realization of
the International Celestial Reference Frame (ICRF) [80–83] with the origin shifted to the SSB—defined as
the Barycentric Celestial Reference Frame (BCRF). This is the case for the Gaia Data Release 2 used in
this study [11], as well as for many other contemporary catalogs.

For consistency with the available catalog data, this work adopts the same “standard model”
for star directions as employed for the reduction of both Hipparcos and Gaia observations [84].
This is a six-parameter model considering the following parameters for each (i-th) star at the time
of the catalog epoch (tep): BCRF right ascension (αi), BCRF declination (δi), proper motion in right
ascension direction (µα∗i ), proper motion in declination direction (µδi ), radial proper motion (µri ),
and annual parallax (vi). While other models and parameterizations may be chosen, the present
work is bound to this standard model since the use of either the Hipparcos or Gaia catalogs is
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presumed. Reformulation of the following with other reasonable parameterizations is straightforward
and (if necessary) left as an exercise to the reader.

The six-parameter model is defined as follows. Let the right ascension and declination be used to
define the star LOS unit vector to the i-th star as seen by an observer at the BCRF origin (solar system
barycenter) at the catalog epoch (tep), denoted as `i, such that

`i =

 cos(δi) cos(αi)

cos(δi) sin(αi)

sin(δi)

 (1)

Further define the orthogonal unit vectors (where zT = [0 0 1])

pi = 〈z× `i〉 =

 − sin(αi)

cos(αi)

0

 qi = `i × pi =

 − sin(δi) cos(αi)

− sin(δi) sin(αi)

cos(δi)

 (2)

such that the ordered triad {pi, qi, `i} forms a right-handed orthonormal basis for R3. The triangular
brackets 〈·〉 denote vector length normalization (i.e., 〈x〉 = x/‖x‖ ). From here, the six-parameter
model for ui (where ui is the LOS unit vector to the i-th star as seen by an observer at BCRF position
r(t) at observation time t) may be written directly in terms of `i and the i-th star’s remaining four
astrometric parameters as [84]

ui(t) =
〈
`i + [t + `T

i r(t)/c− tep](µα∗i pi + µδi qi + µri`i)−vir(t)/Au

〉
(3)

where c = 299, 792, 458 m/s is the speed of light and Au = 149, 597, 870, 700 m is the astronomical
unit (AU).

The contribution from the radial velocity is negligible for all but a small number of stars, leading to
the assumption of µri = 0 for the reduction of most Gaia data in practice [11]. Thus, the full
six-parameter model from Equation (3) becomes the usual five-parameter model,

ui(t) =
〈
`i + [t + `T

i r(t)/c− tep](µα∗i pi + µδi qi)−vir(t)/Au

〉
(4)

Furthermore, observe that the term `T
i r(t)/c (the so-called Roemer delay) has a worst-case value on

the order of 500 s at 1 AU. Assuming the median proper motion magnitude of 21.3 mas/year from
the Gaia catalog (for G ≤ 8, see Figure 1), this amounts to only a 0.34 µas modification of the LOS
direction. Consequently, this effect can be safely neglected in most cases, leading to

ui(t) =
〈
`i + (t− tep)(µα∗i pi + µδi qi)−vir(t)/Au

〉
(5)

The only remaining state-dependent term in Equation (5) is the one describing parallax.
The median annual parallax from the Gaia catalog for a spacecraft in Earth orbit is 3.9 mas (for G ≤ 8,
see Figure 1), which is clearly of a magnitude that cannot be neglected. Fortunately, however, this effect
is driven by the BCRF position. Consequently, for a vehicle in orbit about a planet, the planet’s
ephemeris (which is known) will remove the vast majority of this effect. For example, the median
residual parallax for a spacecraft in geostationary orbit (GEO) is about 1 µas. Thus, for a spacecraft
orbiting a known celestial body, the star LOS direction may often be approximated to a suitable
accuracy by

ui(t) =
〈
`i + (t− tep)(µα∗i pi + µδi qi)−virB(t)/Au

〉
(6)

where rB(t) is the BCRF position of the celestial body the spacecraft is orbiting.
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Figure 1. Distribution of proper motion magnitude and annual parallax for stars with magnitude
G ≤ 8 from Gaia Data Release 2. For raw data see [77].

For a vehicle in heliocentric orbit far away from a planet, the BCRF position may be autonomously
determined to sufficient accuracy to remove parallax (∼105 km) through triangulation using optical
LOS observations of known planets [85], asteroids [19], or both.

3.1.2. Models for Reference Stellar Spectra

Stellar spectra are one of the principal observational data types used in modern astronomy
and astrophysics. As with star directions, stellar spectra have long been cataloged [86]. Of particular
relevance here, the shifts in stellar spectra are often used to estimate radial velocity—a critical ingredient
in the fields of astrometry, astroseismology, and the search for exoplanets.

The naive application of the classical Doppler equation may lead the well-meaning navigator to
erroneously suggest that the inertial velocity can be related to the observed frequency shift in stellar
spectra according to

uTv
c

=
∆ f
f0

(7)

where u is the unit vector from the observer to the source, f0 is the frequency seen by an observer
at rest, and ∆ f is the change in frequency seen by an observer moving at velocity v relative to the rest
frame. Such an approach, however, introduces a few m/s of error at best and up to a few hundred m/s
of error at worst. A more careful analysis is clearly required.

To begin, a more precise definition of the frequency shift is required, as multiple conventions exist
in the literature and their difference is important at the level of precision required here. This work
adopts the following definition for a spectral shift, z,

z =
λ− λ0

λ0
=

f0 − f
f

(8)

where λ0 (or f0) is the reference wavelength (or frequency) and λ (or f ) is the measured wavelength
(or frequency) seen by an observer moving relative to the reference. Therefore, defining ∆λ = λ− λ0

and ∆ f = f − f0, one obtains

z =
∆λ

λ0
= −∆ f

f
(9)
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Here, an important distinction is made between ∆ f / f and ∆ f / f0,

∆ f
f

= −z vs.
∆ f
f0

=
−z

1 + z
(10)

such that it matters if the ratio of ∆ f is taken with respect to f or f0, with this choice leading to
a difference of O(z2) between the two.

The frequency of starlight is altered by numerous sources between its origin within a star
and when it is received by an instrument (e.g., spectrograph) on a spacecraft within our Solar System.
These frequency shifts are due to three principal phenomena: cosmological redshift, gravitational
redshift/blueshift, and the relativistic Doppler effect. Cosmological redshift is due to the expansion
of the Universe, causing apparent stretching of the wavelength when the source and observer are
far apart. Gravitational redshift occurs as the light escapes the potential field of the source star,
while gravitational blueshift occurs as the light falls into the potential field of our Solar System where
the spacecraft resides. Finally, change in frequency occurs from the relativistic Doppler effect due to
the kinematic velocity between the source star and the spacecraft. This relative velocity is due to
a number of sources, including: (1) the velocity of the spacecraft relative to the SSB, (2) the velocity
of the SSB relative to the observed star’s barycenter, (3) velocity of the star center-of-mass relative
to its barycenter induced by the gravitational attraction of its planets, (4) activity on the surface of
the star, and (5) rotational motion of the asymmetric star. To make a usable navigation system, one must
ultimately isolate Doppler effect due to source #1 (the velocity of the spacecraft relative to the SSB) from
all the other contributing phenomena and Doppler effect sources. This is critical, since nearly every
item listed here can contribute errors at the m/s level (or higher), depending on the particular star.

The chain of frequency shifts described above make it impossible to determine the true kinematic
radial velocity (at the m/s level or better) between a source star and an observer in our Solar System
purely from measurements of the star’s spectrum [87]. Fortunately, the navigation problem only
requires one to know the relative velocity between the observer (spacecraft) and the SSB. In practice,
this would require a reference spectrum at the SSB to be created for each StarNAV-DE guide star.

Expressing stellar spectra at the SSB is common practice within the scientific community,
where an observed spectrum may be transformed to the SSB with zero potential by (1) removing
the gravitational blueshift from the observer’s location within the Solar System’s potential field
and (2) removing the Doppler effect from the observer’s velocity relative to the SSB. Therefore, define
the frequency at the source star as f∗, the frequency at the SSB with zero potential as f , the frequency
of a fictitious stationary observer at the spacecraft’s instantaneous position as f ′, and the frequency
seen by an observer onboard the moving spacecraft as f ′′. The chain of frequency shifts is then

f∗ =
(

f∗
f

)(
f
f ′

)(
f ′

f ′′

)
f ′′ (11)

where the individual contributing factors can be written in terms of frequency shifts as

zB =
f∗ − f

f
→ f∗

f
= zB + 1 (12)

z′ =
f − f ′

f ′
→ f

f ′
= z′ + 1 (13)

z′′ =
f ′ − f ′′

f ′′
→ f ′

f ′′
= z′′ + 1 (14)

such that
f∗ = (zB + 1)

(
z′ + 1

) (
z′′ + 1

)
f ′′ (15)
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Therefore, when building a reference spectrum for a star, one may collect observations of f ′′ over
a long period of time to compute a time-history of f according to

f =
(
z′ + 1

) (
z′′ + 1

)
f ′′ (16)

where (z′ + 1) removes the gravitational blueshift and (z′′ + 1) removes the Doppler shift of
the observer’s motion relative to the SSB. The shifts z′ and z′′ are generally well-known when
building a reference spectrum from scientific observations. At a high-level, this process is reversed
for navigation with StarNAV-DE measurements, when f and f ′′ are known and one solves for
the spacecraft state information embedded in the shifts z′ and z′′. Mathematical development of z′

and z′′ may be found in Section 3.3.
This time-history of f generated from Equation (15) will have oscillations at many different

timescales that are often the focus of scientific study. From the standpoint of navigation, however,
these oscillations are a nuisance (see Section 4.2) and the present work assumes a long-term average
for f is generated.

Note, of course, that the shifted frequency f is related to what one might otherwise expect
(e.g., from the location of absorption lines for specific elements) according to

f∗ = (zB + 1) f (17)

This frequency shift may be written as a speed (instead of as a dimensionless frequency ratio)
by multiplying the SSB shift zB by the speed of light. Doing so results in the so-called “barycentric
radial-velocity measure,” czB, which is a standardized astrometric parameter often used to describe
the shift of the underlying spectral model to the SSB. A detailed discussion about computing czB is
provided in [87].

3.1.3. Models for Stellar Photon Flux

Models of stellar photon flux are essential in evaluating the performance of any star-observing
system. In the case of StarNAV, measuring either the direction to or spectra of a star critically relies on
having a sufficient number of photons available for the sensor to detect. From a design standpoint,
it is useful to express the photon flux as a function of star magnitude (and, perhaps, star type), as this
information is readily available in most star catalogs.

This task is somewhat complicated by the different systems of star magnitude in use today [88].
Unless otherwise specified, this work assumes magnitudes are defined using the Johnson-Cousins
system [89,90]. Transformation to other photometric systems—such as the Sloan Digital Sky Survey
system [91] or the Gaia system [92]—is straightforward and left to the reader. This work exclusively
uses apparent magnitudes and all references to magnitude are assumed to be apparent magnitude.
Regardless of the specific convention, most photometric magnitude systems describe the apparent
irradiance (E) relative to a reference irradiance (E0) on a logarithmic scale,

m = −2.5 log10
E
E0

(18)

where the zero point is arbitrary and chosen by convention, often with zero magnitude being defined
as approximately that of Vega (α Lyr). Vega has a visual magnitude of 0.03 in the Johnson-Cousins
system [88].

The objective now is to relate photon flux to star magnitude. In practice, the usefulness of a photon
flux model is fundamentally related to the sensor’s spectral sensitivity. Given a spectral irradiance of
E(λ), the irradiance measured by a sensor in space with spectral sensitivity S(λ) is [88,93]

ES =
∫

E(λ)S(λ)dλ (19)
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and the corresponding photon flux is

nS =
1
hc

∫
λE(λ)S(λ)dλ (20)

where h = 6.626 070 15× 10−34 J·s is the Planck constant and c is the speed of light. When S(λ)
is the passband for the Johnson-Cousins V-band filter, one obtains the measured irradiance (EV)
and photon flux (nV) corresponding to the visual magnitude mV . Given the conventions of
the Johnson-Cousins system, a star of visual magnitude mV = 0 has a spectral irradiance at the V-band
effective wavelength of E(λV) ≈ 3.64× 10−23 W/m2/Hz [94].

As a useful reference, temporarily assume that all photons are received at the V-band’s effective
wavelength, λV = 544.8 nm [88]. Recognizing that the V-band filter has a passband (full width half
maximum) of around ∆λ ≈ 84 nm [88] and that ‖∆ f ‖ ≈ c‖∆λ‖/λ2, the idealized photon flux for

a mV = 0 star may be found by approximating the integral from Equation (20) as

nV0 ≈
λV
hc

c∆λ

λ2
V

E(λV) =
1
h

∆λ

λV
E(λV) = 8.47× 109 photons/m2/second (21)

which may be written in exponential form as nV0 ≈ 109.93 photons/m2/second. This is generally consistent

with the value of nV0 ≈ 109.94 photons/m2/second presented in [93]. Consequently, given the definition
of star magnitude from Equation (18), the V-band photon flux for a star of apparent visual magnitude mV
is given by

nV =
(

8.47× 109
) (

10−0.4mV
)

photons/m2/second (22)

As noted above, stars do not emit all their photons at one wavelength. Furthermore, many optical
sensors have a spectral sensitivity that captures more photons than what is passed by
the Johnson-Cousins V-band filter, such that the photon flux seen for a mV star often exceeds that
of Equation (22) in practice. These issues are now addressed using the above results as a reference.

Stars are generally well-modeled as blackbody radiators, such that the spectral irradiance of a star
with temperature T is proportional to the distribution described by Planck’s law [95],

E(λ) ∝ W(λ, T) =
2hc2

λ5

[
exp

(
hc

λkT

)
− 1
]−1

(23)

where k = 1.380 649× 10−23 J/K is the Boltzmann constant. Consequently,

E(λ1)

E(λ2)
=

W(λ1, T)
W(λ2, T)

(24)

Thus, if one defines Ŵ(λ, T) to be the ratio

Ŵ(λ, T) =
W(λ, T)

W(λV , T)
(25)

then, by rearrangement of Equation (20), it is relatively straightforward to show that [93]

n = nV

[
101.05

∫
D(λ)

(
λ

λV

)
Ŵ(λ, T)dλ

]
(26)

where D(λ) is the spectral sensitivity of the detector. The value for the integral depends on the detector
of choice and temperature of the observed star. Values of this integral are tabulated in [93] for many
different combinations of detector type and star type. Assuming the detector is a charged coupled
device (CCD) [96] and the observed star is of type F or G, the bracketed term in Equation (26) evaluates
to [93]
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101.05
∫

D(λ)

(
λ

λV

)
Ŵ(λ, T)dλ ≈ 100.51 = 3.24 (27)

Thus, substitution of Equations (22) and (27) into Equation (26) leads to the expression for the photon
flux from a F or G type star of magnitude mV that would be seen with a typical CCD detector

n ≈
(

2.741× 1010
) (

10−0.4mV
)

photons/m2/second (28)

The resulting photon flux from Equation (28) is tabulated in Table 1 for stars of magnitude 0 to
6. Compared with a F or G star of the same magnitude, stars of most other types (e.g., A, B, K)
will generally appear to have a slightly higher photon flux due to the spectral sensitivity of most
CCDs—thus, the result of Equation (28) is a conservative estimate.

Table 1. Photon flux as measured by a typical CCD detector for stars of type F and G.

Apparent Visual Magnitude, mV Number of Stars * Brighter than mV Photon Flux photons/m2/second

0 4 2.741× 1010

1 15 1.091× 1010

2 49 4.344× 109

3 170 1.729× 109

4 512 6.885× 108

5 1601 2.741× 108

6 5011 1.091× 108

* Number of stars (of all types) from Version 2 of the Hipparcos catalog [97].

3.2. Perturbations in Apparent Direction of Starlight

3.2.1. Gravitational Deflection of Starlight in the Solar System

The gravitational deflection of light is one of the many consequences of general relativity.
Such deflection comes from a number of different sources (as discussed at length in [10]), each of
which may be considered separately. The main sources include starlight deflection from: (1) spherically
symmetric part of gravity field of large bodies in the Solar System, (2) non-symmetric part of bodies’
gravity field, (3) gravitomagnetic field induced by bodies’ translational motion, and (4) gravitomagnetic
field induced by bodies’ rotational motion. Assuming that star observations are not taken at grazing
angles to the Sun or to any of planets (especially Jupiter), only the spherically symmetric gravity field
effects are important at the levels of measurement accuracy considered here [10,98].

Consider a model for the gravitational deflection of starlight of the form

u′i = ui + δui (29)

where ui is the unit vector describing the direction to the i-th star in the absence of (or infinitely
far from) the gravitating bodies as produced by the model of appropriate accuracy from Section 3.1.1.
Furthermore, let u′i be the unit vector describing the direction to the i-th star as seen by
a fictitious observer at BCRF position r with zero velocity (the velocity effects are considered later
as stellar aberration).

Define the distance from the spacecraft to any one of the gravitating bodies as

ρB = ‖rB − r‖ (30)

such that the unit vector describing the direction from the spacecraft to the body is

uB = 〈rB − r〉 = rB − r
ρB

(31)
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Further define the angle between the i-th star and one of the gravitating bodies as seen by the spacecraft
(Figure 2) as

cos(θiB) = uT
i uB (32)

Under these conditions, the deflection of starlight due to the spherically symmetric gravity fields
of the Solar System bodies is given by [10]

δui = −∑
B

(1 + γPPN) GMB

c2‖diB‖2

(
1 + uT

i uB

)
diB (33)

where G = 6.674 × 10−11 m3kg−1s−2 is the universal gravitational constant and MB is the mass
of celestial body B. The scalar γPPN is one of the principal parameters within the parameterized
post-Newtonian (PPN) formalism [99–101]. Under general relativity γPPN is equal to unity. One of
the best estimates of γPPN to date is due to radiometric tracking of the Cassini spacecraft with
DSN [102], which found that γPPN − 1 = (2.1± 2.3)× 10−5. Hence, one expects (1 + γPPN) ≈ 2.

The 3× 1 vector diB is defined as

diB = ui × [(rB − r)× ui] = − [ui×]2 (rB − r) =
(

I3×3 − uiuT
i

)
(rB − r) (34)

where [·×] is the skew-symmetric cross product matrix, such that a× b = [a×]b. Observe that diB
(for each celestial body) and δui lie in the plane perpendicular to ui by construction.

Star 1

Star 2

Celestial Body

Spacecraft

𝐮"

𝐮#

𝐮$

𝜃#"

𝜃$"

Figure 2. Geometry of stars and celestial bodies for computation of the gravitational deflection of light.

Therefore, assuming (1 + γPPN) = 2, the magnitude of the gravitational deflection described in
Equation (33) for any given body may be computed as [10,100]

δuiB =
2GMB

c2ρB

1 + cos (θiB)

sin (θiB)
=

2GMB

c2ρB
cot (θiB/2) (35)

which is applied in the direction wiB

wiB = 〈diB〉 =
〈(

I3×3 − uiuT
i

)
uB

〉
(36)
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such that Equation (33) may also be written as

δui = −∑
B

δuiB wiB (37)

In general, the magnitude of the gravitational deflection of starlight is large enough that it must
be explicitly accounted for within the StarNAV framework. While it is always necessary to consider
deflection from the Sun for missions within the Solar System, which additional terms are important
depends greatly on the specific mission scenario. As an illustrative example, consider a spacecraft
in geostationary orbit. The magnitude of the gravitational deflection of starlight as described by
Equation (35) for such an example is shown in Figure 3. These curves reflect the worst-case deflection
induced by the five most significant bodies in the Solar System. The results show that the gravitational
deflection of light must be considered for the Earth and Sun in almost all cases, while Jupiter and Saturn
need only be considered for star sightings very near those planets (small θiB). Fortunately, with
the exception of the Earth and Moon, the majority of the light deflection comes from the relative
position between Earth and the other gravitating body (i.e., since the spacecraft is in Earth orbit
‖r− rB‖ ≈ ‖rE − rB‖). Therefore, presuming the spacecraft is known to be in Earth orbit, one may
assume the BCRF position of the spacecraft is approximately the BCRF position of Earth (r ≈ rE)
for the gravitational deflection induced from all bodies other than the Earth and Moon. In this case,
the residual deflection of starlight is as shown in Figure 4.

Figure 3. Magnitude of gravitational deflection of starlight from the spherical gravity field of the five
most significant celestial bodies for a spacecraft in geostationary orbit.

These results may be used to develop exclusion angles that guarantee the deflection of light by
a particular body remains below a specified threshold. Body exclusion angles for the geostationary
example discussed here are shown in Table 2. As with Figures 3 and 4, the exclusion angles are
produced by the evaluation of Equation (35). Assuming a sensor capable of measuring an inter-star
angle to within 0.1 mas, the threshold for exclusion is set to a starlight deflection of 0.01 mas
(one order of magnitude smaller than the measurement noise). Two exclusion angles are shown
in Table 2. The first exclusion angle, θexc1, assumes the effect is neglected entirely (corresponding to
Figure 3). The second exclusion angle, θexc2, assumes the spacecraft is known to be somewhere in
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Earth orbit (corresponding to Figure 4). The exclusion angles required to completely ignore the effect
of gravitational light deflection, θexc1, are clearly too large (essentially the entire celestial sphere for
the Sun). Thus, any practical implementation of the StarNAV framework will almost certainly require
some accounting of the gravitational deflection of light. In this particular example, simply accounting
for the spacecraft being in Earth orbit creates reasonable exclusion angles for all bodies other than
the Earth itself (where it’s noted that Sun exclusion angles on the order of 10–20 deg are common for
optical sensors). The deflection of light by Earth’s gravity is measurably affected by the spacecraft’s
changing Earth-relative position and must be estimated as part of the StarNAV framework.

Figure 4. Residual magnitude of gravitational deflection of starlight from the spherical gravity field
of the five most significant celestial bodies for a spacecraft in geostationary orbit. Entirety of line for
Saturn is below 10−4 mas.

Table 2. Exclusion angles required to guarantee neglected star bearing perturbations remain below
0.01 mas for a spacecraft in GEO.

Celestial Body θexc1 θexc2

Sun 179.7 deg 13.1 deg
Earth 154.0 deg 154.0 deg
Moon 0.75 deg 0.75 deg
Jupiter 11.2 deg 2.90 arcsec
Saturn 1.55 deg 0.18 arcsec

3.2.2. Stellar Aberration

Stellar aberration—defined here as the change in apparent direction to a star due to the relative
motion between the observer and the frame in which the reference star direction is defined—is a direct
consequence of the relativistic addition of velocities. Although modern mathematical descriptions
of stellar aberration make use of relativity, the existence of this effect predates Einstein by some
time. The classical (Galilean) explanation is due to the landmark work of James Bradley in the early
eighteenth century [103]. It was the tension between Bradley’s explanation of stellar aberration with
the prevailing theories of light in the late nineteenth century that provided one of the principal
motivations for Einstein’s development of the Special Theory of Relativity [104,105] (see Appendix A).
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While the classical approach of Bradley is still used today—as, unfortunately, is the case for earlier
work exploring stellar aberration for navigation [9]—the result is only correct to first order in v/c.
As will soon become apparent, navigation by stellar aberration requires consideration of at least second
(if not third) order terms in v/c, thus, rendering the classical approach ineffectual for the task at hand.

Effect of Stellar Aberration on Observed Direction to a Single Star

Stellar aberration is most straightforwardly explained using a Lorentz transformation to relate
how a ray of light is seen by a stationary observer (e.g., zero velocity relative to the star catalog frame)
and a moving observer (e.g., a telescope on the surface of Earth or a spacecraft).

Proceed, therefore, by introducing the common convention

β = v/c (38)

such that the Lorentz factor becomes

γ = 1/
√

1− vTv/c2 = 1/
√

1− βT β (39)

Through direct application of the Lorentz transformation (see Appendix A), the apparent direction
u′′i to the i-th star as measured by an observer aboard the moving spacecraft (light ray with tangent
velocity−cu′′i ) is related to the direction u′i (see Equation (29)) to the same star as seen by a non-moving
observer at same location (light ray with tangent velocity −cu′i) according to [10,59]

u′′i =
1

γ (1 + vTu′i/c)

{
u′i +

[
γ

c
+ (γ− 1)

vTu′i
vTv

]
v

}
(40)

which after straightforward algebraic manipulation becomes

u′′i =
1

γ (1 + βTu′i)

{
u′i +

[
γ + (γ− 1)

βTu′i
βT β

]
β

}
(41)

u′′i =
1

1 + βTu′i

[
u′i + β−

(
1− γ

γ

)
〈β〉 ×

(
〈β〉 × u′i

)]
(42)

The equivalence of these expressions with the original result of Einstein for the aberration of light is
shown at the end of Appendix A.

By employing the machinery of special relativity, the result of Equations (40)–(42) assumes locally
flat spacetime. That is, the velocity v is the velocity of the spacecraft as seen by a stationary fictitious
observer sitting at BCRF position r. Care must be taken in relating v to the spacecraft velocity as seen
by observers at other locations or in different reference frames. The difference between the various
relativistic representations of the spacecraft velocity with their Newtonian counterparts is generally
O(c−2), the implications of which are discussed in Section 5.

Therefore, proceeding undeterred, observe that the magnitude of β is generally small (e.g., ‖β‖ ≤
10−4 for objects in Earth orbit). Consequently, it becomes insightful to consider an expansion of
Equation (42) about β = 03×1,

u′′i =u′i (43)

+
[
u′i × (β× u′i)

]
−
[
(u′Ti β)u′i × (β× u′i) + (1/2)β× (u′i × β)

]
+
[
(u′Ti β)2u′i × (β× u′i) + (u′Ti β/2)β× (u′i × β)

]
+O(‖β‖4)
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This expansion is equivalent to that reported in [10] and also the same to first order in β as [9,59] (these
latter two only went to first order).

For a spacecraft with ‖v‖ = 38 km/s, the term linear in β is up to 26.1 arcsec, the term quadratic
in β is up to 1.7 mas, and the cubic term in β is up to 0.1 µas. Given that the assumed sensor error is on
the order of 0.1–1 mas, it is clear that one must consider terms up to second order in β. Furthermore,
the linear term in β dictates the magnitude of the relationship between a perturbation in the velocity
and the corresponding perturbation in the observed star LOS direction. The maximum sensitivity
geometry leads to δφ ∼ δv/c, such that 0.1 mas of measurement error in the star LOS direction would
correspond to as much as 0.15 m/s of velocity error.

Effect of Stellar Aberration on Inter-Star Angle

The single-star stellar aberration model from Equation (42) may be used to develop a closed-form
solution for the effect of stellar aberration on the angle between two stars. Therefore, after defining
the observed angle between two stars as θ′′ij ,

u′′i
Tu′′j = cos θ′′ij (44)

substitution of Equation (42) and some algebraic manipulation leads to [10]

cos θ′′ij = u′′i
Tu′′j = 1−

(
1− u′i

Tu′j
)  1− βT β(

1 + βTu′i
) (

1 + βTu′j
)
 (45)

As with the single star case, this result may also be expanded about β = 03×1. Recognizing that(
1 + βTu′i

)−1
= 1− βTu′i +

(
βTu′i

)2
−
(

βTu′i
)3

+O(‖β‖4) (46)

simple substitution and grouping of like terms will show that

cos θ′′ij = u′′i
Tu′′j =u′i

Tu′j +
(

1− u′i
Tu′j
)

(47)

×
{[

βTu′i + βTu′j
]

−
[
(βTu′i)

2 + (βTu′j)
2 + (βTu′i)(βTu′j)− βT β

]
+
[
(βTu′i + βTu′j)((βTu′i)

2 + (βTu′j)
2 − βT β)

]}
+O(‖β‖4) (48)

This expression is equivalent to that reported in [10] and also the same to first order in β as [9] (the latter
one only went to first order).

Assuming the LOS directions to the two stars are nearly perpendicular to one another (uT
i uj ≈ 0)

and a spacecraft with ‖v‖ = 38 km/s, the term linear in β is up to 37 arcsec, the term quadratic in β is
up to 3.3 mas, and the cubic term in β is up to 0.2 µas. As with the single star case, sensor error on
the order of 0.1–1 mas requires the consideration of the term that is second order in β.

3.3. Perturbations in Frequency of Stellar Spectra

3.3.1. Gravitational Blueshift/Redshift

As a consequence of general relativity, starlight originating from outside our Solar System
experiences a blueshift (increases in frequency) due to the potential field of the Sun and planets.
Conversely, light from the Sun experiences a redshift (decrease in frequency) as it emanates outward
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through the Solar System. Following the same notational convention as used in Section 3.1.2, let fi be
the frequency of light from the i-th star in the absence of (or infinitely far from) the gravitating bodies.
Furthermore, let f ′i be the frequency of light from the i-th star as seen by a fictitious observer at BCRF
position r with zero velocity. With these definitions, and considering only the spherically symmetric
portions of the gravity field, general relativity suggests that (again, assuming the source to be infinitely
far away) [106]

fi
f ′i

= z′ + 1 = 1− 1
c2 U(r) +O(c−4) (49)

where z′ is from Equation (13) and U(r) is the local gravitational potential,

U(r) ≈∑
B

GMB
‖r− rB‖

(50)

and, as before, G is the universal gravitational constant, MB is the mass of celestial body B, and rB is
the BCRF position of celestial body B.

In most cases, this effect is dominated by the gravitational attraction from the Sun. For a spacecraft
at an altitude of 410 km above the Earth’s surface, z′ = −9.9 × 10−9 (equating to an apparent
velocity perturbation of cz′ = 2.96 m/s) considering just the Sun. When both the Earth and Sun
are considered, the blueshift increases to z′ = − 10.5 × 10−9 (equating to an apparent velocity
perturbation of cz′ = 3.16 m/s).

3.3.2. Relativistic Doppler Effect

The Doppler effect is another consequence of the Special Theory of Relativity. Let the frequency of
light seen by a fictitious stationary observer at BCRF position r be given by f ′i (which one may obtain
from Equation (49)), and let the frequency of light as seen by an observer aboard the moving spacecraft
be given by f ′′i . Again, using the same convention as for stellar aberration, denote the spacecraft
velocity as seen by fictitious stationary observer as v. Assuming the light is emanating from the i-th
star, the apparent direction to the star is u′i for a fictitious stationary observer and u′′i for the spacecraft.
Define ni to be the tangent vector to the ray of light at r, such that

u′i = −n′i (51)

u′′i = −n′′i (52)

For convenience in comparing with common convention, define φi to be the angle between the ray of
light’s tangent direction and the velocity vector,

cos(φ′i) = 〈v〉
T n′i = − 〈v〉

T u′i (53)

cos(φ′′i ) = 〈v〉
T n′′i = − 〈v〉T u′′i (54)

In his original 1905 paper introducing what would become known as the Special Theory of
Relativity [104], Einstein presented the following expression for the relation between the frequency of
light seen by observers in two different frames (the so-called relativistic Doppler effect)

f ′′i = γ
(
1− ‖β‖ cos(φ′i)

)
f ′i = γ

(
1 + βTu′i

)
f ′i (55)

where γ is the Lorentz factor from Equation (39). Note that this is expressed in terms of the star
direction as seen by the stationary fictitious observer, u′i. It is also possible to write the relativistic
Doppler effect in terms of the star direction as seen by the moving observer, u′′i ,
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f ′′i =
f ′i

γ
(
1 + ‖β‖ cos(φ′′i )

) =
f ′i

γ
(

1− βTu′′i
) (56)

which is found by the substituting the following expression for stellar aberration (see Appendix A)
into Equation (55)

cos(φ′′i ) =
cos(φ′i)− ‖β‖

1− ‖β‖ cos(φ′i)
(57)

It is emphasized that Equations (55) and (56) are equivalent expressions for the relativistic Doppler
effect, simply written in terms of the star direction as seen by different observers.

Within the context of StarNAV-DE navigation, the aberrated star direction direction u′′i is likely
not known with sufficient precision since the velocity is unknown. Therefore, it is generally better to
employ Equation (55), as u′i is more likely to be known in practice to the necessary precision.

As with stellar aberration, it is insightful to expand Equation (55) about β = 03×1. Specifically,
rearrange Equation (55) to find

z′′i + 1 =
f ′

f ′′
=

1

γ
(

1 + βTu′i
) (58)

The terms on the right-hand side may be individually expanded to O(‖β‖3)

γ−1 = 1− 1
2

βT β +O(‖β‖4) (59)

(
1 + βTu′i

)−1
= 1− βTu′i +

(
βTu′i

)2
−
(

βTu′i
)3

+O(‖β‖4) (60)

Substitution of these results into Equation (58), grouping like powers of β, and neglecting terms of
O(‖β‖4) and higher,

z′′i = −βTu′i +
[(

βTu′i
)2
− 1

2
βT β

]
−
(

βTu′i
) [(

βTu′i
)2
− 1

2
βT β

]
+O(‖β‖4) (61)

which agrees with more complicated expansions of the relativistic Doppler effect (e.g., [106,107])
when appropriate assumptions are made regarding the source and observer. Note, of course, that if
one only retains the linear term in β the result is the classical (non-relativistic) Doppler effect

z′′i = −1
c

vTu′i +O(‖β‖2) (62)

Returning to the O(‖β‖4) expansion from Equation (61) and assuming a spacecraft with ‖v‖ =

38 km/s, the term linear in β is up to 1.27 × 10−4, the term quadratic in β is up to 8.03 × 10−9,
and the cubic term in β is up to 1.02× 10−12. The worst-case geometry (when u′′i and v are collinear)
leads to δz′′ ∼ δv/c, such that the second-order term could contribute a velocity error as large
as 2.4 m/s and the third-order term could contribute a velocity error as large as 0.3 mm/s.

It is clear, therefore, that second-order terms are likely required in the measurement model and that
use of the non-relativistic (linear) Doppler effect is not generally appropriate. To avoid an unnecessary
measurement bias, it is suggested that the nonlinear measurement model of Equation (55) be used
in practice.

3.3.3. Remarks on the Combination of Gravitational Blueshift and Relativistic Doppler Effect.

The result of Equation (55) and the resulting expansion of Equation (61) consider only the effects
of special relativity. It is worth briefly noting that these results be combined with Equation (49) to
provide a compact expression for f / f ′′. Therefore, recalling Equation (16), the total frequency shift
relative to the reference spectrum (zero potential at the SSB) is



Sensors 2019, 19, 4064 19 of 61

f
f ′′

=

(
f
f ′

)(
f ′

f ′′

)
=
(
z′ + 1

) (
z′′ + 1

)
(63)

Proceed by noting z′ is given by Equation (49) and z′′ by Equation (58). Therefore, substituting
expansions for z′ and γ−1 only,

f
f ′′

=

[
1− 1

2c2 vTv− 1
c2 U(r)

] (
1 +

1
c

vTu′i

)−1
+O(c−4) (64)

which is the expression commonly seen for relating barycentric and observer spectra (e.g., [87]).

4. Preliminary Feasibility Assessment of StarNAV Measurements

This section considers the practical feasibility of obtaining StarNAV-SA and StarNAV-DE
measurements. StarNAV-SA measurements are found to be achievable with existing technology,
although challenges remain with regard to instrument size, inter-instrument alignment, and vibration
isolation. StarNAV-DE measurements of suitable accuracy are not presently achievable due to
difficulties with stellar spectra stability and instrument calibration. Details in support of these
conclusions are now presented.

4.1. Feasibility of StarNAV-SA Measurements

The angular precision required to measure stellar aberration has been available for over a century.
Indeed, state-of-the-art scientific instrumentation is presently capable of providing star bearing
measurements with errors 2–3 orders of magnitude better than necessary for navigation with
the StarNAV-SA technique.

The effect of stellar aberration occurs at all wavelengths of light and for every star. Consequently,
the system designer is free to select guide stars from 100s of bright stars of suitable astrometric quality
that are well-distributed throughout the celestial sphere. Furthermore, these stars may be observed
in whatever wavelengths are most convenient (e.g., visible, infrared, X-ray). This is a substantial
advantage of StarNAV-SA measurements when compared to XNAV, as the latter is limited to observing
a relatively small set of stable millisecond pulsars (many of which are not very bright).

Although individual instrument components may measure directions to a particular star,
the StarNAV-SA technique ultimately only uses inter-star angles for navigation. Since the inter-star
angles seen by the sensor system are the same regardless its orientation, the choice of using only
inter-star angles allows navigation without the need of an inertial attitude estimate better than the star
sighting measurements themselves. This is of critical importance, as obtaining attitude estimates
at the level of 0.1 mas is a daunting task—and likely impossible if the velocity is unknown a priori.

The present work presumes that a generic StarNAV system (see Figure 5) would need to measure
the angle between two stars (separated from each other by a large angle) with an error on the order
of 0.1–1 mas. Such bearing precision to a single star is possible with either a conventional direct
imaging system (i.e., a telescope) or an interferometer. The primary challenge is the size of these
systems and their compatibility with the constraints of a navigation instrument.

The large angle between stars likely requires that a separate optical instrument (either a telescope
or an interferometer) be used to observe each star. Consequently, error in the inter-star angle is driven
not only by the single-instrument error, but also by the error in the relative alignment of the instruments.
Achieving long-term stability in instrument alignment at the 1 mas level or better is difficult in practice
and a metrology system will likely be required to monitor relative alignment. Although such metrology
systems are complicated, they have been proposed in the past for space systems of various sizes.

Obtaining bearing measurements with errors below 1 mas places considerable requirements
on instrument pointing and vibration. Thus, all StarNAV systems are expected to require vibration
isolation in practice. In some cases the StarNAV instrument platform may also require its own fine
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pointing system to obtain pointing control and slew rates that are be beyond the generic attitude
control capability of the host spacecraft.

In summary, there are three primary considerations in assessing the practical feasibility of
a StarNAV-SA system: (1) performance and size of a single optical instrument, (2) alignment between
optical instruments, and (3) pointing and vibration. This is shown pictorially in Figure 5. The following
subsections consider each of these areas in more detail and outline some of the major challenges in
implementing such a system.

guide star #1

guide star #3guide star #2

star direction measured
by optical instrument

metrology system monitors relative 
alignment of individual optical 
instruments 

StarNAV data processing unit

𝜃"#

𝜃"$
𝜃$#

vibration isolation

Figure 5. Notional diagram of a StarNAV-SA sensor system used to measure perturbations in
inter-star angles, θij. A separate optical instrument (three depicted in this example) is used to observe
each guide star. Orientation between the individual optical instruments is monitored by a metrology
system. The entire StarNAV-SA sensor system requires vibration isolation as well as fine pointing
(not illustrated) to keep guide stars within the instrument FOVs.

4.1.1. Performance of Candidate StarNAV-SA Optical Instruments

There has been considerable past work on optical instruments capable of collecting
the measurement type required for StarNAV. Of interesting historical note, a design for
a “hyper-accuracy space sextant” was developed in the late 1960s as a derivative of the Apollo
space sextant. This sensor was designed to measure inter-star angles for a theoretical crewed interstellar
mission, thus, allowing for autonomous navigation by principles similar to those reported in this work.
A summary of the optical design appears in [69] and a collection of detailed schematics appear in [108].
This sensor was capable of measuring inter-star angles with an error of around 0.5 arcsec (500 mas).
While impressive for a completely manual system, the hyper-accuracy space sextant’s measurement
error is still 2–3 orders of magnitude larger than needed for navigation by stellar aberration in most cases.

It is desirable (if not required) in most cases to have an automatic—instead of manual—system.
Typical star trackers and other conventional camera-like navigation sensors are not generally diffraction
limited. Instead, these sensors employ intentional defocus to spread the photons from a single
star across multiple pixels, ultimately allowing star centroids to be found with an accuracy of
about 0.1 pixel [54,109]. At the sensor system level, star trackers may provide individual star
bearing errors on the order of 1 arcsec. A more specialized astrometric sensor is clearly required
for the present application. Therefore, the following discussion briefly considers the efficacy of staring
telescopes and interferometers for obtaining StarNAV-SA measurements. While other techniques exist,
such as scanning systems [110], a broader instrumentation trade is left for later work.

The accuracy for both telescopes and interferometers is fundamentally limited by diffraction
and photon noise, providing a performance floor for even a perfectly built sensor. This limit is
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straightforward to derive from first principles in many ways, such as the methods of Falconi [111]
or Lindegren [112,113].

Diffraction occurs as starlight interacts with the edges of the aperture on a telescope or
interferometer. This effect is generically described by the Fresnel-Kirchhoff diffraction integral [114,115].
In the case where the diffracted light is focused onto a detector with an optical system, this is
well approximated by the Fraunhofer diffraction equation—which, for a circular aperture, produces
the celebrated Airy pattern (intensity pattern on the focal plane for the best-focused point source
of light) [112,115,116],

I(φ) =
N
π

[
J1(kDφ/2)

φ

]2

(65)

where J1 is the Bessel function of the first kind of first order, D is the aperture diameter, φ is the angle
from the true star center, N is the total number of photons, and k = 2π/λ is the wave number. The Airy
pattern dictates the resolution of an optical system with a circular aperture by defining the minimum
angular separation required to distinguish two point sources from one another. This resolution limit
(the so-called Rayleigh criterion [117]) is generally taken to be the first dark band in the Airy pattern,
which occurs at [115]

φDL ≈ 1.22
λ

D
(66)

The same approach may be used to determine the diffraction limited resolution of an interferometer, [118]

φDL ≈
λ

2B
(67)

where B is the interferometer’s baseline.
It is essential to recognize that the Rayleigh criterion represents the system’s resolution and not its

accuracy. In many cases, the accuracy of a bearing measurement to a particular source may be many
orders of magnitude better than φDL.

Recognizing that the diffraction pattern is essentially the probability density function (PDF)
for where a photon will strike the focal plane, one may attempt to find the maximum likelihood
estimate (MLE) of the star direction by minimizing the negative log-likelihood function. Under such
a scheme, one may show the Cramér-Rao bound for the variance to be [113]

σ2
φ ≥

λ2

16π2∆x2N
(68)

where ∆x is the root-mean-square (RMS) extent of the aperture in the x-direction. For a circular
aperture with area A = πD2/4 one may analytically compute ∆x for a filled-aperture telescope

∆x2
tel =

1
A

∫ 2π

0

∫ D/2

0
r2 cos2(θ)r dr dθ =

D2

16
(69)

or for an interferometer consisting of two apertures of area A separated by a baseline B

∆x2
int =

1
2A

∫ 2π

0

∫ D/2

0

{
[r cos(θ)− B/2]2 + [r cos(θ) + B/2]2

}
r dr dθ =

B2

4
+

D2

16
(70)

and, assuming B� D,

∆x2
int ≈

B2

4
(71)

Consequently, the Cramér-Rao bound for the accuracy of a diffraction limited telescope is

σφtel ≥
λ

πD
√

N
(72)
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or, for an interferometer,

σφint ≥
λ

2πB
√

N
(73)

These expressions are identical to those of Falconi [111] and Lindegren [112,113], which may also be
found elsewhere in slightly different forms (e.g., [119]). The total number of photons collected by
a single aperture of area A may be computed as

N = A nτ (74)

where n is the photon flux of the observed star as measured by the detector (see Section 3.1.3) and τ is
the exposure time. For an interferometer with two apertures (each with diameter D), one finds that

N =

{
πnτD2/4 filled-aperture telescope
πnτD2/2 two-aperture interferometer

(75)

In practice, the actual performance of a system will necessarily be worse than the lower bounds
of Equations (72) and (73) due to stray light, detector noise, quantization error (pixelization) on
a digital sensor, imperfections in construction of the optical system, and other real-world challenges.
Different choices, especially in the numerical scheme used to compute the centroid of the star diffraction
pattern (see [112] for a few different examples) cause the leading coefficient to change slightly when
compared to Equations (72) and (73). These changes tend to be rather small in magnitude, and modern
sensor systems can come very close to achieving the limiting accuracies.

The theoretical results of Equations (72) and (73) may be used to compare the limiting accuracy of
a telescope or interferometer. Assuming one views a star of magnitude mV = 3 with a CCD detector
(measured flux of n ≈ 1.729× 109 photons/m2/second, see Table 1) near the middle of the visible
spectrum (λ = 550 nm), it is possible to evaluate telescope accuracy as a function of aperture diameter
and exposure time (see Figure 6). For the interferometer, if each of the two apertures are 2.5 cm in
diameter (chosen to keep them small for a navigation sensor), it is possible to evaluate interferometer
accuracy as a function of baseline and exposure time (see Figure 7).
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Figure 6. Contours of σφtel in milliarcseconds (mas) for a telescope viewing a star of magnitude mV = 3.
Computed using Equation (72).
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Figure 7. Contours of σφint in milliarcseconds (mas) for an interferometer with two 2.5 cm apertures
viewing a star of magnitude mV = 3. Computed using Equation (73).

Temporarily setting aside the challenges of pointing and vibration (more on this in Section 4.1.3),
a suitable exposure time is limited by the changing velocity (and, thus, changing inter-star angle θ′′ij)
over the time interval. For two stars with θij = 90 deg, the worst-case change in apparent inter-star
angle over the time τ for a spacecraft in Earth orbit is shown in Figure 8. Consequently, the maximum
allowable exposure time is mission dependent.

1
e

-0
5

0
.0

0
0

1

0
.0

0
0

1

0
.0

0
1

0
.0

0
1

0.
01

0
.0

1

0.1

0.1

0.
1

1

1

1

10

10

10
1

10
2

10
3

10
4

Exposure time, milliseconds

10
4

10
5

D
is

ta
n

c
e

 f
ro

m
 c

e
n

te
r 

o
f 

E
a

rt
h

, 
k
m

Figure 8. Contours of the change in inter-star angle change in milliarcseconds (mas) between the beginning
and end of the specified exposure time for a spacecraft at varying distances from the Earth.
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Taken together, the results of Figures 6–8 provide the rationale for assuming 0.1–1 mas
as an achievable standard deviation for StarNAV-SA inter-star angle measurements. These results
also suggest that substantially better inter-star angle measurements will be difficult to achieve using
a telescope or interferometer if one wishes to keep the system’s size within reasonable values for
a navigation instrument.

Which optical instrument (telescope, interferometer, or something else) is best will depend
on application-specific needs. Beyond the differences apparent from a comparison of Figures 7
and 8, there are numerous other important considerations that affect performance, mass, size, power,
and cost. Some first-order considerations are now discussed for a StarNAV telescope and interferometer,
with feasibility assessed both by analysis and by analogy. Substantial forward work exists to evaluate
actual efficacy of each through the detailed engineering design of such a system.

Telescopes

A telescope is essentially a camera with a narrow FOV and (usually) a large aperture. The primary
design considerations with using such a system to measure the bearing to stars at the 0.1–1 mas
level are mostly related to system size (e.g., focal length, mass of lens/mirror assembly, light baffling)
and calibration.

Achieving the angular accuracy of Equation (72) requires diffraction limited imaging, which occurs
when the pixel pitch is much smaller than the size of the Airy disk to allow for many samples of
the diffraction pattern within its first minimum. That is, using Equation (66), one requires that

f`φDL = 1.22
f`λ
D
� µpix (76)

where f` is the effective focal length. If this is not the case, bearing error is driven more by focal plane
quantization and is necessarily worse than the limit of Equation (72)

As an illustrative example, consider the Celestron Astro Fi 102mm Maksutov-Cassegrain
telescope [120], having an optical tube with a diameter of 11.7 cm, a length of 38.1 cm, and a mass of
2.7 kg. This telescope has an aperture of D = 10.2 cm and an effective focal length of f` = 1.325 m,
thus producing an Airy disk of radius 8.7 µm for visible light at λ = 550 nm. Assuming a pixel
pitch of 1 µm, one would have an area of about 238 pixels inside the first minimum of the Airy disk.
If the centroid is found to within 0.01 pixel (a reasonable goal for diffraction limited astrometry)
by fitting the observed diffraction pattern with a model in a MLE sense, then this results in a bearing
error of around 1.6 mas. Conversely, using Equation (72) and assuming a star of mV = 3 is observed
with an exposure time of 5 ms, one would obtain an ideal diffraction limited accuracy of σφtel ≈ 1.3 mas.
Using the relations from Section 3.2.2.1, a bearing error of 1.3 mas to a single star corresponds to
a velocity error of around 1.9 m/s. The objective of this example is not to suggest this particular
telescope be used for Star-NAV, but to illustrate that reasonable performance may be achieved with
commercial-off-the-shelf (COTS) optics available to amateur astronomers. Superior performance
and packaging may certainly be achieved for a purpose-built spaceflight instrument.

Beyond the optics themselves, successful imaging of stars in the space environment usually
requires light baffling to block stray light. This is essential to maintain the high signal-to-noise ratio
(SNR) assumed in the analysis so far. Light baffles can be quite large, especially for telescopes with
large apertures and narrow FOVs, and are expected to be of significant concern in the design of
a StarNAV telescope. For a narrow FOV telescope where the stray light exclusion angle is much larger
than the FOV (φex � φFOV) one may estimate the length `b of a simple baffle according to

`b ≈ D/ tan (φex) (77)
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Therefore, for the example telescope in the preceding paragraph with D = 10.2 cm, a light baffle
blocking stray light originating from beyond 30 deg of the telescope’s boresight would be about 18 cm
in length. More detailed mathematical models for light baffle design may be found in [121].

Interferometers

The fundamental advantage of interferometry is that one can replace a large monolithic telescope
with two small apertures separated by a large baseline. When very high accuracy is needed it is
generally easier to increase the baseline than to increase the size of a large single aperture. The accuracy
advantages of the interferometer, however, come at the expense of increased complexity.

Numerous interferometer systems for space-based astrometry have been proposed, many with
accuracies approaching 1 µas [122–125]. Most of the past interferometer system designs are one of two
fundamental types: (1) a Michelson stellar interferometer [126,127] or (2) a Fizeau interferometer.
While each type of interferometer has its own advantages and disadvantages, the particular
embodiment of such a system is not important for the present high-level feasibility assessment.

An interferometer can be used to find the direction to a star by measuring the optical path delay
(OPD) necessary to create interference fringes between starlight collected at two apertures separated
by a baseline b (where ‖b‖ = B). To motivate the mathematical development, consider the notional
2D interferometer in Figure 9. It is clear from geometry that the OPD may be computed as

d = bTu′′ + κ (78)

where d is the OPD, b is the baseline vector from one aperture to the other, u′′ is the observed star
direction (see Section 3.2.2), and κ is the instrument’s OPD bias. Thus, defining the angle between b
and u′′ to be (π/2− φ) as shown in Figure 9, one may find φ according to

φ ≈ sin(φ) = cos(π/2− φ) =
bTu′′

B
=

d− κ

B
(79)
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Figure 9. Notional schematic of the geometry for a 2D interferometer with two apertures.

Consequently, if one has an error in the OPD measurement of σd, an error in the OPD bias of σκ ,
and an error in the baseline length of σB, then the error in the measured angle is

σ2
φOPD

=
1

B2

[
σ2

d + σ2
κ +

(d− κ)2

B2 σ2
B

]
(80)
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To achieve the theoretical limit of Equation (73) it is required that σφOPD < σφint , otherwise
the system’s accuracy would be driven by the ability to measure the OPD and not by the diffraction
limit. Contemporary commercial interferometers are capable of measuring the OPD with accuracy
at the nanometer level, while specialized space-based interferometers for science applications are
now able to measure OPD at the picometer level [128,129]. OPD control at the nanometer level
is also possible on a spacecraft [130,131]. Picometer sensing and nanometer control appears to
be representative of the current state-of-the-art for space-based interferometry, although future
technological advances are likely to result in improved performance. Regardless of the performance,
the complexity of current OPD sensing and control systems represent one of the major disadvantages
of interferometers when compared to telescopes.

As an illustrative example, consider an interferometer with two 2.5 cm apertures separated by
a 30 cm baseline. Assuming one views a mV = 3 star in the visible spectrum (e.g., λ = 550 nm)
with an exposure time of 5 ms, the diffraction limited accuracy from Equation (73) is σφint = 0.65 mas.
If one is capable of measuring the OPD to within 1 nm, this would correspond to an angle accuracy
of σφOPD ≈ 0.69 mas. In principle, therefore, one should be able to achieve 0.1–1 mas accuracy using
an interferometer with a 30 cm baseline. This conclusion is further supported by the optical design
of the Newcomb mission, which was a proposed low-cost interferometry mission having a stack
of 3–4 Michelson stellar interferometers (each with a 30 cm baseline) to obtain star directions on
the order of 0.1 mas [132,133].

Finally, one of the few—if not only—documented examples of an optical instrument specifically
designed for navigation by stellar aberration is an interferometer due to researchers at the U.S. Naval
Observatory, with a brief discussion appearing in [9]. This instrument is described as being 88× 90×
26 cm in size and capable of measuring a star’s direction to within about 20 µas (substantially better
than the 0.1–1 mas suggested in this work). There appear to be few references to this system outside
of [9] and it is unclear if a prototype was ever built.

4.1.2. Instrument Alignment and Metrology

The StarNAV-SA measurement type requires that individual stars be separated by a large angle,
resulting in the need for a separate optical instrument to observe each star. In a real sensor system,
even after great care has been taken to athermalize individual optical instruments [134], thermal strain
(and other real-world effects) can easily alter the relative alignment between the separate optical
instruments by many arcseconds. While careful system design and material selection may help, it is
unlikely that relative alignment will stay truly fixed at the milliarcsecond level as the vehicle changes
orientation relative to the Sun. Indeed, optical bench designs for past space missions [135,136] suggest
that maintaining instrument alignment below the arcsecond level by passive means alone would
be prohibitively difficult with conventional designs and materials. Therefore—since these thermal
deformations cannot be eliminated, are difficult to model, and are not predictable in real-time with
the requisite precision—the common solution is to have a metrology system to measure changes in
the alignment between the various instruments. There are many different designs for such metrology
systems, and these have been demonstrated with some success for both ground-based [137–139]
and space-based [140–142] wide-angle astrometry. It is expected that a metrology system will be
required to monitor component alignment in any future StarNAV-SA sensor system.

Furthermore, the analysis in Section 7 shows that the precision is more important than accuracy in
the inter-star angle measurements. The measurement bias between a particular star pair (which comes
from a combination of star catalog error and misalignment between the instrument components
sighting each star in the pair) may be estimated so long as it changes very slowly with respect to
the vehicle dynamics. Thus the stability of the alignment between the StarNAV instrument components
is likely to be of paramount importance.
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4.1.3. Instrument Platform Pointing and Vibration

As a navigation sensor, it is not desirable to pass the pointing and vibration requirements
of the StarNAV optical instruments on to the host spacecraft. This may be partially avoided by
developing a fine-pointing system and a vibration isolation system. Although sometimes complicated
and expensive, technologies for both are now briefly reviewed. The detailed consideration of these
issues is deferred to later work.

The collection of StarNAV-SA measurements at the 0.1–1 mas level will require pointing
of the optical instruments to at least 1 arcsec (perhaps even less, depending on specifics of
instrument design). Fine-pointing systems with noise equivalent angle performance at this level
have been developed for numerous spacecraft scientific payloads of all sizes (from CubeSats to large
space telescopes) [143–147].

Vibrations are expected from various sources, with the dominant source on robotic spacecraft often
due to host spacecraft’s reaction wheel assembly (RWA) [148]. Crewed vehicles, such as the ISS [149],
often have a less favorable vibration environment due to movement of the human crew about the cabin
and other crew-related systems (e.g., air circulation, gas venting). Regardless of the source, vibration
isolation systems are common feature of scientific optical payloads of all sizes [150–152].

4.2. Feasibility of StarNAV-DE Measurements

Although the Doppler shift of starlight (or sunlight) may seem to be the most obvious means
of autonomous velocity estimation, it is shown here to be a poor approach for many navigation
applications within the Solar System. This finding is important to record in detail despite the negative
result, as using the Doppler effect for stellar (or solar) or autonomous navigation has been repeatedly
suggested over the last sixty years [4,5,60–63]. With the exception of [8,62], few authors seem to fully
appreciate the practical difficulties associated with this approach.

There are three reasons that navigation by stellar (or solar) spectral shift is difficult—all of
which must be addressed to make such a system worth implementing in practice. The first challenge
is poor stability of the stellar spectra over both short and long timescales, making stellar spectra
an unreliable signal for navigation. The second challenge is the need for a frequency calibration
source of suitable stability and accuracy. The third challenge is measuring the spectral shift with
the necessary accuracy within the context of an autonomous navigation system. The first may be a fatal
flaw, the second makes the approach less desirable, and the third is likely solvable in the future with
improved technology. Each of these challenges is now discussed.

4.2.1. Stability of Stellar Spectra for Radial Velocity Estimation

The autonomous estimation of a spacecraft’s velocity relative to the SSB directly from
the observation of stellar spectra requires comparison with reference spectra located at the SSB.
Such reference spectra are presumably computed as discussed in Section 3.1.2, where a particular star’s
spectrum ( f∗) is transferred to the SSB at zero potential ( f ) according to

f∗ = (1 + zB) f (81)

As should be evident by this point, the frequency shift zB is not constant and its stability is a significant
concern in the practical efficacy of StarNAV-DE measurements. Indeed, the mean value of zB varies
considerably on the timescale of a few minutes and the accuracy with which zB can be estimated varies
with the level of the star’s activity. Consequently, the apparent radial velocity to a star is not simply
the projection of the mean relative velocity (i.e., the difference between the spacecraft’s BCRF velocity
and the star’s velocity obtained from a star catalog; e.g., [153]) onto the direction ui.

The nearly constant radial velocity between the SSB and the star’s barycenter is corrupted by
numerous effects, with the most important being (1) oscillations of the star’s surface due to acoustic
waves, (2) motion of granules on the star’s surface, (3) interplay of star rotation with effects from surface
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activity, and (4) the motion of the star about the barycenter of its system. All of these effects contribute
to perturbations on the order of a 10s of cm/s to a few m/s in the disk-integrated radial velocity.

Acoustic waves cause oscillations in the surface of a star. Depending on the star
(type and evolutionary stage), disk-integrated radial velocity perturbations from p-mode oscillations
can range from around 10 cm/s to 4 m/s with timescales of only a few minutes [154]. For example,
Sun-like stars typically have mean p-mode amplitudes on the order of 10–60 cm/s (18.7 cm/s for
the Sun) with peak power around 1–5 mHz (periods of 3.3–16.7 min; period of 5.5 min for the Sun) [155].
Local velocities on the star’s surface can be much higher, but these are due to modes of high harmonic
degree that largely vanish in disk-integrated measurements.

Granulation describes localized convection patterns on the stellar surface, which often have
lifetimes on the order of a few minutes to many hours. Individual convection patterns can have
vertical velocities on the order of 100 s of m/s [156]. However, since millions of these are viewed
simultaneously in a disk-integrated measurement, their collective contribution to disk-integrated radial
velocity measurements is generally a few m/s or less. While individual granules have a relatively
short lifetime, the overall effect of granulation on radial velocity changes somewhat in amplitude with
the level of stellar activity (having a timeline of years; e.g., 11-year cycle for the Sun). This occurs
because increased magnetic activity on the star’s surface can locally limit the size of the granules [157],
thus, decreasing homogeneity in granule behavior across the observed stellar disk.

Although one might not expect stellar rotation to contribute much to the disk-integrated radial
velocity (ideally, the velocity of the hemisphere moving towards the observer is canceled out by
the velocity of the hemisphere moving away from the observer), interaction of the star’s rotation
with surface activity phenomena does cause systematic perturbations in the measured radial velocity.
This happens in a few ways. First, spectral line asymmetries induced by granulation are enhanced
by the star’s rotation [158], thus, reducing the accuracy in computing the shift between the reference
and observed spectra. Second, the rotational symmetry of the stellar disk is broken by spots
and plages—thus, causing one hemisphere to contribute more than the other to radial velocity as these
defects move across the observed stellar disk [159,160]. Third, most stars do not truly rotate as a rigid
body [161], which further breaks the rotational symmetry across the observed stellar disk. All together,
these effects can contribute perturbations in radial velocity on the order of 1–100 m/s with timescales
of many days (depends on the rotational period of the star). From a navigation standpoint, it is likely
that one can judiciously choose less active stars to keep the radial velocity errors from this source on
the order of only a few m/s.

Finally, there are long-term oscillations in a star’s radial velocity due to the star’s motion about
the barycenter of its system induced by the gravitational attraction of its planets. Indeed, the scientific
community has had great success in using these oscillations in radial velocity to compute the size
and orbit of planets—making this a powerful tool in the search for planets in a star’s habitable
zone [162]. Although some have suggested the oscillation in radial velocity from exoplanets could be
used for navigation (e.g., [63]), this does not seem plausible as the amplitude of such oscillations is too
low (a few cm/s) and the period is too long (months to years). From the standpoint of autonomous
navigation, where the timescale of obtaining a velocity solution must be on the order of seconds
to minutes (depending on the spacecraft orbit), the periods of stellar oscillations from exoplanets are
long enough that they are more appropriately handled as a bias in the navigation filter.

Of the effects discussed here, stellar oscillation and granulation are especially problematic for
autonomous navigation because of difficulties in predicting their contribution to radial velocity
and their timescales of a few minutes to a few hours. The conventional technique for removing these
effects for science observations is to collect measurements with exposure times of many minutes
to average out stellar oscillation [163] and at multiple times throughout a night (for Earth-based
observations) to average out granulation [154]. Although multiple minutes-long exposures separated
by many hours may be acceptable for navigation in heliocentric orbits far from the Sun (e.g., final
portions of interplanetary cruise to outer planets, Kuiper belt tour) or in interstellar flight, the velocity
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changes too quickly for such exposure times to be useful in Earth orbit or for the majority of
contemporary exploration missions. A different technique is likely necessary to account for these
effects in an autonomous navigation system.

Another way to remove the radial velocity perturbations from stellar oscillation and granulation
is to compare the same stellar spectrum as seen by two observers at two different locations.
Since the spectrum is perturbed by the same amount at both locations (accounting for the light-time
delay), these perturbations are unimportant if one only cares about the relative velocity between
the two observers. This fundamental idea may be applied in at least two straightforward ways. First,
the spectrum simultaneously observed on two different spacecraft communicating with one another
could be compared to determine the relative velocity (in the direction of the star) between the two.
While this could contribute to autonomous relative navigation [64], it does little to advance the need
for autonomous absolute navigation. Second, using Sun instead of stars, the solar spectrum measured
directly by the spacecraft could be compared with the spectrum reflected off a nearby celestial body
with a well-known ephemeris. Although this has been proposed in the past [65,66], additional work is
required to determine the true efficacy of such an approach.

4.2.2. Suitable Source for Frequency Calibration

The Doppler shift of stellar (or solar) spectra may be measured in a number of ways,
such as through the resonant scattering technique (e.g., the BiSON network that monitored shifts in
the solar potassium Fraunhofer line [164], the Global Oscillations at Low Frequency (GOLF) experiment
on SOHO that monitored shifts in the solar sodium Fraunhofer lines [165]), through diffraction gratings
(e.g., Gaia Radial Velocity Spectrometer (RVS) [166]), High Accuracy Radial Velocity Planet Searcher
(HARPS) [167]), or through other techniques (e.g., [168]).

The majority of modern systems claiming accuracy in radial velocity below 10 m/s make use
of a spectrograph [162,169]. Fundamentally, sensors of this class disperse incoming starlight by its
wavelength and capture the resulting spectra with a detector array (e.g., CCD, CMOS). This necessarily
requires a frequency source to calibrate the observed spectra against a known absolute reference.
While such calibration may be done using a reference emission lamp (where well-known emission
lines are observed concurrently with the stellar spectra; typically a ThAr lamp [167,170]) or passing
the starlight through a gas absorption cell (this imprints well-known absorption lines onto the stellar
spectra; typically an iodine absorption cell [171,172]), these conventional approaches generally limit
radial velocity measurement accuracy to a few m/s. Furthermore, while it may be possible to use
ThAr emission lamps to achieve accuracy on the order of 10s of cm/s [167], such emission lamps are
likely not suitable for spacecraft navigation due to their short lifetime (a few hundred hours [173])
as compared to typical exploration mission lifetimes.

Both the accuracy and lifetime issues of the conventional methods (emission lamps or
absorption cells) may be addressed using laser frequency combs (LFC) [174], thus, creating the so-called
“astro-comb” calibration approach. Great progress has been made in the last ten years in reducing
the size and complexity of such systems [175,176]. While these systems remain complex and expensive,
they are the topic of considerable contemporary research and are expected to be the frequency calibration
method of choice for future systems requiring accuracy at the cm/s level. The technology will surely
continue to improve in coming years. Regardless of the size and complexity of the LFC itself, the system
still requires a stable frequency source—usually an oscillator referenced to a cesium or rubidium atomic
clock. While atomic clocks suitable for space exploration may soon be available due to the DSAC [22],
these are likely to remain expensive for the foreseeable future. Further, if one has an atomic clock,
more straightforward autonomous navigation solutions may be available (e.g., one-way ranging with
DSN [23]).

Thus, at the present, there appear to be no suitable sources for frequency calibration within
the context of an autonomous navigation system. Specifically, emission lamps do not have an adequate
lifetime, gas absorption cells do not have adequate accuracy, and astro-combs require an atomic clock.
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4.2.3. Measuring Spectral Shift with a Navigation Instrument

Significant technological advancement is required if spectral shift is to be used as a navigation
observable. With the exception of technology demonstration missions, navigation instruments generally
play a supporting role in space exploration. It is desirable for them to have a low mass, power,
volume, and cost so that resources may be allocated to the mission’s scientific (or commercial) payload.
Spectrographs capable of achieving radial velocity errors on cm/s level are not compatible with
these needs.

Recent studies have presented complete error models for spectrographs used to produce stellar
radial velocity measurements [177,178]. These complement empirical models, such as that of [179],
which suggests the standard deviation of the radial velocity error is given by

σRV ∝ (S/N)−1R−1B−1 (82)

where S/N is the SNR, B is the wavelength coverage, andR is the resolving power,

R =
λ

∆λ
(83)

A study of these models (both theoretical and empirical) clearly show the difficulties in obtaining
radial velocity measurements having errors at the 10s of cm/s level with a spacecraft navigation
instrument. Typical systems achieving better than 0.5 m/s have S/N > 500,R ∼ 105, and B ∼ 300 nm,
and a high-quality calibration source (see Section 4.2.2).

Achieving radial velocity errors below 1 m/s has only been achieved within the last 10–15 years,
with these accomplishments making use of best-in-class facilities on the ground (not on a spacecraft)
and requiring substantial investment. While new systems being proposed today (circa 2015–2019)
are aiming for errors 1–30 cm/s [162], achieving such accuracy is not straightforward and is the topic
of considerable worldwide effort. Consequently, even if the challenges of Sections 4.2.1 and 4.2.2 are
addressed, it seems doubtful that obtaining radial velocity measurements from stellar spectra with
errors of < 30 cm/s or better is possible within the typical size, mass, power, and cost requirements
of a navigation instrument. In the author’s opinion, achieving the accuracies required for navigation
within the Solar System using an acceptably small instrument will necessitate a fundamental change
in the technique used to measure spectral shift, rather than an incremental improvement of existing
spectrograph systems used in the search for exoplanets.

5. Instantaneous Estimation of Velocity from Simultaneous Star Sightings

The mathematical framework developed in Section 3 may now be deployed for the autonomous
estimation of spacecraft velocity. Doing so requires some additional minor bookkeeping required
by relativity. Once this is done, a framework is presented for instantaneous velocity estimation
by either (1) measuring the absolute perturbation in the apparent direction of two stars or
(2) measuring the perturbation in the apparent inter-star angles between four pairs of stars. The first
method—perturbation in absolute star direction—is likely impossible to achieve in practice with
modern technology for the reasons discussed at the end of Section 5.2. This method is still developed
in detail, however, because it provides valuable insight that informs the second method. The second
method—perturbation in inter-star angle—has numerous advantages and appears feasible with
modern sensing technology (Section 4.1). Additionally, note that only StarNAV-SA measurements are
considered from this point forward, as StarNAV-DE measurements are not desirable with contemporary
astrophysical models and sensing technology (Section 4.2).
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5.1. Representation of Spacecraft Velocity in Different Reference Frames

Within a general relativistic framework, representations of the position and velocity of a spacecraft
vary depending on the reference system in which they are expressed by more than a simple
Galilean transformation.

To begin, recognize that the BCRF velocity of a spacecraft, ṙ, may be related to the velocity
measured by a fictitious stationary observer at the spacecraft’s location, v, according to [10]

v =

[
1 +

(1 + γPPN) U(r)
c2

]
ṙ +O(c−4) (84)

where U(r) is the local gravitational potential of the solar system at the spacecraft’s location as given
by Equation (50). The term γPPN is from the parameterized post-Newtonian formalism and is very
nearly unity [see discussion following Equation (33)].

While the relation from Equation (84) would be quite appropriate to navigate a vehicle in
a heliocentric orbit (e.g., during an interplanetary transfer or a mission to certain small bodies),
it is an inconvenient representation of the state to navigate a spacecraft in orbit about a planet.
Navigation of a spacecraft in a bound orbit is generally performed in a planet-centered frame,
rather than in a Solar System barycentric frame. Therefore, let the body-relative BCRF position
of the spacecraft be given by rsc = r− rB. This body-relative state may be expressed in the BCRF (rsc)
or in a body-centered inertial frame whose axes are nominally aligned with BCRF (ξsc; e.g., a geocentric
frame). Following the approach of [180,181], the BCRF body-relative velocity ṙsc may be related to
the corresponding velocity in the body-centered coordinate frame ξ̇sc according to

ṙsc = ξ̇sc − c−2
{[

(1 + γPPN)Uex(rB) +
1
2

(
ṙT

B ṙB

)
+ ṙT

B ξ̇sc

]
ξ̇sc +

1
2

(
ṙT

B ξ̇sc

)
ṙB

}
+O(c−4) (85)

where Uex(rB) is the gravitational potential at rB excluding central body B. This agrees with the slightly
more cumbersome result of [10] when the acceleration terms are neglected for the practical reasons
described by [180].

Fortunately, the navigation accuracy of a purely StarNAV approach is not sufficiently good
to require a relativistic treatment within the velocity estimation framework—ultimately allowing
the replacement of Equations (84) and (85) with their substantially simpler Newtonian (classical)
counterparts. This fact is not self-evident given the central role relativity plays elsewhere in this work
and is now justified.

The key conclusion from the discussions that follow Equations (43) and (47) is that only terms
of O(‖β‖2) need be considered when determining the change in apparent star direction in situations
where the sensor error is larger than a few µas, as is certainly the case for practical real-time navigation
for the foreseeable future. That is, terms of O(‖β‖3) and smaller are neglected. Recalling that β = v/c
from Equation (38), terms of O(‖β‖3) are equivalent to terms of O(c−3). Consequently, for the task

at hand, it is sufficient to ignore velocity perturbation terms of O(c−2)

v = ṙ +O(c−2) = ṙB + ξ̇sc +O(c−2) (86)

since O(c−2) terms in velocity become O(c−3) terms in β

β = v/c = ṙ/c +O(c−3) = c−1 (ṙB + ξ̇sc
)
+O(c−3) (87)

Therefore, for the purposes of velocity estimation by stellar aberration, it usually is acceptable to neglect
the relativistic effects when representing velocity in different frames and simply use the relations
one would expect from Newtonian physics

ṙ ≈ v (88)
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ξ̇sc ≈ ṙsc ≈ v− ṙB (89)

5.2. Instantaneous Velocity Fix from Perturbation in Absolute Star Directions

This section develops a solution method for an instantaneous velocity fix assuming one can obtain
absolute star direction measurements u′′i on the order of 0.1–1 mas. As was shown in Section 3.2.2.1,
measurement accuracy at this level requires a second-order expansion of β. Therefore, keeping only
the necessary terms from Equation (43),

u′′i = u′i + u′i × (β× u′i)−
[
(u′i

T
β)u′i × (β× u′i) + (1/2)β× (u′i × β)

]
+O(‖β‖3) (90)

which after substitution of Equations (29) and (38) may be rewritten as

u′′i = ui + δui −
1
c
[ui×]2 v +

1
c2

[
(uT

i v) [ui×]−
1
2
[v×]

]
[ui×] v +O(c−3) (91)

where, repeating Equation (33) and letting γPPN = 1, the gravitational deflection term δui is O(c−2)

and is given by

δui = −∑
B

2GMB

c2‖diB‖2

(
1 + uT

i uB

)
diB (92)

For the sake of discussion, consider a spacecraft in Earth orbit. In this case, taking advantage of
the results form Table 2, it is possible to rewrite diB from Equation (34) for all bodies other than
the Earth and Moon in terms of a priori known quantities from the star catalog [77] and ephemeris
files [182],

diB ≈ d̃iB = − [ui×]2 (rB − rE) (93)

Since the Moon has a relatively small exclusion angle (Table 2), it can be ignored altogether by
the judicious selection of guide stars. Thus, the gravitational deflection term δui may be split into
unknown terms (Earth) and known terms (Sun, Jupiter, Saturn)

δui ≈ −
2GME

c2‖diE‖2

(
1 + uT

i uE

)
diE − ∑

B 6=E,M

2GMB

c2‖d̃iB‖2

(
1 + uT

i uB

)
d̃iB (94)

A similar approach may be taken for a spacecraft orbiting a different planet by selecting the appropriate
division of known and unknown terms for that particular situation.

Further, substituting from Equation (35), the term regarding Earth may be rewritten yet again as

2GME

c2‖diE‖2

(
1 + uT

i uE

)
diE =

1
c

α cot (θiE/2)wiE (95)

where the new unknown scalar α is the same for all concurrent star observations

α =
2GME

cρE
(96)

It is presumed that θiE and wiE are known in all practical scenarios since they only depend on
the direction from the spacecraft to Earth (see Equations (32) and (36)), which can easily be determined
to suitable accuracy with existing OPNAV techniques [3] or a horizon sensor [183].

Therefore, grouping known terms on the left and unknown terms on the right,

u′′i − ui − δuexi = −
1
c

[
[ui×]2 v + α cot (θiE/2)wiE

]
+

1
c2

[
(ui

Tv) [ui×]−
1
2
[v×]

]
[ui×] v (97)
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where

δuexi = − ∑
B 6=E,M

2GMB

c2‖d̃iB‖2

(
1 + uT

i uB

)
d̃iB (98)

The only unknowns in Equation (97) are the 3× 1 velocity v and the scalar α. Clearly, an instantaneous
solution cannot be obtained from only one star LOS measurement, since velocity in the direction of
ui creates no stellar aberration. A unique solution for v and α exists for simultaneous measurements
to any set of two (or more) stars whose LOS directions are not (nearly) collinear. The only remaining
step, therefore, is to solve the system of 3n equations (for n ≥ 2) that are linear in the unknown α

and quadratic in the unknown v. This can be achieved to O(‖β‖3)—corresponding to neglected stellar
aberration effects on the order of 0.1 µas—through a single step of successive substitution.

Therefore, proceed by solving the following linear system in the least squares sense with an initial
guess of ṙsc(0) = 03×1 such that v(0) = ṙE

u′′1 − u1 − δuex1

u′′2 − u2 − δuex2
...

u′′n − un − δuexn

 =


Hv1 Hα1

Hv2 Hα2
...

...
Hvn Hαn


[

v(k)
α

]
(99)

where

Hvi =
1
c

{
1
c

((
uT

i v(k−1)

)
[ui×]−

1
2

[
v(k−1)×

])
− [ui×]

}
[ui×] (100)

Hαi = −
1
c

cot (θiE/2)wiE (101)

The above equation is evaluated twice until one obtains the estimate for BCRF the velocity as ˆ̇r =

v̂ = v(2). Thus, following Equation (89), the estimated velocity of the spacecraft relative to Earth is
ṙsc = v(2) − ṙE.

Observe that an evaluation of Equation (99) when v(0) = 03×1 is equivalent to solving the problem
using only first-order terms in v. It is instructive to consider the implications of this, as it highlights
the need for the inclusion of second-order terms. A comparison of the first-order and second-order
solutions for an example spacecraft in geostationary orbit is shown in Figure 10 (for the x–y plane
only). The bias in the first-order solution is due to the neglected terms ofO(c−2), and is almost entirely
removed by inclusion of these O(c−2) terms in the second-order solution. This example assumes
simultaneous observations of two stars separated by θij = 90 deg, with each star observation having
a bearing error of σφi = 0.1 mas. The truth model uses the complete non-linear stellar aberration
expression (Equation (42)) and includes the gravitational deflection of light from the Earth, Sun,
and Jupiter. Estimation of v and α is performed following the procedure and approximations described
in the preceding discussion.

Figure 10 also shows the numerically-computed 3σ sample covariance, which agrees well with
the analytic covariance. The analytic covariance is computed as usual for a least square solution.
The statistics of individual star sightings are assumed to follow the QUEST measurement model [184,185]

Ru′′i
= E

[(
u′′i − E[u′′i ]

) (
u′′i − E[u′′i ]

)T
]
≈ σ2

φi

(
I3×3 − u′′i u′′Ti

)
(102)

where σφi is the standard deviation of the angular error for a particular star sighting. The constraint
‖u′′i ‖ = 1 leads the covariance matrix Ru′′i

to be singular, which is problematic since the computation

of covariance generally requires R−1
u′′i

. Following an approach similar to [185] it is possible to show that
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P ≈
(

n

∑
i=1

1
σ2

φi

[
HT

vi
Hvi HT

vi
Hαi

HT
αi

Hvi HT
αi

Hαi

])−1

(103)
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Figure 10. Instantaneous velocity estimate residuals (10,000 Monte Carlo cases) for spacecraft in
geostationary orbit using observation to two stars with a bearing error to each of σφi = 0.1 mas.

When measuring the absolute stellar aberration, a solution for v is possible with two or more
star measurements. Therefore consider two stars with an inter-star angle of θij that varies from 0
to 180 deg. Additionally, let the standard deviation for each LOS measurement vary from σφi = 1 µas

to σφi = 10 arcsec. For each combination of θij and σ, the total velocity error is computed as
√

tr [Pvv]

and the results are shown in Figure 11. The best performance is achieved when θij = 90 deg and σφi is
as small as possible.

Figure 11. Contours of total instantaneous velocity error (m/s) using absolute stellar aberration of
a single star pair.

Real-time measurement of apparent star direction as expressed in the BCRF below at the 1 mas
level (or below) is difficult. While 1 mas accuracy may be possible in the sensor or spacecraft frame,

the absolute direction of u′′i at is likely not knowable in real-time to better than about 1 arcsec (or worse
in the complete absence of a priori state knowledge).
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5.3. Instantaneous Velocity Fix from Perturbation of Inter-Star Angle

The use of inter-star angles removes the need for precise knowledge of the sensor’s absolute
orientation. Thus, although absolute LOS measurements better than 1 mas are difficult, such real-time
precision may be possible when measuring inter-star angles (see Section 4.1).

Obtaining an instantaneous velocity fix using inter-star angle measurements with errors
below 1 mas requires a second order expansion in β. Therefore, retaining the appropriate terms
from Equation (47),

u′′i
Tu′′j = u′i

Tu′j +
(

1− u′i
Tu′j
) {[

βTu′i + βTu′j
]
−
[
(βTu′i)

2 + (βTu′j)
2 + (βTu′i)(βTu′j)− βT β

]}
+O(‖β‖3) (104)

which may be rewritten as

u′′i
Tu′′j = uT

i uj + uT
i δuj + uT

j δui +
1
c

(
1− uT

i uj

) [(
uT

i + uT
j

)
v− 1

c
vTAijv

]
+O(c−3) (105)

where the quadratic form of vTAijv allows Aij to be written as a symmetric matrix

Aij = uiuT
i + ujuT

j +
1
2

(
uiuT

j + ujuT
i

)
− I3×3 (106)

As before, consider a spacecraft in Earth orbit such that δui may be split according to Equation (94).
Now, grouping known terms on the left-hand side and unknown terms on the right-hand side,
Equation (105) becomes

u′′i
Tu′′j − uT

i uj − uT
i δuexj − uT

j δuexi =− α
1
c

[
cot (θiE/2)uT

j wiE + cot
(
θjE/2

)
uT

i wjE

]
(107)

+
1
c

(
1− uT

i uj

)(
uT

i + uT
j −

1
c

vTAij

)
v

Therefore, proceed by solving the following linear system in the least squares sense with an initial
guess of ṙsc(0) = 03×1 such that v(0) = ṙE

u′′i
Tu′′j − uT

i uj − uT
i δuexj − uT

j δuexi

...
u′′p

Tu′′` − uT
p u` − uT

p δuex` − uT
` δuexp

 =


Hvij Hαij

...
...

Hvp` Hαp`


[

v(k)
α

]
(108)

where

Hvij =
1
c

(
1− uT

i uj

)(
uT

i + uT
j −

1
c

vT
(k−1)Aij

)
(109)

Hαij = −
1
c

[
cot (θiE/2)uT

j wiE + cot
(
θjE/2

)
uT

i wjE

]
(110)

The above equations are evaluated twice to obtain the BCRF velocity ˆ̇r = v̂ = v(2). Thus, following
Equation (89), the estimated velocity of the spacecraft relative to Earth is ṙsc = v(2) − ṙE.

To see the importance of including the second-order terms in v for instantaneous velocity
estimation using inter-star angles, consider a spacecraft in GEO that measures the direction to
four stars. Individual star direction measurements in the sensor frame are assumed to follow
the QUEST measurement model and then inter-star angles are computed from these measurements.
The orientation-independent geometry of these four star directions is entirely described by five
inter-star angles. Although (4

2) = 6, only five of the angles are independent. Including all six inter-star
angles adds no new information and results in a rank deficient measurement covariance matrix. In this
example, the first three star sightings are approximately orthogonal to one another and the fourth
star has an inter-star angle of about 55 deg with respect to each of the first three. Assuming a bearing
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error of σφi = 0.1 mas, representative instantaneous velocity estimation performance is as shown in
Figure 12. These results include the gravitational deflection of starlight from the Sun, Earth, and Jupiter.
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Figure 12. Instantaneous velocity estimate residuals (10,000 Monte Carlo cases) for spacecraft
in geostationary orbit using the inter-star angles between four stars. Bearing error to each star
is σφi = 0.1 mas.

The analytic covariance from Figure 12 is computed as follows. To begin, consider the star pair
that includes star i and star j and define yij to be

yij = cos θ′′ij = u′′i
Tu′′j (111)

such that
δyij = u′′i

T
δu′′j + u′′j

T
δu′′i (112)

Consequently, the diagonal terms in the covariance matrix are given by

σ2
ij,ij = E[δy2

ij] = u′′i
TRu′′j

u′′i + u′′j
TRu′′i

u′′j (113)

where Rui is the QUEST measurement model from Equation (102) and the errors in the individual star
LOS measurements are assumed to be uncorrelated with one another (i.e., E[δu′′i δu′′j

T ] = 0). Likewise,
the off-diagonal terms are given by

σ2
ij,i` = σ2

i`,ij = E[δyijδyi`] = u′′j
TRu′′i

u′′` (114)

These may be combined to find the fully correlated covariance matrix R for an arbitrary
combination of inter-star angles constructed from a given set of LOS measurements. From here,
the analytic covariance (as shown by the black line in Figure 12) may be computed as

P =
(

HTR−1H
)−1

(115)

This analytic covariance may also be used to better understand the sensitivity of the StarNAV velocity
fix to inter-star angle. Momentarily ignoring the gravitational deflection of light (which introduces a small
dependence on location), consider three stars separated from one another by the angle θ. In this case,
the covariance of the velocity estimate is simply

Pvv ≈
(

HT
v R−1Hv

)−1
(116)
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where Hv and R are as discussed above. Observe that rank(Hv) = 3 for 0 deg < θ < 120 deg, although
numerical conditioning of the problem degrades as one approaches the endpoints (with rank(Hv)
= 0 at exactly θ = 0 deg and rank(Hv) = 2 at exactly θ = 120 deg). Therefore, considering all
possible three-star pyramids with inter-star angles from 0–120 deg, one may compute the total velocity
error as

√
tr[Pvv]. Contours of this velocity error are shown in Figure 13 using the fully correlated

R from above (in black) as well as the uncorrelated measurement covariance R = σ2
θ I3×3 (in red).

In reality, an uncorrelated R would only occur if six stars were observed and each of the three star
pairs used unique stars (thus, eliminating correlation between two measured inter-star angles, e.g., θ′′ij
and θ′′p`).The two covariance expressions produce velocity estimate errors of a similar magnitude, with
larger inter-star angles generally being better.
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Figure 13. Contours of total instantaneous velocity error (m/s) using inter-star stellar aberration from
three stars.

Of note is that the uncorrelated R reaches a maximum at cos(θij) = −1/3, which is equivalent
to θij = 109.47 deg. This is the inter-star angle where each row of Hv has the maximum length
(and, therefore, produces the most sensitivity in inter-star angle to a perturbation in velocity).
That an inter-star angle of 109.47 deg produces maximum sensitivity to velocity perturbations was
also observed by [9].

Furthermore, the novel observation is now made that θ = 109.47 deg is the inter-star angle leading
to the star direction bisectors being orthogonal to one another in the case of the three-star pyramid.
Note that each row of Hv is in the direction ui + uj, which is in the direction of the bisector of the two
contributing star directions. Thus, by choosing a star pyramid with θij = 109.47, one is also choosing
the special angle that makes the rows of Hv orthogonal to one another.

6. Initial Orbit Determination (IOD) using StarNAV

Three or more velocity vector measurements—such as those found using the instantaneous
StarNav velocity fix from Section 5.3—uniquely define an orbit for a spacecraft obeying Keplerian
dynamics. The concept of an analytic initial orbit determination (IOD) solution from three velocity
vectors was first posited in [1] and an elegant geometric solution was developed shortly after in [2].

Solving the IOD problem with three velocity vector measurements is analogous to the classical
Gibbs Problem [186–188] where the knowns and unknowns have been switched. In the Gibbs problem,
which was first solved by J. W. Gibbs using vector analysis in 1889 [186], one is given three position
vectors (each with an unknown velocity) and must solve for the velocity corresponding to one of
those positions to fully define the orbit. In the velocity-only IOD problem, one is given three velocity
vectors (each with an unknown position) and must solve for the position corresponding to one of those
velocities to fully define the orbit. Note that the velocity-only IOD problem is not an alternative to
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Gibbs problem (the knowns and unknowns are different, so the problems to which they are applicable
are rarely interchangeable), it’s just that the two problems have similar structure.

6.1. Analytic Velocity-Only IOD Solution using Geometry of the Orbital Hodograph

The StarNAV IOD solution technique presented here follows the velocity-only IOD strategy
outlined in [2], which makes use of the orbital hodograph. Developed by Hamilton in 1847 [189],
the hodograph is the locus of points traced by a trajectory’s moving velocity vector while keeping
the tail fixed. As Hamilton observed in his original work, this curve is a perfect circle for any body
undergoing Keplerian motion—regardless of the conic section describing the path of the actual orbit
(i.e., circular, elliptical, parabolic, or hyperbolic). An example is shown in Figure 14. Despite its relative
obscurity, the beautiful geometry of the hodograph has made it a powerful tool for solving many
practical engineering problems in spaceflight dynamics [2,190–193].
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Figure 14. Geometric relationship between the orbital hodograph (left) and an elliptical orbit (right).

In the absence of noise or perturbations from two-body motion, all of the velocity vectors will lie
entirely within the orbital plane. Therefore, assuming three or more StarNAV velocity measurements
obtained as in Section 5.3, proceed by finding the unit normal to the orbital plane as the solution to
the following linear system [1] 

vT
sc1

vT
sc2
...

vT
scn

k = 0n×1 (117)

where ‖k‖ = 1. The solution for k may be found in the total least squares (TLS) sense [194] through
a singular value decomposition (SVD). Care must be taken to ensure that k is in the direction of
the orbit’s specific angular momentum, as discussed at length in [1,2].

The orbit plane unit normal k may be used to construct a new orbit frame. Define ux as

ux = 〈vsc1 × k〉 (118)

where, once again, 〈·〉 denotes vector length normalization. Let uy be chosen to complete
the right-handed system {ux, uy, k} describing the coordinate axes of the orbit frame. Therefore, letting
TI

O be the matrix that rotates a vector from the inertial frame to the orbit frame, one finds that

TI
O =

 uT
x

uT
y

kT

 (119)
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Consequently, orthographic projection of the measured velocity vectors onto the orbital plane
may may be performed as [

ẋOi

ẏOi

]
=

[
1 0 0
0 1 0

]
TI

Ovsci (120)

Since the hodograph forms a perfect circle, the next step is to fit a circle to the projected velocity vectors
in the orbit plane. This may be done analytically through any number of commonly available circle
fitting algorithms [195]. This work chooses to make use of an algebraic circle fitting approach to permit
a non-iterative solution. If the hodograph circle is defined by its center coordinates {ẋc, ẏc} and its
radius R, then the best fit may be found in the least squares sense as the solution to the following linear
system [2] 

2ẋO1 2ẏO1 −1
2ẋO2 2ẏO2 −1

...
...

...
2ẋOn 2ẏOn −1


 ẋc

ẏc

g

 =


ẋ2

O1
+ ẏ2

O1

ẋ2
O2

+ ẏ2
O2

...
ẋ2

On
+ ẏ2

On

 (121)

where the hodograph circle radius is found making use of the intermediate variable g

R =
√

ẋ2
c + ẏ2

c − g (122)

The location of the hodograph circle center may now be transformed from the orbit frame back to
the inertial frame according to

c =
(

TI
O

)T

 ẋc

ẏc

0

 (123)

In some cases it may be useful to apply these results to find the orbit’s eccentricity vector, which may
be computed as

e =
c
R
× k (124)

With the hodograph fully defined, one only needs to apply simple geometry to obtain the position
vector corresponding to any one of the velocity vectors. This may be done in three steps.

First, compute the unit vector describing the direction from the center of the planet to
the spacecraft,

〈rsci 〉 = 〈vsci − c〉 × k (125)

Renormalization of the right-hand-side to ensure the result is a unit vector is only necessary with noisy
measurements, since 〈vsci − c〉 is perpendicular to k by construction in the noise-free situation.

Second, compute the component of velocity that lies in the plane perpendicular to the direction
from the planet to the spacecraft

vsc⊥i =
(

I3×3 − 〈rsci 〉 〈rsci 〉
T
)

vsci = − [〈rsci 〉 ×]
2 vsci (126)

Third, and finally, compute the magnitude of rsci . It was suggested in [2] that ρsci = ‖rsci‖ be
computed as

ρsci = ‖rsci‖ =
µ‖e + 〈rsci 〉 ‖
‖vsc⊥i‖ ‖vsci‖

(127)

where e is the orbit’s eccentricity vector and µ is the central body’s gravitational parameter.
Recognizing, however, that the magnitude of the specific angular momentum, h = ‖h‖, may be
written in terms of the hodograph circle radius, R,

h =
µ

R
(128)
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it is observed here that ρsci is more straightforwardly computed (and with no need for computation
of e) as

ρsci =
µ

R‖vsc⊥i‖
(129)

Therefore, the position vector corresponding to the velocity vsci is given by combining the results of
Equations (125) and (129)

rsci = ρsci 〈rsci 〉 (130)

The detailed derivation for all of the above (with the exception of the new approach for finding ρsci )
may be found in [2].

6.2. Improved IOD using Many Velocity Vectors Collected at Known Times

While algebraically exact in the absence of measurement noise, the trouble with the final portion of
the solution from [2] (as summarized in Equations (125)–(130)) is that the position estimate inherits all
of the error associated with its corresponding velocity vector. Substantially better performance may be
obtained by estimating the orbit as a whole and then finding the spacecraft position at the appropriate
time. This allows the position estimate at time tk to more fully benefit from the information contained
in the velocity measurements obtained at other times. With the exception of solving Kepler’s equation,
the improved solution procedure remains otherwise non-iterative.

Observe from hodograph geometry (Figure 14) that the true anomaly νi may be written explicitly
in terms of vsci and the hodograph fit parameters

‖vsci‖ cos(φi) = ‖c‖+ R cos(νi) (131)

where cos(φ) may be found from the law of cosines

R2 = ‖vsci‖
2 + ‖c‖2 − 2‖vsci‖ ‖c‖ cos(φi) (132)

While it may be tempting to combine these equations to solve for the unknown νi, doing so is generally
inadvisable. Although exact for perfect observations, the presence of noise in practical StarNAV
measurements of vsci creates problems with the explicit use of Equations (131) and (132) near periapsis,
where it is not uncommon to find ‖vsci‖ > (‖c‖+ R) for some measurements. Much better numerical
results are achievable by only using the direction of the velocity vector, 〈vsci 〉.

Therefore, proceed by recognizing that

‖ sin(φi)‖ = ‖ 〈c〉 × 〈vsci 〉 ‖ (133)

cos(φi) = 〈c〉T 〈vsci 〉 (134)

and, from the law of sines,
‖ sin(φi)‖

R
=
‖ sin(νi − φi)‖

‖c‖ (135)

The correct quadrant for νi may be determined from the direction of 〈c〉 × 〈vsci 〉 relative to the direction
of the orbit’s specific angular momentum vector. Under the assumption that φi is computed as

φi = arccos
(
〈c〉T 〈vsci 〉

)
∈ [0, π] (136)

the correct value for the true anomaly is

νi =

 φi + arcsin
(

1
R‖c× 〈vsci 〉 ‖

)
for (〈c〉 × 〈vsci 〉)

T k > 0

2π − φi − arcsin
(

1
R‖c× 〈vsci 〉 ‖

)
otherwise

(137)
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where νi ∈ [0, 2π].
With the true anomaly known at each time, the objective is now to find the time of periapsis

passing suggested by each individual velocity measurement. Begin by using the true anomaly
computed by Equation (137) to find the eccentric anomaly at those same times (Ei)

sin(Ei) =
sin(νi)

√
1− e2

1 + e cos(νi)
(138)

cos(Ei) =
e + cos(νi)

1 + e cos(νi)
(139)

where e = ‖e‖ and is found using Equation (124). This, in turn, may be used to find the corresponding
mean anomaly (Mi) from Kepler’s equation [187]

Mi = Ei − e sin(Ei) (140)

Further recalling that Mi is related to time from the last periapsis passing by

Mi =

√
µ

a3

(
ti − tpi

)
(141)

it is straightforward to find mean time of the periapsis passing before the first measurement as

tp0 =
1
n

n

∑
i=1

{
ti −

√
a3

µ
[2πki + Ei − e sin(Ei)]

}
(142)

where ki is the number of integer passings through the periapsis that occur between the first
measurement time and time ti. This is simple to keep track of with the available data.

With the orbit fully defined and a reference time for a periapsis passing, it is now possible to
compute the spacecraft location at any given time. This is straightforward Keplerian orbit analysis
covered in any introductory text on astrodynamics. The suggested methodology, making use of already
computed parameters, is presented without derivation.

To compute the spacecraft position at time ti, begin by computing the mean anomaly as

M̃i =

√
µ

a3

(
ti − tp0

)
− 2πki (143)

The tilde above Mi is used to differentiate the mean anomaly found here from that found earlier (see
Equation (141)). The value M̃i is computed by the best-fit orbit and elapsed time since the estimated
tp0 , while Mi is computed from the best-fit orbit and the direction of the measured velocity vector at ti.
Given M̃i, solve Kepler’s equation (see Equation (140)) to obtain Ẽi (the solution to Kepler’s equation
is necessarily iterative, with stable solutions found in most texts on this topic [187]), which may be
used to find the true anomaly ν̃i,

sin(ν̃i) =
sin(Ẽi)

√
1− e2

1− e cos(Ẽi)
(144)

cos(ν̃i) =
cos(Ẽi)− e

1− e cos(Ẽi)
(145)

By construction (see Figure 14), observe that unit vector pointing from the central body to the spacecraft
may be written directly in vector form as a function of true anomaly νi

〈r̃sci 〉 = cos(ν̃i) 〈e〉+ sin(ν̃i) (k× 〈e〉) (146)
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where, since e is computed from Equation (124), the term (k× 〈e〉) is guaranteed to also be a unit vector
and need not be renormalized. The final missing piece may be found using the classical expression for
the orbit radius

ρ̃sci = ‖rsci‖ =
p

1 + e cos(ν̃i)
(147)

where p is the semilatus rectum, which may be written directly in terms of hodograph fit parameters
by substituting from Equation (128),

p =
h2

µ
=

µ

R2 (148)

These results for 〈r̃sci〉 and ρ̃sci allow for an improved solution for rsci by substitution into Equation (130).

6.3. Numerical Results

The performance of velocity-only IOD using StarNAV measurements is demonstrated for
an example spacecraft in GEO. Consider the situation where four stars are simultaneously viewed.
Three of the stars are orthogonal to one another, and the fourth star is about 55 deg from each of
the first three stars. Measurements to these stars are collected once every 10 min (600 s) with a 1σ error
of 0.1 mas. Measurements are collected over one full orbit (24 h) resulting in a total of 144 StarNAV
velocity estimates, which are computed using the algorithm from Section 5.3. The unknown position
at the center time is computed using both the original method of [2] and the improved method from
Section 6.2, with residuals for each shown in Figure 15. Additionally, for just the improved method,
the residuals for the estimated semi-major axis and flight-path angle (FPA, γFPA) are shown in Figure 16.
The semi-major axis may be computed directly from the hodograph fit parameters as (making use of
Equations (124) and (148))

a =
p

1− e2 =
µ

R2 − cTc
(149)

and the FPA may be computed from the obit fit and either Ẽi or ν̃i.
Within the context of velocity-only IOD, the same StarNAV system generally performs better

on faster orbits where the measurement noise represents a smaller percentage of the total velocity.
For example, consider a spacecraft in a 410 km altitude LEO orbit at an inclination of 51.6 deg that
collects measurements of the same quality as the preceding GEO example (four simultaneous stars
with 1σ error of 0.1 mas). Assuming measurements are collected once every minute for an entire
orbit (total of 93 measurements) the IOD position error at the middle time is as shown in Figure 17.
The semi-major axis error and FPA error are shown in Figure 18. A comparison of LEO results
(Figures 17 and 18) with the GEO results (Figures 15 and 16) highlights how the same system yields
better IOD performance in a faster orbit.
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Figure 15. Example IOD residuals in position for a spacecraft in geostationary orbit. Blue dots show
errors using method from [2] and gray dots show errors using improved method from this work.
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Figure 16. Example IOD residuals in semi-major axis and flight-path angle for a spacecraft in
geostationary orbit.
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Figure 17. Example IOD residuals in position for a spacecraft in LEO. Blue dots show errors using
method from [2] and gray dots show errors using improved method from this work.
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Figure 18. Example IOD residuals in semi-major axis and flight-path angle for a spacecraft in LEO.



Sensors 2019, 19, 4064 44 of 61

7. Sequential Processing of StarNAV Observables with an Extended Kalman Filter

Once an initial orbit estimate is obtained—either via StarNAV IOD (see Section 6) or any other
means of IOD (e.g., GPS, ground-based tracking, celestial OPNAV, XNAV)—it is more appropriate
to process new StarNAV measurements as they become available within a sequential estimation
framework. Such sequential estimation tasks are usually achieved through one of the many variants of
the Kalman filter [196,197].

This work follows the classical extended Kalman filter (EKF) framework summarized in [198,199],
while making use of modern navigation filter best practices [200]. The following discussions summarize
the EKF framework, special considerations regarding the adaptation of the StarNAV measurement
model, and example numerical results.

7.1. EKF Framework

This section presents a simple proof-of-concept filter for a spacecraft orbiting a large central
body. Design of a filter to navigate an actual spacecraft is considerably more nuanced, and would
likely require a more sophisticated dynamics model and inclusion of additional mission-specific
states—either as solve-for parameters, consider parameters, or dynamic model compensation (DMC)
process noise terms. Therefore, this work presents a simple (but architecturally representative)
filter to avoid confounding performance of the StarNAV technique with mission-specific challenges.
Detailed performance studies for particular design reference missions (DRMs) are left to future work.

The specific filter implementation used here is laid out in detail within the following subsections.
The detailed presentation is provided not because it is especially novel, but because it is necessary to
provide complete transparency on the framework that produced the numerical results in Section 7.2.

The state observability from any single inter-star angle measurement is principally driven by
the bisector of the two contributing star directions. The component of the velocity perpendicular to
the bisector direction is (for all practical purposes) unobservable for the corresponding measurement.
Thus, at least three inter-star angles are needed (with bisectors that are not collinear) for full
observability, which is only achievable with direction measurements to at least three stars. For these
reasons, the StarNAV EKF approach presented here assumes a system designed to observe three guide
stars that are used to compute three inter-star angle measurements (similar in concept to the notional
diagram in Figure 5).

7.1.1. State Vector Selection

The simplest realistic filter requires a nine-element state vector, consisting of the 3DOF
translational dynamic state (3× 1 position and 3× 1 velocity) along with a unique scalar bias for
each measured star pair (three star pairs in this case)

x =

 rsc

vsc

b

 (150)

where rsc is the Earth-Centered Inertial (ECI) position, vsc is the ECI velocity, and b is the bias vector.
The ECI coordinate frame axes are assumed to be aligned with ICRF (and BCRF) with origin translated
to the center of the Earth. Thus, following the conclusions from Section 5.1, the spacecraft’s ECI
position and velocity are related to their instantaneous SSB counterparts through a simple translation,

r = rsc + rE (151)

v = vsc + vE (152)

where rE is the BCRF position of the Earth and vE is the BCRF velocity of the Earth. The bias terms are
modeled as a first-order Gauss-Markov (FOGM) process.
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7.1.2. State and Covariance Propagation

Following standard practice, the state is assumed to evolve according to nonlinear dynamics

ẋ = f(x(t), t) + w(t) (153)

where f(x(t), t) is the nonlinear dynamics function and w(t) is assumed to be Gaussian zero-mean
process noise, E[w(t)] = 0, with power spectral density (PSD) Q(t),

E[w(ti)wT(tj)] = Q(ti)δ(ti − tj) (154)

and where δ(ti − tj) is the Dirac delta function. Under such a model, the a posteriori state estimate
at time tk−1, x̂+k−1, is propagated forward in time to become the a priori state estimate at time tk, x−k , by

x̂−k = x̂+k−1 +
∫ tk

tk−1

f(x̂(τ), τ) dτ (155)

Likewise, the state covariance, P, is propagated according to

P−k = Φ(tk, tk−1)P
+
k−1ΦT(tk, tk−1) + Sk (156)

where Φ(tk, tk−1) is the state transition matrix (STM) from time tk−1 to time tk and the process noise
covariance matrix Sk is

Sk =
∫ tk

tk−1

Φ(tk, τ)Q(τ)ΦT(tk, τ) dτ (157)

Practical implementation requires tractable expressions for both Φ(tk, tk−1) and Sk. These are now
developed for the specific problem at hand using the usual approach. Fortunately, propagation of
the spacecraft dynamics (rsc and vsc) happens somewhat separately from propagation of the sensor
biases (b), which simplifies the following discussion.

Specifically, partition the STM and process noise covariance by components belonging to
the dynamical state (subscript “s”) and the bias (subscript “b”) according to

Φ =

[
Φss Φsb
Φbs Φbb

]
(158)

S =

[
Sss Ssb
Sbs Sbb

]
(159)

where, by construction, one finds that

Φsb = ΦT
bs = 06×3 (160)

Ssb = ST
bs = 06×3 (161)

Proceed, therefore, by first considering the terms for the dynamical states (Φss and Sss) and then
considering the terms for the bias states (Φbb and Sbb).

Begin with the dynamical states. Assuming Keplerian motion, the position and velocity of
the spacecraft relative to the central body may be propagated forward in time by integrating of
the equations of motion [187]

˙̂rsc = v̂sc (162)

˙̂vsc = −
µ

‖r̂sc‖3 r̂sc (163)
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where µ = GMB is the central body’s gravitational parameter. As this is a proof-of-concept filter,
the detailed consideration of atmospheric drag, solar radiation pressure, gravitational perturbations
(from both non-spherical potential of central body and third bodies), so-called unfortunate lack of
acceleration knowledge (FLAK) events (e.g., venting on a crewed vehicle), and other similar real-world
complications are deferred to future work.

The STM for the dynamical states, Φss, may be computed using any one of a variety of
reasonable approximations suitable for use in practical filters [200–202]. This work makes use of
one of the second-order methods proposed by Lear [201] for the numerous reasons outlined by
Carpenter and D’Souza in [200]. This approximation is given by

Φss(tk, tk−1) = I +
∆t
2
(Fssk + Fssk−1) +

∆t2

2
Fssk Fssk−1 (164)

where ∆t = tk − tk−1 and Fss is the Jacobian of the dynamical states (which, for Keplerian dynamics,
is a classical result found in most textbooks addressing spacecraft navigation [187,203,204])

Fss =
∂f(xs(t), t)

∂xs

∣∣∣∣
xs=x̂s

=

[
03×3 I3×3

G 03×3

]
(165)

with
G = − µ

‖r̂sc‖3 I3×3 +
3µ

‖r̂sc‖5 r̂sc r̂T
sc (166)

The process noise for the dynamical states are computed using a simple state noise compensation
(SNC) model [200,203] that assumes a random walk in velocity caused by a white noise acceleration,
wv, such that the equations of motion for the dynamical states in Equation (153) become

ṙsc = vsc (167)

v̇sc = −
µ

‖rsc‖3 rsc + wv (168)

and the process noise wv is zero mean with a 3× 3 PSD of Qvv. Under these conditions, one finds that
the 6× 6 SNC process noise covariance for the dynamical states is [203]

Sss =

[
∆t3

3 Qvv
∆t2

2 Qvv
∆t2

2 Qvv ∆tQvv

]
(169)

Attention is now shifted to consideration of the bias terms. As FOGM processes that have identical
models but are uncorrelated with each other, the behavior of the bias parameters are governed by

ḃ(t) = − 1
τ

b(t) + wb (170)

where τ is the correlation time and wb is zero mean white noise with statistics

wb ∼ N(03×1, σ2
wb

I3×3) (171)

The value of τ is chosen to control how quickly the time correlation of the FOGM will fade.
One of the many desirable properties of FOGM parameters is that both the state and covariance

may be propagated analytically,
b̂
−
k = exp (−∆t/τ) b̂

+
k−1 (172)

such that the STM becomes
Φbb(tk, tk−1) = exp (−∆t/τ) I3×3 (173)
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The corresponding process noise is computed as

Sbb =
τσ2

wb

2
[1− exp (−2∆t/τ)] I3×3 (174)

In summary, therefore, the STM is found by substituting Equations (160), (164) and (173) into
Equation (158). Likewise, the process noise covariance is found by substituting Equations (161), (169)
and (174) into Equation (159). This allows analytic advancement of the state covariance according to
Equation (156).

7.1.3. Measurement Update

The measurement update follows the conventional EKF approach. Assuming a nonlinear
measurement model with additive Gaussian noise,

yk = h(xk) + zk (175)

construct the measurement sensitivity matrix as the Jacobian of h(xk)

Hk =
∂h(x)

∂x

∣∣∣∣
x=x̂−k

(176)

Assuming a state update of the form

x̂+k = x̂−k + Kk
(
yk − h(x̂−k )

)
(177)

the optimal solution is found when Kk is the Kalman gain,

Kk = P−k HT
k

(
HkP−k HT

k + Rk

)−1
(178)

Finally, as has become standard practice due to numerical stability [200,204], the covariance is updated
using the Joseph form [205] to help ensure the covariance remains symmetric and positive definite

P+
k = (I−KkHk)P−k (I−KkHk)

T + KkRkKT
k (179)

When using a set of inter-star angles formed from concurrent star sightings, the measurement
covariance Rk is the same as for the instantaneous velocity fix with inter-star angles (see Section 5.3).
The primary difficulty lies in the appropriate construction of Hk for use in the usual EKF measurement
update equations. This requires some care and is now discussed in more detail.

Let the measurement vector be comprised of the independent inner products of the observed
stars along with a measurement bias. For example, when three stars are observed, define h(xk) as

h(xk) =

 hij
hi`
hj`

 =

 u′′i
Tu′′j

u′′i
Tu′′`

u′′j
Tu′′`

+

 bij
bi`
bj`

 =

 cos θ′′ij
cos θ′′i`
cos θ′′j`

+

 bij
bi`
bj`

 (180)

and cos θ′′ij is from Equation (45).
Proceed by partitioning Hk into the components belonging to each part of the state vector

Hk =
[

Hrk Hvk Hbk

]
(181)
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where

Hrk =
∂h(x)
∂rsc

∣∣∣∣
x=x̂−k

Hvk =
∂h(x)
∂vsc

∣∣∣∣
x=x̂−k

Hbk
=

∂h(x)
∂b

∣∣∣∣
x=x̂−k

(182)

The partial for Hbk
is readily found as

Hbk
=

∂b
∂b

= I3×3 (183)

Expressions for Hrk and Hvk are most easily found by considering a single row at a time. That is,
one has the scalar equation

hij(xk) = cos θ′′ij + bij (184)

from which the following may be computed

∂hij(x)
∂rsc

=
∂ cos θ′′ij

∂u′i

∂u′i
∂r

∂r
∂rsc

+
∂ cos θ′′ij

∂u′j

∂u′j
∂r

∂r
∂rsc

(185)

∂hij(x)
∂vsc

=
∂ cos θ′′ij

∂v
∂v

∂vsc
(186)

The only task remaining is to compute the necessary partials. Beginning with the nonlinear expression
for cos θ′′ij from Equation (45), one finds

∂ cos θ′′ij
∂u′i

=
(

1− cos θ′′ij

) [(
1− u′i

Tu′j
)−1

u′j
T
+
(

1 + βTu′i
)−1

βT
]

(187)

∂ cos θ′′ij
∂v

=

(
1− cos θ′′ij

)
c

[(
1 + βTu′i

)−1
u′i

T
+
(

1 + βTu′j
)−1

u′j
T
+ 2

(
1− βT β

)−1
βT
]

(188)

Likewise, from the nonlinear expression for u′i from Equations (29) and (33), one may compute
the partial

∂u′i
∂r

= −∑
B

2GMB

c2‖diB‖2

{(
1 + uT

i uB

) [
I3×3 − 2 〈diB〉 〈diB〉T

]
[ui×]2 −

1
ρB

(
diBuT

i

) (
I3×3 − uBuT

B

)}
(189)

where general relativity has been assumed such that (γPPN + 1) = 2. Neglecting terms of O(c−2)

and higher leads to considerable simplification of these partials for practical computation

∂ cos θ′′ij
∂u′i

=
(

1− uT
i uj

) [(
1− uT

i uj

)−1
uT

j + βT
]
+O(c−2) (190)

∂ cos θ′′ij
∂v

=

(
1− uT

i uj
)

c

(
uT

i + uT
j

)
+O(c−2) (191)

∂u′i
∂r

= 03×3 +O(c−2) (192)

Furthermore, the partials for transitioning from BCRF to ECI may be computed from Equations (151)
and (152),

∂r
∂rsc

= I3×3
∂v

∂vsc
= I3×3 (193)

Consequently, for the three-star example from Equation (180), one finds the partitioned elements of Hk
to be

Hrk = 03×3 (194)
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Hvk =
1
c


(
1− uT

i uj
) (

uT
i + uT

j

)
(
1− uT

i u`

) (
uT

i + uT
`

)(
1− uT

j u`

) (
uT

j + uT
`

)
 (195)

Hbk
= I3×3 (196)

7.2. Numerical Results

As a representative example, consider a spacecraft in a 410 km altitude circular Earth orbit with
an inclination of 51.6 deg. Measurements are taken every 10 s to three stars separated by 100 deg from
each other. Individual star bearing measurements are assumed to have an error σφi = 0.1 mas,
with a fully correlated inter-star measurement covariance given by Equations (113) and (114).
Furthermore, each star has an unknown (but fixed) bearing bias of about 1 arcsec. Since the Gaia
Data Release 2 catalog has star directions with errors on the order of 0.1 mas, this is equivalent
to a 1 arcsec misalignment between the sensor components measuring the direction to each star.
Thus the star direction measurements are assumed to have a precision of about 0.1 mas and an accuracy
of about 1 arcsec (four orders of magnitude difference between the two). The three corresponding
inter-star angles are computed and used as the measurement within the EKF.

The truth model includes the gravitational deflection of starlight, considering the effects of
the Sun, Earth, Moon, and Jupiter. The positions of the planets are assumed known from the ephemeris
files maintained by NASA’s Navigation and Ancillary Information Facility (NAIF) using the SPICE
Toolkit [182,206]. As a consequence, the errors from in the gravitational deflection of light come
primarily from errors in the estimate of the spacecraft position. Steady state position errors are better
than 50 m (1σ), which results in a bearing error well below the noise floor.

Process noise used in this analysis follows the simple model of Qvv = qI3×3, with q being constant
throughout the simulation. Results shown here assume q = 10−6 m2/s3.

Filter performance for such a situation is shown in Figures 19 and 20. That the filter still
works well with 1 arcsec of misalignment in each star direction provides empirical evidence that
such biases are observable. Furthermore, the steady state velocity error is 4 cm/s, which is about 1/4 of
the error associated with an instantaneous velocity fix with 0.1 mas star measurements. This highlights
the performance improvement realized by filtering.
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Figure 19. EKF position residuals for a spacecraft in a 410 km altitude circular Earth orbit with StarNAV
measurements taken once every 10 s. Filter covariance is shown by shaded region (1σ in dark gray,
3σ in light gray).
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Figure 20. EKF velocity residuals for a spacecraft in a 410 km altitude circular Earth orbit with StarNAV
measurements taken once every 10 s. Filter covariance is shown by shaded region (1σ in dark gray,
3σ in light gray).

8. Conclusions

This work presents the StarNAV concept for using the relativistic perturbation of starlight to
navigate a spacecraft anywhere in the Solar System (or, perhaps, beyond). The velocity of the spacecraft
causes a change in the apparent wavelength (relativistic Doppler effect) and direction (stellar aberration)
of a star as seen by sensor aboard the spacecraft. Thus, velocity may be estimated by measuring these
changes—and these velocity estimates may be used for autonomous navigation.

This work shows that using the relativistic Doppler effect (the StarNAV-DE method) is likely
impractical due to instability in stellar spectra and challenges with sensor technology. Furthermore,
while the absolute change in star direction from stellar aberration is likely unobservable to the necessary
precision in practice, measuring the change in the angle between two stars appears to be feasible.
Thus, the StarNAV-SA method uses exclusively the perturbation in inter-star angle for navigation.

After development of measurement models and the mathematics necessary for an instantaneous
velocity fix, the efficacy of StarNAV-SA is explored within the context of initial orbit determination
(IOD) and an on-board sequential filter. Numerical results indicate that reasonable navigation
performance may be achieved with existing technology. Substantial forward work remains, however,
in the detailed engineering design of a StarNAV sensor system.
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Abbreviations

The following abbreviations are used in this manuscript:

BCRF Barycentric Celestial Reference Frame
CCD Charged Couple Device
DSAC Deep Space Atomic Clock
DSN Deep Space Network
EKF Extended Kalman Filter
FOGM First Order Gauss-Markov
FPA Flight Path Angle
GEO Geostationary Orbit
GNSS Global Navigation Satellite Systems
IOD Initial Orbit Determination
LEO Low Earth Orbit
LOS Line of Sight
OPD Optical Path Delay
OPNAV Optical Navigation
PPN Parameterized Post-Newtonian
SNR Signal-to-Noise Ratio
SSB Solar System Barycenter
STM State Transition Matrix
XNAV X-ray Pulsar Navigation

Appendix A. Historical Remarks on the Lorentz Transformation and Stellar Aberration

The consequences of the Lorentz transformation are numerous and its history is so tightly coupled
with the problem of stellar aberration that a few historical notes are warranted. While central to
the Special Theory of Relativity, the Lorentz transformation was already widely accepted by the time
Einstein published [104] in 1905. Motivated by a number of puzzling problems—namely stellar aberration
together with the results of the Michelson-Morley experiment and the Fizeau experiment—the 1890s
witnessed a remarkable progression of thought that formed the backdrop for the development of special
relativity. Of note is a series of developments by Lorentz during 1892–1895 [208–210] in which he
suggested the concepts of length contraction (which was qualitatively described by FitzGerald a few
years prior in 1889 [211]) and of local time.

These efforts paved the way for (nearly) concurrent development of the complete Lorentz
transformation by both Lorentz (1899) [212] and Larmor (1900) [213], which were ultimately put into
modern form and given the name Lorentz Transformation by Poincaré in 1905 [214]. At the time, however,
Lorentz, Larmor, and Poincaré all maintained belief in the aether. It was Einstein who first derived this
transformation from first principles—and, in doing so, removed reliance on the artificial construct of
the aether and finally provided a satisfying answer to the problem of stellar aberration (and, notably,
explanations of the results from the Michelson-Morley experiment and the Fizeau experiment).

The Lorentz transformation equations for describing an object’s coordinate {x, y, z, t} in two
frames (S and S′), where the frame S′ is moving relative to frame S with a velocity v along the x-axis
only, may be found in almost any introductory physics textbook (e.g., [215]),

x′ = γ(x− vt) (A1a)

y′ = y (A1b)

z′ = z (A1c)

t′ = γ(t− vx/c2) (A1d)

where γ is the Lorentz factor,
γ = 1/

√
1− v2/c2 (A2)
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Since the present application is for autonomous navigation, it is often more convenient to rewrite
the standard textbook version in vector form. Thus, decomposing the position r into components
parallel and perpendicular to the velocity vector, one has

r‖ =
(
〈v〉 〈v〉T

)
r r⊥ =

(
I3×3 − 〈v〉 〈v〉T

)
r (A3)

where 〈·〉 denotes vector length normalization. The Lorentz transformation is then

r′‖ = γ(r‖ − vt) (A4a)

r′⊥ = r′⊥ (A4b)

t′ = γ(t− (vTr)/c2) (A4c)

with
γ = 1/

√
1− (vTv)/c2 (A5)

Stellar aberration follows directly from this transformation. Suppose there is a photon with
velocity w = dr/dt as seen by an observer in frame S, and with a velocity w′ = dr′/dt′ as seen
by an observer in frame S′. These two may be related by first taking the differential of the the
Lorentz transformation,

dr′‖ = γ(dr‖ − vdt) (A6a)

dr′⊥ = dr⊥ (A6b)

dt′ = γ(dt− (vTdr)/c2) (A6c)

such that

w′ =
dr′

dt′
=

dr′‖ + dr′⊥
dt′

=
γ(dr‖ − vdt) + dr⊥
γ(dt− (vTdr)/c2)

(A7)

Simple algebraic rearrangement quickly shows that

dt′ = γdt(1− (vTw)/c2) (A8)

and, therefore,

w′ =
γ(w‖ − v) + w⊥
γ(1− (vTw)/c2)

(A9)

which is the same as

w′ =
w + (γ− 1) 〈v〉 〈v〉T w− γv

γ(1− (vTw)/c2)
(A10)

Now, since w and w′ are the velocity of a photon seen by two different observers, they may be written
in terms of the line-of-sight direction from the observer to the source: w = −cu and w′ = −cu′.
Substituting this result,

− cu′ =
−cu + (γ− 1) 〈v〉 〈v〉T (−cu)− γv

γ(1 + (vTu)/c)
(A11)

which becomes
u′ =

1
γ(1 + vTu/c)

[
u + (γ− 1) 〈v〉 〈v〉T u +

γ

c
v
]

(A12)

which is clearly the same as the expressions for stellar aberration presented in Equations (40)–(42).
Stellar aberration is often described in terms of the change in angle between the light ray’s tangent

vector and the velocity vector. Therefore, define the angle φ as follows

cos(φ) = 〈v〉T 〈w〉 = − 〈v〉T u (A13)
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cos(φ′) = 〈v〉T
〈
w′
〉
= − 〈v〉T u′ (A14)

Proceed by left multiplying Equation (A12) by − 〈v〉T

− 〈v〉T u′ =
1

γ(1 + vTu/c)

[
− 〈v〉T u− (γ− 1) 〈v〉T u− γ

c
〈v〉T v

]
(A15)

such that the expression my be rewritten in terms of cos(φ) by substitution of Equations (A13)
and (A14),

cos(φ′) =
1

γ(1− v cos(φ)/c)

[
cos(φ) + (γ− 1) cos(φ)− γ

c
v
]

(A16)

which further simplifies to

cos(φ′) =
cos(φ)− v/c
1− cos(φ)v/c

(A17)

This expression for stellar aberration is identical to the result presented by Einstein on p. 912 of his
original 1905 paper on special relativity [104].

Finally, noticing that ‖β‖ = v/c

cos(φ′) =
cos(φ)− ‖β‖

1− ‖β‖ cos(φ)
(A18)

which is equivalent to that of Equation (57).
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