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ABSTRACT
Objective: The objective of this paper was to link the phytochemical and metabolic research treating
quinolinic acid induced oxidative stress in neurodegenerative disorders.
Methods: Quinolinic acid, a metabolite of the kynurenine pathway of tryptophan catabolism, plays a
role in the oxidative stress associated with many neurological disorders and is used to simulate
disorders such as Parkinson’s disease.
Results: In these models, phytochemicals have been shown to reduce striatal lesion size, reduce
inflammation and prevent lipid peroxidation caused by quinolinic acid.
Conclusion: These results suggest that phenolic compounds, a class of phytochemicals, including
flavonoids and diarylheptanoids, should be further studied to develop new treatments for oxidative
stress related neurological disorders.
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Abbreviations

ERK extracellular signal-regulated kinase
RAGE receptor for advanced glycation end products
NAD+ nicotinamide adenine dinucleotide
NFκβ nuclear factor kappa-light-chain-enhancer of

activated B cells

Introduction

Neurodegenerative disorders affect hundreds of millions
worldwide [1]. Neurological disorders range from depression
to autoimmune disorders, such as amyotrophic lateral scler-
osis, and while frequently undiagnosed at an early stage,
these diseases can quickly progress into restriction of move-
ment, cognition and altered emotional state [2]. Causes of
neurological disorders include alteration in metabolic path-
ways, protein structure, or physical damage to the brain [3].
Current therapies for neurological disorders have limited
effectiveness and drive alternative approaches – such as nat-
uropathic medicine [4,5].

Huntington’s disease, Alzheimer’s disease and many other
neurological disorders have been linked to oxidative stress,
which refers to damage to the structure of biomolecules
due to reactive oxygen species, such as hydrogen peroxide
(Table 1) [6–9]. The current treatments for neurodegenerative
diseases are primarily symptom-based with few drugs playing
preventative roles [4–9]. Phytochemicals, notably phenolic
compounds that contain a hydroxyl functional group, are
known for their antioxidant, antitumorigenic, and antiviral
activities through free-radical scavenging and/or chelating
action [10]. This research has quickly expanded using tra-
ditional medicine as a guide for novel therapeutics in the
treatment of neurological disorders. High throughput analysis
techniques such as mass spectrometry, have enabled
researchers to profile more plant extracts than ever before,
quickly expanding the list of potential lead compounds [11].
The free-radical scavenging ability of phytochemicals is

tested using known oxidative agents, such as 3-nitropropionic
acid and quinolinic acid, to investigate biological activity in
cells [12].

When studying neurological disorders the kynurenine
pathway of tryptophan metabolism (Figure 1) is of particular
interest since it has been correlated with many neurological
disorders, such as depression and epilepsy [13–16]. The oxi-
dative agent quinolinic acid is linked to Huntington’s
disease, amyotrophic lateral sclerosis, suicide, aggression
and other disorders [2,14,17–20]. The kynurenine pathway,
which occurs in most cells of the central nervous system, cat-
abolizes tryptophan into quinolinic acid, an N-acetyl-D-aspar-
tate (NMDA) receptor agonist and precursor of nicotinamide
adenine dinucleotide (NAD+), and picolinic acid via kynure-
nine [2,21]. Tryptophan is also involved in protein synthesis
and is a precursor for serotonin [22]. Kynurenines, metabolites
of the kynurenine pathway, often have pro and antioxidant
properties with the aromatic hydroxyl acting as an electron
acceptor [22].

Quinolinic acid, an excitatory kynurenine antagonized by
kynurenic acid, is a choline acetyl transferase known to
produce neuronal lesions in the cerebrum at low concen-
trations [17,23]. Quinolinic acid and kynurenic acid form an
important balance in maintaining levels of oxidative stress
[24]. Quinolinic acid’s neurotoxicity occurs through three
methods: increased glutamate signalling, acting as an N-
methyl-D-aspartic acid receptor agonist, or lipid peroxidation
[19]. Picolinic acid, which is produced from 2-amino-4-
carboxymuconic-6-semialdehyde in the presence of picolinic
carboxylase instead of spontaneously transforming into qui-
nolinic acid, acts as an endogenous neuroprotective agent
by chelating iron, necessary for quinolinic acid to function,
or zinc to antagonize quinolinic acid [19,25]. Therefore, the
balance of the kynurenine pathway metabolites is necessary
to maintain normal brain function.

Since the kynurenine pathway metabolites can become
sources of oxidative stress they are implicated in many
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neurological diseases. Metabolites, such as quinolinic acid, are
commonly used to test for the neuroprotective potential of
phytochemicals. This paper will highlight recent research
that indicates the potential for the use of phytochemicals as
therapeutic neuroprotective agents by examining phyto-
chemicals showing neuroprotective behaviour and resistance
to quinolinic acid induced oxidative stress. The research
articles referenced in this paper were selected for their
study of neurological disorders, use of kynurenines to
induce oxidative stress, and testing of phytochemicals to
treat oxidation-induced damage.

Phytochemical protection

In a Parkinson’s cell model, Olea europaea, which contains, a
phenolic compound called oleuropein, resisted oxidative

stress caused by 6-hydroxydopamine and prevented neuronal
death showing a decrease in neuronal death, Bax and Bcl-2 as
apoptotic markers and superoxide (p < 0.05) [26]. Similarly,
Ficus religiosa extract treated rats showed improved behav-
iour and reduced lipid peroxidation when treated with 6-
hydroxydopamine [4]. Fructus mume extract, (200 mg/kg
oral), decreased p-ERK, astrocyte cell numbers and pro-inflam-
matory cytokines in the hippocampus by modulating RAGE
signalling white matter is promising for the treatment of vas-
cular dementia, as modelled by chronic cerebral hypoperfu-
sion in Wistar rats [27]. Eugenol, found in cloves, was tested
in SHSY5Y cells in diabetes and, hyperglycemic, conditions
to assess its potential as a treatment for neuro-oxidative pro-
blems in diabetic patients [28]. The results show that eugenol
treated cells have decreased oxidative markers and increased
glutathione (GSH) levels [28].

Table 1. An overview of neurological disorders focusing on the main affected regions and the link to oxidative stress, increased glutamate levels cause excitotoxicity
and may be triggered by quinolinic acid.

Neurological
disease Symptoms Affected region Role of oxidative stress References

Amyotrophic
Lateral Sclerosis

Progressive muscle
weakness leading to
paralysis

Central nervous system (brain stem, spine,
cortex) – motor neurons

Mutations in superoxide dismutase 1 sensitizing motor
neurons to excitotoxicity, lipid peroxidation, damage
to astrocytes and microglia, and inflammation

[2,3]

Multiple Sclerosis Muscle weakness,
shaking

Loss of myelin sheath in the central
nervous system

Inflammation [3]

Huntington’s
Disease

Impairment of motor,
cognitive, and
behavioural function

Central nervous system – cortex, striatum Inflammation, lipid peroxidation [3]

Parkinson’s
Disease

Muscle weakness, resting
tremor, postural
instability

Substantia nigra – dopaminergic neurons Interferes with dopamine metabolism; ROS cause
neuron death

[3,4]

Alzheimer’s
Disease

Impaired memory and
cognitive functions

Amyloid beta plaques and tau protein
accumulation in the central nervous
system notably the hippocampus

Involved in toxicity associated with amyloid beta
plaques, inflammation response of microglia, and
lipid peroxidation

[3,5,6]

ROS: reactive oxygen species [2–6].

Figure 1. The kynurenine pathway of tryptophan metabolism. Tryptophan is transported into the brain by the L-amino acid transporter and converted by indole
amine dioxygenases (IDO), rate limiting step, into formylkynurenine and then by kynurenine formamidase into kynurenine. Kynurenine can then be either converted
into 3-hydroxykynurenine by kynurenine hydroxylase then into 3-hydroxythranillic acid. Once 3-hydroxythranillic acid is produced it can then be converted to qui-
nolinic acid spontaneously or picolinic acid by picolinic carboxylase. 3-hydroxylkynurenine can be converted to xanthurenic acid and kynurenine into kynurenic acid
by kynurenine aminotransferases. NP: neuroprotective; NT: neurotoxic [2,6,22,25,38].
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Huntington’s Disease is characterized by striatal neuronal
degeneration that may be due to the aggregation of
mutant huntingtin protein [29]. Oxidative stress is evident in
Huntington’s disease in the reduction of Complex II/III activity
in the mitochondrial electron transport chain, superoxide dis-
mutase I and glutathione peroxidase [30]. 3-nitropropionic
acid causes mitochondrial dysfunction by disrupting oxidative
phosphorylation and the electron transport chain due to its
inhibition of succinate dehydrogenase and mitochondrial
complex II thereby causing a Huntington’s phenotype
[30,31]. Embelin, from Embelia ribes, was tested against 3-
nitropropionic acid oxidative damage in adult Wistar rats
and showed that when embelin, 10 or 20 mg/kg/day oral,
was administered with 3-nitropropionic, 15 mg/kg/day intra-
peritoneal, after 8 days of damage by 3-nitropropionic acid,
there was a reversal of striatal neuronal damage, and a
decrease in brain lesion area >69% (p < 0.001), improved
behaviour and decreased oxidative stress [29].

Phytochemicals and quinolinic acid

In the kynurenine pathway, the conversion of tryptophan into
formylkynurenine is catalyzed by indoleamine 2,3-dioxygen-
ase and is the rate limiting step of the pathway. Consequently,
its inhibition imparts significant neuroprotective effects by
controlling quinolinic acid production [32]. Ferulic acid,
found in wheat bran and rice was shown to inhibit indolea-
mine 2,3-dioxynease activity by inhibiting mitogen-activated
protein kinase (MAPK) and NFκβ signalling in lipopolysacchar-
ide activated microglia [32].

Boerhaavia diffusa extract was tested in rat brain hom-
ogenates to assess its ability to negate oxidative damage
caused by thiobarbituric acid reactive substances including
3-nitropropionic acid and quinolinic acid [12]. This extract
decreased the thiobarbituric acid reactive substances and
lipid peroxidation while increasing antioxidant, superoxide
dismutase and reduced glutathione, concentrations (p <
0.05) [12]. Crassocephalum crepidiodes hydrophilic extract
was shown to inhibit acetylcholinesterase activity and
exhibit free-radical scavenging activity (p < 0.05) as well as
potential for inhibition of lipid peroxidation (p > 0.05) [33].

Examination of the neuroprotective potential of Centella
asiatica or its butanolic, ethyl acetate or dichloromethane
extracts inhibited lipid peroxidation and thiol oxidation in
the striatum, hippocampus and cerebral cortex (p < 0.05)
[34]. Clerodendrum volubile, a traditional treatment for neuro-
logical disorders, was tested to determine its phenolic compo-
sition and free-radical scavenging activity. Leaf extracts
reduce malondialdehyde oxidase levels, lipid peroxidation
and monoamine oxidase activity (p < 0.05) showing its poten-
tial as a neuroprotectant [35]. The flavonoids catechin and epi-
catechin found in cocoa were tested in rat striatal slices
treated with quinolinic acid restored GSH levels, protecting
against oxidative damage [10].

When quinolinic acid was used to induce neuroinflamma-
tion in rats, curcumin and curcumin in combination with
piperine improved motor performance (grip strength and
narrow beam walk) and prevented neurodegeneration in
the striatum [36]. Rats on a fatty-acid-rich diet, from fish and
olive oil, had reduced oxidative damage in the striatum,
normal circling behaviour and increased GABA levels, when
microinjected with quinolinic acid [37]. Thus, demonstrating

the neuroprotective nature of fatty acid free-radical scaven-
ging activity [37].

Conclusion

Oxidative stress of the central nervous system can be caused
by metabolites of the kynurenine pathway, such as quinolinic
acid, initiating inflammatory responses that are associated
with many neurological disorders. Plants are widely used as
rich sources of new chemicals for disease treatment due to
the biological activity of phenolic compounds, a class of phy-
tochemicals, including flavonoids and diarylheptanoids, often
associated with antioxidant and anti-inflammatory activity.
This property can be harnessed to treat neurological disorders
that are associated with oxidative damage. Further research is
required to elucidate the mechanism(s) of action, specifically
the interaction between phytochemicals and reactive
oxygen species.
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