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Chiral drugs usually contain chiral centers, which are present as single enantiomers or
racemates. Compared with achiral drugs, they have significant advantages in safety and
efficacy with high stereoselectivity. Of these drugs, chirality not only exerts influence on the
solubility and pharmacokinetic characteristics but also has specific mechanistic
characteristics on their targets. We noted that small molecules with unique chiral
properties have emerged as novel components of antitumor drugs approved by the
FDA in decade. Since approved, these drugs have been continuously explored for new
indications, new mechanisms, and novel combinations. In this mini review, recent
research progress of twenty-two FDA-approved chiral small molecular-targeted
antitumor drugs from 2011 to 2019 is summarized with highlighting the potential and
advantages of their applications. We believe that these updated achievements may
provide theoretical foundation and stimulate research interests for optimizing drug
efficacy, expanding clinical application, overcoming drug resistance, and advancing
safety in future clinical administrations of these chiral targeted drugs.
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1 INTRODUCTION

Chiral molecules first were found in 1848, stemed from the origin of stereochemistry (1). So far,
chiral compounds have covered various fields including chemical materials and pharmaceutical
industry. In recent years, chiral drugs have gradually become the focus of new drug development
and clinical application due to their unique profiles. Chiral small molecular targeted tumor drugs
have good target binding characteristics origined from their high stereoselectivity, which can reduce
the entry of inactive drugs or low-activity drugs and reduce toxic and side effects simutanuously.
Thus, chiral small molecular drugs have obvious advantages and broad development prospects in
antitumor-targeted therapy.

Small molecular targeted drug therapy provides more choices and survival opportunities for
cancer patients who are resistant to chemotherapy, but drug resistance and safety also plague this
treatment method. It is valuable to discuss the role of molecular chirality in efficacy, safety, and drug
resistance from the structural characteristics of small molecular targeted drugs. Undoubtedly, the
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study of chiral structure will give more detailed explanation and
supplement to the mechanism of drug action and provide
reliable reference for the research and development of new drugs.

Chiral small molecular targeted anticancer drugs have
become a novel component for patient treatments with twenty-
two drugs approved by the FDA from 2011 to 2019. Since
approved, these drugs have demonstrated their excellent
therapeutic effects on patients clinically. In the meantime, their
new mechanisms, new indications, and novel combination
regimens have been actively explored. For example, drugs
approved for the treatment of malignant hematological tumors
have shown reliable efficacy in the treatment of solid tumors.
Moreover, the results from either in vitro or in vivo expanded
new mechanisms of action. Moving forward, the combination of
chiral small molecular targeted drugs with other drugs including
monoclonal antibodies shows super anticancer efficancy and
safety. Profoundly, strategies to overcome drug resistance by
applying these chiral targeted drugs have made a solid progress
recently. Saha et al. (2) summarized the critical role of chirality
on the improvement of druggability within human kinome. They
pointed out that chiral kinase inhibitors have controllable and
positive effects on pharmacokinetics. Chiral centers in drug
molecules have specific characteristics in chiral environment,
and the direct modification can optimize the efficacy of drug
molecules. However, they did not focus on the recent progress of
the identification of new indications, or exploration of new
mechanisms of action.

In this mini review, recent clinical-related progress of new
mechanisms, new indications, and novel combination regimens
of twenty-two chiral small molecular antitumor-targeted drug
approved by the FDA from 2011 to 2019 is summarized. The role
of the chiral characteristics of these drugs will be emphasized.
The advantages and disadvantages of chiral drugs will be
comprehensively evaluated. At the very beginning, the basic
profiles of twenty-two chiral small molecular targeted
antitumor drugs are comprehensively summarized as Table 1.
The summary diagram of this review is shown in Figure 1. The
molecular structural formulas of twenty-two drugs are posted in
Figure 2. Detailed information will then be presented in
sequential years. We wish that the current work will establish
an accurate and detailed approach for optimizing the efficacy of
chiral drugs, expanding their clinical application, overcoming
drug resistance and improving safety, and also provide a reliable
fashion for the research of chiral drug active enantiomers.
2 THE CHIRAL SMALL MOLECULAR
TARGETED ANTITUMOR DRUGS
APPROVED BY THE FDA IN 2011

Crizotinib (1) and ruxolitinib (2) were approved by the FDA for
listing in 2011, the former for nonsmall cell lung cancer
(NSCLC) caused by ALK/ROS1 mutation and the latter for
idiopathic myelofibrosis, postpolycythemic myelofibrosis,
postpolycythemia vera myelofibrosis, polycythemia vera, and
Frontiers in Oncology | www.frontiersin.org 2
acute graft-versus-host disease. In addition, their approved
chiral configuration for listing by the FDA is (R)-enantiomer.
2.1 Crizotinib
2.1.1 New Mechanisms
Crizotinib can induce the increase of E-cadherin/ROS1 synthesis
mortality, leading to abnormal mitosis and multinucleation in
cells with E-cadherin deficiency. The phenotype is related to
cytoplasmic division deficiency and abnormal phosphorylation
and localization of p120 catenin (3). In the meantime, crizotinib
affects other RTK activities and makes the range of downstream
targets wider (4, 5). On drug resistance, crizotinib inhibited
cytoplasmic STAT3, led to EIF2A phosphorylation, then
inhibited nuclear STAT3, and then downregulated B-cell
lymphoma gene-2 (BCL-2), and finally led to a high level of
protective autophagy in lung cancer cells (6). In addition,
combined with afatinib, crizotinib inhibits the mTOR/insulin
signaling pathway and downgrades the pRPS6KB1 and pRPS6
downstream, and then cake-specific elimination of IRS-1 nuclear
signals in the signaling pathway (7).

As for (S)-crizotinib, it has the targeted inhibition of MTH1,
which can destroy the homeostasis of nucleotide library, induce
the increase of DNA single-strand breaks, activate DNA repair of
human colon cancer cells, and effectively inhibit tumor growth in
animal models. The theoretical support for the stereospecificity
of (S)-enantiomer was obtained by enzyme activity assay,
chemical proteomic analysis, kininome activity assay, and
MTH1 eutectic structure (8). In addition, (S)-crizotinib inhibits
gastric cancer cell growth through oxidative DNA damage
mechanism and can trigger survival promoting AKT signal at
the same time, which increase the growth rate g-H2AX and
Ser1981 phosphorylated ataxia telangiectasia-mutated gene,
while N-acetyl-L-cysteine could inhibit this effect of (S)-
crizotinib. The inhibition of activated AKT will enhance the
inhibitory effect of (S)-crizotinib on the growth of gastric cancer
tumor cells and resensitize them (9).

It is worth noting that the two also have a certain inhibitory
effect on each other’s target points. (S)-crizotinib induced
NSCLC cell apoptosis by increasing ROS and activating
endoplasmic reticulum stress pathway, and the whole process
was independent of MTH-1 (9). Thus, we can speculate that
there may be an interconnection between the two
inhibitory pathways.

2.1.2 New Indications
Compared with single-dose chemotherapy (pemetrexed or
docetaxel), crizotinib has better therapeutic effect on NSCLC
(10, 11). The satisfactory therapeutic effects of crizotinib can be
observed by treating inflammatory myofbroblastic tumors with
ALK rearrangement (12, 13) and neuroblastoma with R1275Q
mutation in ALK (14).

Crizotinib has potential for breast cancer with E- cadherin
deficiency (3). The treatment of alveolar rhabdomyosarooma
prospectively benefits from crizotinib which better solve the drug
resistance during chemotherapy and radiotherapy (4, 5).
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TABLE 1 | Basic profiles of twenty-two chiral small molecular targeted antitumor drugs.

Compound
serial
number

Drugs Trade
name

Original
research
company

Target spot FDA
approved
the time of

listing

FDA approved the indications

1 Crizotinib Xalkori Pfizer ALK, c-Met,
ROS1, RON

August 26,
2011

August 26, 2011—NSCLC
March 11, 2016—NSCLC with ROS1 mutated

2 Ruxolitinib Jakav Incyte JAK1/2
kinase

November
16, 2011

November 16, 2011—IMF, PPMF, PPV-MF
December 4, 2014–PV
April 24, 2019—aGVHD

3 Carfilzomib Kyprolis Onyx N-terminal
threonine
active site of
20S protease

July 20,
2012

July 20, 2012—refractory MM

4 Afatinib Gilotrif Boehringer-
Ingelheim

ErbB1/2/4 July 17,
2013

July 17, 2013—NSCLC of missing EGFR exon 19 or the alternative mutation
of exon 21
April 15, 2016—metastatic NSCLC of nonresistant rare EGFR mutations

5 Ibrutinib Imbruvica Johnson &
Johnson and
Pharmacyclics

The active site
Cys-481 of
BTK

November
13, 2013

November 13, 2013—MCL
February 12, 2014—CLL
July 28, 2014—CLL carrying del 17p deletion mutations
January 29, 2015—WM
March 4, 2016—first-line treatment of CLL
May 6, 2016—benendamostetin + rituximab (BR) for the treatment of SLL
January 19, 2017—MZL
August 27, 2018—combined with rituximab for the treatment of LPL
August 3, 2017—cGVHD
January 28, 2019—combined with otuzumab (Gazyva) for treating adult
patients with newly diagnosed CLL/SLL
April 21, 2020—combined with rituximab for initial treatment in adult patients
with CLL/SLL

6 Idelalisib Zydelig Gilead science PI3K July 23,
2014

July 23, 2014—FL/SLL/in conjunction with rituximab for the treatment of CLL

7 Ixazomib Ninlaro Takeda
Pharmaceutical

The b5
subunit of
20S
proteasomes

November
29, 2015

November 29, 2015—in combination with lenalidomide and dexamethasone
for patients with MM

8 Sonidegib Odomzo Novartis,
Switzerland

SMO July 24,
2015

July 24, 2015—local advanced basal cell cancer that has recurred after or is
not suitable for surgery or radiotherapy

9 Cobimetinib Cotellic Roche’s
Genentech

MEK November
10, 2015

November 10, 2015—atezolizumab + cobimetinib + vemurafenib for the joint
treatment of late melanoma with BRAF V600 mutations

10 Niraparib Zejula TESARO PARP-1/2 March 27,
2017

March 27, 2017—maintenance treatment for patients with recurrent ovarian,
tubal, or primary peritoneal cancer completely or partially relieved after
platinum chemotherapy
October 23, 2019—advanced ovarian, tubal, or primary peritoneal cancer
(carrying PARP mutations) that have received 3 or more chemotherapy
options
April 29, 2020—first-line maintenance treatment (whether or not PARP
mutations) in patients with advanced ovarian, tubal, or primary peritoneal
cancer after first-line platinum chemotherapy

11 Acalabrutinib Calquence AstraZeneca BTK October
31, 2017

October 31, 2017—CLL/SLL

12 Midostaurin Rydapt Novartis Protein kinase
C a (PKC a)

April 28,
2017

April 28, 2017—ASM/SM-AHN/MCL

13 Encorafenib Braftovi Novartis BRAF June 27,
2018

June 27, 2018——unresectable or metastatic melanoma patients with BRAF
V600E or BRAF V600K mutation confirmed
April 8, 2020—mCRC with BRAF V600E mutation

14 Ivosidenib Tibsovo Agios
Pharmaceuticals

Mutant IDH1 July 20,
2018

July 20, 2018—R/R AML in human with IDH1 mutation
May 2, 2019—AML patients aged 75 and over who could not use intensive
chemotherapy due to other complications

15 Duvelisib Copiktra Verastem PI3K September
24, 2018

September 24, 2018—R/R CLL/SLL/FL

16 Talazoparib Talzenna Pfizer PARP October
17, 2018

October 17, 2018—locally advanced or metastatic breast cancer with BRCA
mutation (harmful or suspected harmful) and HER2 negative

17 Lorlatinib Lorbrena Pfizer ALK November
2, 2018

November 2, 2018—ALK-positive metastatic NSCLC

(Continued)
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2.1.3 Novel Combination Regimens
The study of animal model found that autophagy inhibitor HCQ,
drug inhibitor, or shRNAs against Beclin-1 can enhance the
antitumor activity of crizotinib (6). In addition, the combination
of AKT inhibition and (S)-crizotinib has the potential to become
a new clinical scheme for the treatment of gastric cancer (9).
Beyond that, the combination of afatinib and crizotinib hopefully
becomes a new treatment of disseminated cutaneous malignant
melanoma (7).

2.2 Ruxolitinib
2.2.1 New Mechanisms
JAK2 has preferential selectivity to (R)-enantiomers of
ruxolitinib and its aniline derivative. Their (S)-enantiomers
adjust to JAK2 by rotating, which still does not fit well. This
demonstrates that the chirality center is the key to a combination
with JAK2. Similarly, the achiral analog barcitinib shows the
same conformation as ruxolitinib in the binding mode with
JAK2. In a word, the structure-activity relationship of ruxolitinib
is supposed to be a core in the study of curative effect. On
account of the high selectivity of ruxolitinib for JAK2, patients
whose diseases caused by JAK2 mutation may benefit more from
ruxolitinib combination therapy, which encourages that gene
mutation detection is applied to patients.

Ruxolitinib plays a momentous part in signal transduction of
erythropoietin and thrombopoietin, thus ruxolitinib can cause
dose-dependent anemia and thrombocytopenia, which can be
predictable (15, 16). In addition, the dose is adjusted on the basis
of the actual situation when patients have kidney function
damage (17). Ruxolitinib passes through IFN-g-dependent and
IFN-g-independent mechanisms inhibiting inflammation,
activation, and tissue infiltration of T cells and some
undetected neutrophils (18).

2.2.2 New Indications
The use of ruxolitinib before hematopoietic stem cell
transplantation can improve the success rate of transplantation (19).

The preliminary clinical research data (20) show that
ruxolitinib is positive, well tolerated and controllable in the
treatment of five hemophagocytic lymphohistiocytosis patients
Frontiers in Oncology | www.frontiersin.org 4
with secondary hemophagocytic lymphohistiocytosis. In
addition, ruxolitinib can participate in the immune regulation
of COVID-19 patients and reduce symptoms, but the research
results did not show that ruxolitinib can reduce virus (21, 22).

2.2.3 Novel Combination Regimens
There are some debates in the effect of ruxolitinib on prolonging
the survival of patients with myelofibrosis (23). It seems that
novel combination regimens of ruxolitinib are a reliable
approach to optimizing both efficacy and safety. The favorable
efficacy and safety of the combination have been proved. In
addition, ruxolitinib combined with danazol or TPD is a good
therapy in elevating hemoglobin (Hgb) and platelets (PLT)
(23, 24).
3 THE CHIRAL SMALL MOLECULAR
TARGETED ANTITUMOR DRUG
APPROVED BY THE FDA IN 2012

Carfilzomib (3) was approved by the FDA for listing in 2012, for
patients with multiple myeloma who had received at least 2 drugs
prior to treatment, which contains five chiral centers.

3.1 Carfilzomib
3.1.1 New Mechanisms
Carfilzomib has the less nontargeted effects so as to exert lower
neurotoxicity and higher safety, as the second proteasal inhibitor
approved by the FDA (25–27). In addition, vorinostat and the
histone deacetylase inhibitor both inhibit phase G2/M, while
increasing ROS level in the cellular environment, and mitogen-
activated protein kinase (MAPK), such as stress activase JNK,
p38MAPK, which also promotes the lethality of carfilzomib and
vorinostat to cancer cell. Also, there is likely an amplification
loop between ROS and p38MAPK (28). Combined with XPO1-
mediated nuclear output inhibitors, carfilzomib could interfere
with the biosynthesis of ribosomes and inhibit survival-
promoting kinase PRAS40, and then achieve anticancer effects.
Beyond that, in virtue of BET inhibitors, the ability of
TABLE 1 | Continued

Compound
serial
number

Drugs Trade
name

Original
research
company

Target spot FDA
approved
the time of

listing

FDA approved the indications

18 Larotrectinib Vitrakvi Bayer and Loxo
Oncology

TRKs November
26, 2018

November 26, 2018—adult and child patients with locally advanced or
metastatic solid tumors with NTRK gene fusion

19 Glasdegib Daurismo Pfizer SMO November
2, 2018

November 2, 2018—— in combination with low-dose cytarabine for the
treatment of untreated AML

20 Zanubrutinib Brukinsa Baekje
Shenzhou

BTK November
15, 2019

November 15, 2019—R/R MCL

21 Darolutamide Nubeqa Bayer
Pharmaceuticals

Androgen
receptor

July 30,
2019

July 30, 2019—NM-CRPC

22 Alpelisib Piqray Novartis PI3K May 4,
2019

May 4, 2019—combined with Fulvestrant in the treatment of advanced
metastatic breast cancer with hormone receptor positive (HR+)/human
epidermal growth factor receptor 2 negative (HER2−) and PIK3CA mutation
in male and postmenopausal women
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transcription factor Nrf1 to induce proteasal genes to proteasal
inhibition is weakened, hindering the rebound reaction of
proteasal activity, which is the key pathway for cells to address
protein toxic stress. BET inhibitors have the potential to combine
with carfilzomib to treat solid tumors (29).

In safety, carfilzomib causes the myocardial activation of
PP2A, then deactivates AMPKaand the downstream signaling
related to autophagy, and results in the acute cardiac
dysfunction. Metformin can offer the cardiprotection by
recovering the phosphorylation of AMPKa. It is also
speculated that nephrotoxicity may be caused by the potential
Frontiers in Oncology | www.frontiersin.org 5
effects of carfilzomib on renal endothelial cells, or may have
similar pathologic mechanisms to cardiovascular toxicity (30).

3.2.2 New Indications
Carfilzomib targets more selectively the chymotrypsin-like
activity of the proteasome than bortezomib, which has been
observed to have a certain therapeutic effect on bortezomib
resistance cells and patients in vivo and in vitro (31–33). Also,
carfilzomib can be used in the treatment of chronic lymphacytic
leukemia, and a heterogeneous response and a variability have
been observed among patients (34). In the meantime, carfilzomib
FIGURE 1 | The schematic figure.
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as a candidate in highly HLA-sensitized kidney transplant
showed good safety and lower toxicity, and significantly
reduced levels in bone marrow plasma cells and anti-HLA
antibodies (35).

3.2.3 Novel Combination Regimens
Favorable activity and safety have been observed in the treatment
of newly diagnosed multiple myeloma (NNMM) applying
carfilzomib combined with immunosuppressor. The new
combination regimen of the three drugs, carfilzomib,
lenalidomide, and dexamethasone, will be highly valuable (36).
In addition, carfilzomib combined with XPO1-mediated nuclear
output inhibitors can show up a satisfactory effect for the
treatment of adiposarcoma. High-throughput screening points
Frontiers in Oncology | www.frontiersin.org 6
out that the combination of carfilzomib and cyclosporine has the
potential to resisit adiposarcoma (37). Importantly, a synergy
between carfilzomib and bromodomain extra-terminal (BET)
family protein inhibitors can be used jointly for a variety of solid
tumors (29).
4 THE CHIRAL SMALL MOLECULAR
TARGETED ANTITUMOR DRUGS
APPROVED BY THE FDA IN 2013

Afatinib (4) and ibrutinib (5) were approved by the FDA to its list in
2013, the former for themetastaticNSCLCofmissing EGFR exon 19
FIGURE 2 | Molecular chemical structures of twenty-two drugs.
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or the alternative mutation of exon 21 or nonresistant rare EGFR
mutations (L861Q, G719X, S768I), and the latter for mantle cell
lymphoma, chronic lymphocytic leukemia, fahrenheit giant
globinemia, small lymphocytic lymphoma (as monotherapy or
combined with benendamostetin + rituximab), recurrent refractory
borderline lymphoma, chronic graft antihost disease, and rare
lymphoplasmic cell lymphoma (combined with rituximab). (S)-
Afatinib and (R)-ibrutinib are the active enantiomers.

4.1 Afatinib
4.1.1 New Mechanisms
T790M mutation and autophagy are perceived as the main
mechanism that results in the resisitance of EGFR-mutant
advanced NSCLC when using the tyrosine kinase inhibitor,
afatinib. In vitro, afatinib induces the autophagy, which can
show higher cytotoxicity when the autophagy was suppressed by
chloroquine (CQ) and 3-MA. Futhermore, the autophagy
induced by afatinib needs the paticipation of Akt/mTOR and
Erk signaling pathways and ROS. The results of studies in vivo
are the same (38, 39). A naphquinone compound shikonin plays
a good role in inducing apoptosis and has a negative regulation
on the PI3K/AKT signaling pathway, which is also considered a
possible mechanism for shikonin with anti-NSCLC activity (40).

Afatinib induces the activation of MET and AXL in HER2-
driven resistant gastric cancer cell lines, which can be inhibited
by cabozantinib so as to reduce resisitance. YES1, a member of
the Src family, is inhibited by dasatinib so that the resisitance is
attenuated. Obviously, YES1, MET, and AXL activation in
HER2-driven gastric cancer cells is a new mechanism for
producing resistance, while the use of the corresponding
activation inhibitor is a reliable method (41).

Abnormal expression of gene products commonly caused by
amplification/mutation of HER2 and PIK3CA in high-grade
serum endometrial cancer (USC) and ovarian cancer (HGSOC)
and PIK3CA mutations are likely results of afatinib resistance,
which can be overcome by HER2 combined with PIK3CA, AKT,
or MTOR inhibitors. Also, the examination of PIK3CA/PIK3R1
carcincinogenic mutations may be the basis for determining
whether the patient has afatinib single treatment resistance (42).

EGFRvIII/AKT, EGFRvIII/JAK2/STAT3, and focal adhesion
kinase (FAK) are closely related with afatinib playing anticancer
roles. EGFRvIII-cMET crosstalk in chemoradiation-resistant cancer
stem cells (CSCs) is specifically inhibited by afatinib, thus inhibiting
the expression of Nanog and Oct3/4 as well. In vitro experiments
show that afatinib combinedwith temozolomide can inhibit the self-
renewal properties of Nanog and Oct3/4 (43). In addition, afatinib
can block the phosphorylation of EGFR, AKT, and ERK caused by
oxygen/glucose deprivation (OGD), thereby preventing the
activation of subsequent pathways. Moreover, afatinib attenuated
OGD-induced astrocyte activation, proliferation, and inflammasome
activation, providing a reliable theoretical basis for afatinib in the
treatment of neuroinflammation (39).

4.1.2 New Indications
Activation of EGFR was found in neurodegenerative diseases,
and afatinib was found to be used in the treatment of
neuroinflammatory (39).
Frontiers in Oncology | www.frontiersin.org 7
4.1.3 Novel Combination Regimens
Combination of afatinib and temozolomide can cooperatively
inhibit the proliferation, clonal survival, motor, invasive, and
induced aging of glioblastoma (GBM) (43). Also, afatinib
combined with paclitaxel and bevacizumab have a good
antitumor activity, and the incidence of adverse reactions is
under control (44). The favorable antitumor activity for afatinib
with carboplatin and triple therapy of afatinib with carboplatin
and paclitaxel are observed (45). In addition, head and neck
squamous cell carcinoma (HNSCC) and the human
papillomavirus (HPV) therapy with HER receptors, anti-EGFR
therapies have shown that (46) afatinib monotherapy or afatinib
combined with carboplatin can increase the sensitivity of
cetuximab‐resistant cells. Beyond that, inhibition of autophagy
may address the TKI resisitance of EGFR-mutant advanced
NSCLC (38, 39).

4.2 Ibrutinib
4.2.1 New Mechanisms
Although ibrutinib is an irreversible covalent inhibition of BTK,
it showed good therapeutic effect and safety in the treatment of
the first-line and relapsed/refractory CLL/SLL. In the meantime,
the patients without chromosome 17p deletion benefits most
from ibrutinib on the progression-free survival rate and overall
survival. However, the long-term effects of ibrutinib on immune
function of users still need further investigation (47, 48).

The sensitivity of ibrutinib treatment is related to unmutated
igvh status and elevated zap70 expression and trisomy 12.
Meanwhile, del17p/TP53 mutation is the inherent drug
resistance factor of ibrutinib cells, which is not affected by
the acquired BTK and PLCg mutations and directly related to
ibrutinib resistance (49). Arq531, a reversible BTK inhibitor, can
inhibit BTK function, including B-cell receptor (BCR) signaling,
activity, migration, CD40 and CD86 expression, and NF-kB gene
transcription in vitro. Arq531 can obtain better survival rate than
ibrutinib, and BCR-mediated C481S-BTK and PLCg2 mutations,
which are directly related to ibrutinib resistance, are also inhibited
by Arq531 (50). In addition, the birth of daratummab makes
CD38 a research hotspot. Daratummab has a good therapeutic
effect on CLL through ADCC, CDC, and ADCP, and apoptosis
mechanisms CD38 reduced the enhancement effect of ibrutinib on
Syk, BTK, PLCg2, ERK1/2, and AKT. Combined medication can
target BTK and CD38 at the same time and exert a strong anti-
CLL effect (51).

The HDAC inhibitor combined with ibrutinib caused a
significant inhibition of p-IRE1 and p-BTK, thus inhibiting the
downstream target of BCR, which is the effect that drug alone
does not have (52). Furthermore, inhibiting BTK and P13K/
mTOR simultaneously can enhance the therapeutic effect of
ibrutinib on PCNSL with CD79B mutation (53). In the
meantime, ibrutinib can also reduce the drug resistance of
tumor cells to paclitaxel by inhibiting the outflow function of
the ATP-binding cassette subfamily B member 1 (ABC B1/P-
glycoprotein) and subfamily C member 10 (ABCC 10/MRP 7)
(54). Also, ibrutinib inactivates EGFR in hepatocellular
carcinoma cells and block downstream Akt and ERK signals,
thus inhibiting the expression of key genes involved in cell
December 2021 | Volume 11 | Article 785855
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proliferation, migration, and survival and activating cell
differentiation (55).

4.2.2 New Indications
Ibrutinib has an activity in relapsed or refractory primary central
nervous system lymphoma (PCNSL), which shows resistance in
PCNSL treatment (53). Ibrutinib has a good therapeutic activity
on hepatocellular carcinoma, including sorafenib-resistant HCC
cells (55).

4.2.3 Novel Combination Regimens
Daratummab with ibrutinib have achieved the cancer cell killing
effect in vivo and in vitro (51). Also, Arq531 has the potential to
become the combination candidate drug of ibrutinib to
overcome the resistance to ibrutinib (50). In addition, the
participation of ibrutinib can promote the antitumor activity of
paclitaxel (54).

Pan-class I/II histone deacetylase (HDAC) inhibitors can be
used to treat some lymphomas, and ACY-1215 is the first
selective inhibitor of HDAC. ACY-1215 plus ibrutinib is highly
synergistic in lymphoma cell lines and primary human
lymphoma samples. In the xenograft lymphoma model, this
combination caused the tumor growth delay and prolonged the
overall survival rate (52). Ibrutinib has synergistic effect with
sorafenib or sorafenib homolog on apoptosis of hepatocellular
carcinoma cells. In vivo test, the combination drug shows
satisfactory effect and safety, and BTK + immune cells are
enriched in tumor microenvironment (55).
5 THE CHIRAL SMALL MOLECULAR
TARGETED ANTITUMOR DRUGS
APPROVED BY THE FDA IN 2014

Idelalisib (6) was approved by the FDA to its list for recurrent
follicular cell non-Hodgkin lymphoma (FL) and recurrent small
lymphocyte lymphoma, in conjunction with rituximab for the
treatment of recurrent chronic lymphocytic leukemia. (S)-
Idelalisib is the active enantiomer.

5.1 Idelalisib
5.1.1 New Mechanisms
High-frequency CMV reactivation and pneumocystis jiroveci
pneumonia (PJP) were observed in the treatment of CLL using
idelalisib. Mechanically, idelalisib impaired T-cell-mediated
CMV responses and patients with gastrointestinal reactions
were found to increase the percentage of Tregs in biopsy,
sometimes associated with a positive PCR of infectious
pathogens (56). Therefore, it can be speculated that idelalisib
may have a side effect of T-cell damage that promotes infection
or viral reactivation. Also, idelalisib causes impaired
polymorphonuclear neutrophil (PMN) function, which in turn
causes neutropenia-like susceptibility to infections (57).

Idelalisib could enhance the bendamustine-mediated DNA
damage/repair response. In the meantime, gH2AX was separately
activated and the corresponding translation process was
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synergfacilitated by the two drugs. A decrease in the MCL-1
total protein population in CLL cells was observed, and MCL-1-
deficient heterogeneous mouse embryonic fibroblasts are highly
sensitive to monotherapy and combined therapy (58).

In addition, idelalisib may increase the side effects of
radiotherapy. One patient developed strong grade 2
radiodermatitis and grade 3 mucositis after 20 Gy radiotherapy,
and idelalisib patients who do not take idelalisib show good
tolerance, with the most serious adverse reaction being no more
than grade 1 radiodermatitis (59). When the irradiation intensity
was 2 Gy and idelalisib was 100 nmol/L, the radiosensitivity
increased significantly, which may be directly related to the
inhibitory effect of idelalisib on PI3K.

Idelalisib promotes Bim induction via the FoxO3a pathway
after PI3K/AKT inactivation to induce apoptosis. This shows
that Bim plays an important role in the treatment of HCC by
idelalisib (60). Idelalisib induced PUMA via the AKT/GSK-3b/
NF-kB pathway, p53 upregulated modolator of apoptosis,
belonging to BH3-only Bcl-2 family, which play a key role in
apoptosis in cancer cells (59). Interestingly, idelalisib can inhibit
platelet aggregation mediated by ITAM receptors GPVI and
CLEC-2 as well as the adhesion and was antithrombotic and
bleeding at high doses (61).

5.1.2 New Indications
Idelalisib showed good activity in HCC cells and colon cancer
cells (59, 60). In addition to this, idelalisib can collaborate with 5-
FU or regorafenib to induce colon cancer apoptosis, with PUMA
involvement in the process, which can serve as the sensitivity
index of idelalisib in the treatment of colon cancer, and it is also
the main factor of the role of idelalisib of anticolon cancer (61).

5.1.3 Novel Combination Regimens
Idelalisib + bendamustine + rituximab therapy showed greater
efficacy and safety compared with bendamustine and rituximab
therapy commonly used clinically to treat recurrent/refractory
CLL (62). Bindem therapy by idelalisib + bendamustine
produced synergistic cytotoxicity in CLL therapy (58).
However, the safety evaluation of idelalisib, denidamide, and
rituximab showed excessive toxicity, thus the combination is
recommended in a carefully designed and diligently tested
clinical trial environment (63). The results of the effect of
idelalisib on the treatment of rituximab and obinutuzumab on
leukemia showed that inhibition with idelalisib on PI3K did not
negatively affect the efficacy of the above two McAb and had
clinical value associated with them (64). Meanwhile, idelalisib
and sorafenib or doxorubicin exhibit synergistic anti-HCC
effects, in which the decrease of anti-HCC effect of idelalisib in
Bim-deficient objects is observed (60).
6 THE CHIRAL SMALL MOLECULAR
TARGETED ANTITUMOR DRUGS
APPROVED BY THE FDA IN 2015

There were three drugs approved for listing by the FDA,
including ixazomib (7), sonidegib (8), and cobimetinib (9).
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Ixazomib combination with lenalidomide and dexamethasone
are approved for patients with multiple myeloma who have been
treated at least one time. Sonidegib is approved for local
advanced basal cell cancer that has recurred after or is not
suitable for surgery or radiotherapy. Cobimetinib is approved
in association with vemurafenib (or vemurafenib +atezolizumab)
for melanoma with BRAF V600E or V600K mutations.

6.1 Ixazomib
6.1.1 New Mechanisms
Ixazomib enhances the activation of the PTH-induced b-catenin/
TCF signal by inducing PTHR separation from b-catenin, thus
enabling the regulation of the PTHR signal to maintain the PTH
anabolic effect (65). In HCT116 p53, ixazomib is induced by
CHOP-dependent DR5, sensitizing the tumor apoptosis process
induced by tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL) (66).

6.1.2 New Indications
In addition to treat MM approved by the FDA, ixazomib also
improves the treatment effect of PTH on osteoporosis and other
absorptive bone diseases (65). In the treatment of solid tumors,
ixazomib showed therapeutic activity in the treatment of
colorectal cancer (CRC) and triple-negative breast cancer
(TNBC) (66).

6.1.3 Novel Combination Regimens
In the treatment of recurrent/refractory acute myeloid leukemia,
the maximum tolerated dose of ixazomib with mitoxantrone,
etoposide, and cytarabine (MEC) was 1.0 mg, observing the
dose-dependent thrombocytopenia as the controlled toxicity,
and the overall response rate reached 53%, indicating that the
combination drug had certain therapeutic effect (67).

The China Continuation study results support the extension
of ixazomib + lenalidomide + dexamethasone (IRD) therapy in
RRMM therapy worldwide (68). Also, there was also a significant
association between ixazomib exposure and the adverse reactions
of triple therapy, the probability of not only anemia and
thrombocytopenia above level 3 but also diarrhea fatigue,
nausea, peripheral neuropathy, and rash were directly related
with Ixazomib exposure, which can be controlled by adjusting
the dose of ixazomib, providing a reference to the clinical dose
range of ixazomib (69).

In NDMM therapy, two triple therapies for Ixazomib were
proposed. One is the ixazomib + RD (IRD), which shows good
therapeutic efficacy and safety in patients who have not received
autologous stem cell transplantation (SCT). Subsequent
maintenance treatment can be treated with ixazomib alone (70).
The other is the ixazomib-melphalan-prednisone (IMP) which
showed good tolerance and antimyeloma activity. A single dose of
ixazomib can beused formaintenance treatment in elderlyNDMM
patients and those who are not eligible for transplantation (71). In
addition, IDR showed good therapeutic activity and safety in
Waldenstrom macroglobulinemia (WM), providing a safe,
simple, and effective treatment for patients with WM (72).

In vivo metabolism of ixazomib provides new ideas for its
drug combination. When the concentration of ixazomib exceeds
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the clinical level, ixazomib was observed to be metabolically
metabolized by multiple CYP isoenzymes. The effect of CYP3A
inhibitors on ixazomib metabolism was not significant, which
could be used directly together without adjusting to the dose of
ixazomib. For strong CYP3A inducers, simultaneous
administration with ixazomib should be avoided, as which
significantly reduces the whole body exposure of ixazomib,
somewhat reducing the efficacy of ixazomib (73). Furthermore,
ixazomib with carboplatin had good treatment for TNBC and
patients demonstrated good tolerance to bindem therapy in the
second stage of the trial (74).

6.2 Sonidegib
6.2.1 New Mechanisms
Debilitating taste disorder was reported in patients using
hedgehog pathway inhibitior (HPI). The mouse had a loss of
taste after using sonidegib, but the response of the tongue did not
change to tactile stimulation. Rats and mice had the same
performance in neural effects in fungiform (FP), and rats were
significantly more severe than mice in taste buds (TB) and
circumvallate papillae (CV) (75). For patients with high-risk
limited prostate states undergoing radical prostatectomy, GLI1
expression identified baseline levels of hedgehog signaling
pathway activity after the use of sonidegib. Sonidegib can reach
the prostate site and produce a 60-fold hedgehog inhibition effect
(76). In the human and mouse chronic graft-versus-host disease
(cGVHD), the hedgehog signal is active, accumulating the
transcription factors GLI-1 and GLI-2 particularly in
fibroblasts, leading to the pathologic fibrosis seen in cGVHD.
However, H-score for sonic hedgehog (Shh), theoretically not
affected by sonidegib, showed a significant content decline in
vitro, for unclear reasons (77).

6.2.2 New Indications
Sonidegib suppresses the hedgehog signaling pathway and is
thought to be used in the adjuvant treatment of prostate cancer.
However, the significance and status of sonidegib in prostate
cancer have not been clarified (76). Sonidegib has the potential to
treat steroid refractory cGVHD, but the patient showed obvious
toxicity accumulation so as to discontinue the treatment. The
sonidegib adverse reactions and the pathological characteristics
of cGVHD partially overlap, and it was difficult to distinguish the
specific correlation between toxicity and sonidegib. This partly
limits the use of sonidegib in cGVHD (77).

In addition, sonidegib has good efficacy and safety for locally
advanced basal cell carcinoma.Moreover, positive results from trials
conducted in patients with Gorlin syndrome showed the possibility
of using sonidegib not only for treatment of locally advanced basal
cell carcinoma but also for cancer chemoprevention (78).

6.2.3 Novel Combination Regimens
The combination of sonidegib and ruxolitinib can produce good
tolerance and safety in patients with multiple myeloma who have
not used JAK inhibitors. The study identified a combined
recommended phase 2 dose (RP2D) regimen for sonidegib
400 mg daily + ruxolitinib 20 mg twice daily. The overall
benefits of combined therapy compared with ruxolitinib alone
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are relatively limited and do not have significant advantages for
the treatment effect of multiple myeloma, which is a near step to
extended clinical trials of sonidegib (79).

6.3 Cobimetinib
6.3.1 New Mechanisms
Using cobimetinib combined with vemurafenib for the treatment
of melanola, the the MAPK signaling pathway activated by MEK
is the core cause of antagonizing BRAF inhibitors (80). There is
no toxicity accumulation in long-term treatment, but it was
reported that (81) cobimetinib caused blurred vision and eye
photophobia in the treatment of metastatic melanoma with
BRAF mutations, and the symptoms were basically resolved
14 days after treatment. The specific mechanism is still
unclear. In addition, cobimetinib developed very rare “dropped
head syndrome” in treating patients with Erdheim‐Chester
Disease (ECD), which were relieved by reducing the
administration dose after a period of withdrawal (82).

BCL2 protein was enriched in leukemia progenitors and that
cobimetinib inhibited cytokine-induced pERK and PS6 signaling
pathways. The signaling pathway downstream of MAPK is
inhibited and is synergistic in apoptosis of cancer cells.
Cobimetinib combined with venetoclax downgrades the
content of the MCL1 protein, and the BCL2:BIM and MCL1:
BIM complexes are damaged and release BIM, thus causing
apoptosis of cancer cells (83). The BRAF-mediated MEK/ERK-
mediated MCL-1 upregulation is the production mechanism of
colorectal cancer cell resistance that causes BRAF mutations. Cell
experiments found that combination of cobimetinib and MCL-1
antagonists significantly inhibited growth of tumor cell growth
and antagonized cell resistance (84).

Higher expression of FLT3 and MDM2 in AML cells of
normal karyotype (NK) and wild-type TP53, and are therefore
most sensitive to combination therapy. As a result, the content of
FLT3 and MDM2 can be used as biomarkers for the combination
therapy of cobimetinib and idasanutlin for AML (85).

6.3.2 Novel Combination Regimens
The drug combination of dabrafenib and trametinib was shown
to have a therapeutic effect comparable with the drug
combination of cobimetinib and vemurafenib, and the former
was safer. However, the study only provided data reference for
doctors (86). Cobimetinib combined with venetoclax can play
the therapeutic activity against leukemia, targeting both BCL2
and MAPK pathways to induce apoptosis of cancer cells (84). In
addition, cobimetinib combined with MDM2 antagonists
idasanutlin showed significantly induced apoptosis in the AML
cell line (85).

Duligotuzumab is a humanizedmonoclonal bispecific antibody
that targets to inhibit HER3 and EGFR and inhibit downstream
signalingofAKTandERK.The combinationofduligotuzumaband
cobimetinib in the treatment of KRAS-mutated tumors showed
poor resistance and limited efficacy in the subject population.
However, cobimetinib and duligotuzumab as single combined
with other drugs achieve better tolerance (86).

The accumulation and survival of tumor-specific T cells is
facilitated by MEK inhibitors. In the treatment of solid tumor,
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the cobimetinib and PD-L1 inhibitors atezolizumab has good
safety and therapeutic activity and is unaffected by KRAS/BRAF
activity (83, 87). In mouse models of colorectal cancer with
BRAF V600E mutations, cobimetinib combined with MCL-1
antagonists showed good drug-resistant antagonism (88).
7 THE CHIRAL SMALL MOLECULAR
TARGETED ANTITUMOR DRUGS
APPROVED BY THE FDA IN 2017

Niraparib (10), acalabrutinib (11), and midostaurin (12) were
approved to its list by the FDA in 2017, niraparib for patients with
recurrent ovarian, tubal, or primary peritoneal cancer completely or
partially relieved after platinum chemotherapy. Acalabrutinib is for
patients with CLL or SLL. Midostaurin is for newly diagnosed FLT3
gene mutations (combined with chemotherapy drugs) and adult
aggressive systemic hypergalocytosis (ASM), systemic
hypergalocytosis (SM-AHN) with blood tumors, and hypertrophic
cell leukaemia (MCL). Both (S)-niraparib and (S)-acalabrutinib are
active enantiomers. The active enantiomer of midostaurin is (5S, 6R,
7R, 9R)-enantiomer.

7.1 Niraparib
7.1.1 New Mechanisms
Niraparib was metabolized by hydrolysis and binding pathway,
31.6% of drugs from feces and 40.0% of drugs from urine 14 h
after administration. About 29.9% of the fecal and urine
excretion drugs are drug prototypes. According to research
data, niraparib is a low liver extraction drug with high
bioavailability, low clearance, and long half-life, in line with
the anticancer activity of niraparib (89, 90). Improved time
without symptoms or toxicity has been demonstrated in the
niraparib-treated patients of recurrent ovarian cancer (91).

Niraparib has been shown to regulate the tumor immune
microenvironment. In breast cancer cell lines and xeno-
transplantation models, PARP inhibitors upregulate PD-L1
expression in a tumor inherent manner, whether BCRA is
mutated or not. Mechanically, niraparib can enhance the activity
of the the type I (alpha) and type II (gamma) interferon pathway
and increase the infiltration of CD8+ andCD4+ cells in the tumor.
Meanwhile, niraparib treatment alonemay cause immunememory
(92). In conclusion, good cancer effects may be because niraparib
increased sensitivity of the tumor to immune checkpoint
blocking therapy.

TWIST may be the oncogene that promotes OC cells to
cisplatin resistance. In TWIST-deficient cisplatin-resistant OC
cells (CisR OC), niraparib and cisplatin have synthetic lethal
effects on cancer cells. Further research reveals two potential
mechanisms, one by blocking the DNA repair, which suppresses
the activation of PARP1 and XRCC1. The other is mitochondrial
emergency-mediated apoptosis. Cytochrome c in the
mitochondria is released into the cytoplasm, initiating cypase-
dependent apoptosis, resulting in irreversible cell death (93).

When the niraparib dose increased to 300 mg, apalutamide
led to a higher incidence of dose-limiting toxicities (DLTs). In
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contrast, AAP and niraparib have better tolerance and security.
The researchers speculated that apalutamide induced the
metabolism of niraparib, reducing niraparib exposure or that
apalutamide induced the P-glycoprotein to reduce niraparib
exposure. Therefore, the efficacy of apalutamide combined
with niraparib is affected (90).

7.1.2 New Indications
Niraparib could prolong the survival of patients with platinum-
sensitive recurrent ovarian cancer who responded to the last
platinum chemotherapy. Furthermore, maintenance therapy
with niraparib benefits regardless of the patient’s response to
the last platinum chemotherapy (94).

7.1.3 Novel Combination Regimens
Niraparib combined with PD-1 inhibitors showed good
tolerance and controllable safety in the treatment of recidivity
ovarian cancer (95). Meanwhile, niraparib and pemburolizumab
achieved 21% objective remission and 49% in advanced or
metastatic TNBC patients (96). The safety of combined
treatment is controlled and has further clinical research.

Niraparib combined with three commonly used anti-CRC
drugs (5-fluorouracil, oxaliplatin, or irinotecan) and the therapy
of niraparib and irinotecan were the strongest (97). When
niraparib and apalutamide or abiraterone acetate plus
prednisone (AAP) were used to treat metastatic castration-
resistant prostate cancer (mCRPC), two different combination
therapies showed safety differences. Apalutamide may cause
patient fatigue (90).

7.2 Acalabrutinib
7.2.1 New Mechanisms
In human CLL NSG heterhorygraft models, acalabrutinib
reduces phosphorylation of PLCg2 and ERK and significantly
inhibit CLL tumor cell proliferation. In TCL1 overrelay transfer
models, acalabrutinib can inhibit phosphorylation of BTK,
PLCg2, and S6. At concentrations below 10 nm, ibrutinib
produces varying levels of inhibition on all nine kinases
containing cysteine residues, while acalabrutinib inhibition
only on BTK. Acalabrutinib showed high selectivity and
showed similar treatment effects to ibrutinib (98). Twice daily
alone of acalabrutinib in recurrent/refractory cell lymphocyte
lymphoma achieved a high percentage of overall and complete
efficacy (99, 100).

7.2.2 New Indications
Acalabrutinib shows good safety and tolerance in patients with
CLL or SLL who stop taking medication with adverse reactions
using ibrutinib (101).

7.2.3 Novel Combination Regimens
In recurrent/refractory cell lymphocyte lymphomathe, the
combination of acalabrutinib and obinutuzumab can further
optimize the security of acalabrutinib and specifically improve
the adverse events inherent in acalabrutinib (100).

The potential drug association protocol was identified by
analyzing the pharmacological characteristics of CLL patients
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treated with acalabrutinib, in the BCL-2 inhibitor venetoclax,
alkylazer bendamustine, proteassomal inhibitor carfilzomib, and
nucleoside analog fludarabine, duvelisib (PI3K inhibitor). In
ACP-319 (in PI3K delta inhibitor), both in vivo and in vitro
experiments show that venetoclax can maximize acalabrutinib to
play anticancer effect, and both the degree and safety of apoptosis
of cancer cells were optimized (102).

Meanwhile, anti-CD20 antibodies combined with highly
selective BTK inhibitors can achieve better anti-CLL effects.
Obinutuzumab and acalabrutinib for CLL found that (103)
95% of patients previously ineffective and 92% of patients with
refractory or relapse, indicating that combined therapy could
achieve a high level of treatment effect, but 71% of patients had
grade 3/4 adverse reactions and safety requires further research.
In addition, acalabrutinib monotherapy and acalabrutinib
combined with obinutuzumab all showed superior treatment
effects than obinutuzumab-chlorambucil (104).

Acalabrutinib combined standard care CHOP-R chemical
immunotherapy (cyclophosphamide, doxorubicin, vincristine,
prednisolone, and rituximab) in a new diagnosis of DLCBL type
Richter’s syndrome (RS) for CLL transformation (105). Clinical
treatment of CD19 + B cells usually used chimeric antigen receptor
(CAR) T-cell therapy. Lisocabtagene maraleucel (liso-cel) is a drug
candidate for recurrent/refractory non-Hodgkin lymphoma or
CLL. Acalabrutinib combined with CAR-T cells can increase the
mortality ofCD19+ tumor cells andprolong the survival of charged
tumor mice. It can be preliminarily argued that the combination of
liso-cel and acalabrutinib can enhance the therapeutic effect of
CAR-T-cell therapy that has been found in CD19 + B-cell
malignancies (106).

7.3 Midostaurin
7.3.1 New Mechanisms
Midostaurin can induce MCL-1 downregulation, thus enhancing
the activity of venetoclax, which inhibited BCL-2, in turn leading
to Bim release, causing apoptosis. The presence of continuously
active and enhanced spleen tyrosine kinase (SYK) in FLT3-ITD-
positive AML, its overexpression affects the transformation of
AML and its resistance to FLLT3 inhibitors (107). Also,
midostaurin had excellent inhibitory effects on FLT3-ITD cells
and was 100 times more potent on FLT3-ITD or FLT3-ITD +
TEL-SYK cells than SYK inhibitors. The main driver of SYK-
induced cell conversion was STAT5, and midostaurin combined
with FLT3/SYK dual inhibitor or SYK alone both have good
inhibition of STAT5 (108–110).

Multidrug resistance (MDR) is a common cause of
chemotherapy failure, and the overexpression of ABC
transporters is probably the cause. Midostaurin has been
proved to antagonize ABCB1-mediated MDR, but it cannot
reverse ATP-binding cassette subfamily G member 2 (abcg2)-
mediated MDR. Also, midostaurin directly inhibited the efflux
function of ABCB1 transporter and inhibited the ATPase activity
of ABCB1 transporter in a dose-dependent manner. Midostaurin
combined with chemotherapy may improve the therapeutic
effect of tumor (111).

In the treatment of NSCC, midostaurin inhibits TBK1,
PDPK1, and AURKA at the same time, and the combined
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inhibition of these targets changed PI3K/AKT and cell cycle
signaling pathways, which were partially concentrated on
PLK1 (112).

7.3.2 New Indications
Acquired KIT D816V mutation widely exists in patients with
advanced systemic mastocytosis (advSM) and also exists in mast
cells and other hematopoietic cell lines. Midostaurin can target
mast cell chamber and KIT-D816V-positive AHN but may not
be able to overcome high molecular risk mutation (S/A/R gene
panel). Compared with midostaurin, avapritinib, another KIT
inhibitor, showed better in vitro activity even when midostaurin
did not respond (113). In additin, midostaurin showed good
activity in NSCC treatment (114).

7.3.3 Novel Combination Regimens
Adding midostaurin to standard chemotherapy in AML patients
with FLT-3 mutations can significantly prolong the total and
event-free survival and improve patient prognosis. Midostaurin
combined with BCL-2 inhibitor venetoclax has a good
therapeutic effect on FLT3-ITD AML (107).

For kinase inhibitor-sensitive/resistant diseases, SYK and
FLT3/SYK dual inhibitors can increase midostaurin growth
inhibition on cancer cells, providing a reliable reference for the
clinical combination regimen of midostaurin. FLT3-ITD-
positive AML with a high allele ratio (>0.5) had a poor
prognosis; midostaurin combined with the MDM2 inhibitor
NVP-HDM201 provides significant therapeutic effects on the
wild-type AML of high allelic FLT3-ITD ratio by targeting P53
and NPM1 (110). Also, for AML without FLT3 mutation,
midostaurin showed synergistic inhibition with standard
chemotherapy drugs and some targeted drugs (112). At the
same time, the combination of midostaurin and PLK1
inhibitor was observed to have significant synergistic inhibitory
effect on lung cancer cells (114).
8 THE CHIRAL SMALL MOLECULAR
TARGETED ANTITUMOR DRUGS
APPROVED BY THE FDA IN 2018

There are seven chiral small molecular targeted antitumor drugs
approved to its list by the FDA in 2017. Encorafenib (13) is for
unresectable or metastatic melanoma patients with BRAF V600E
or BRAF V600K mutation and treat metastatic colorectal cancer
(mCRC) patients with BRAF V600E mutation (combined with
cetuximab). Ivosidenib (14) is for recurrent or refractory AML in
human with IDH1 mutation and AML patients aged 75 and over
who could not use intensive chemotherapy due to other
complications. Duvelisib (15) is for recurrent or refractory
chronic lymphocytic leukemia(R/R CLL), small lymphocytic
lymphoma (SLL), and recurrent or refractory follicular
lymphoma. Talazoparib (16) is for locally advanced or
metastatic breast cancer with BRCA mutation (harmful or
suspected harmful) and HER2 negative. Lorlatinib (17) is for
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ALK-positive metastatic NSCLC. Larotrectinib (18) is for adult
and child patients with locally advanced or metastatic solid
tumors with NTRK gene fusion. Glasdegib (19) is for untreated
AML (combined with low-dose cytarabine).

The active enantiomers of encorafenib, ivosidenib, duvelisib,
and lorlatinib are (S)-enantiomers. (S,R)-Enantiomers of
talazoparib and larotrectinib are approved to its list by the
FDA. The active enantiomer of glasdegib is (R,R)-enantiomer.
8.1 Encorafenib
8.1.1 New Mechanisms
The generation and activation of RAF dimer will lead to the
reactivation of MEK-ERK pathway, which is the reason why
colorectal cancer is resistant to BRAF inhibitors. PLX8394, a
Paradox breaker BRAF inhibitor, can inhibit the formation of
RAF dimer. PLX8394 and encorafenib have higher anticancer
efficacy than vemurafenib, and the reactivation degree of MEK-
ERK pathway is lower. The dose-response curves of PLX8394
and encorafenib are similar, but there is no significant difference
in the reactivation degree of MEK-ERK pathway (115, 116).

8.1.2 Novel Combination Regimens
The FDA approved encorafenib combined with cetuximab to
treat mCRC with BRAF V600E mutation. The activation of
PI3K/AKT pathway is considered to be the mechanism of
resistance of mCRC to BRAF inhibitors. Generally speaking,
the addition of PI3K inhibitor may indeed improve the prognosis
of mCRC patients treated with encorafenib combined with
cetuximab, although the incidence of adverse events is
higher (117).

The triple regimen of Encorafenib combined with cetuximab
plus MEK inhibitor binimetinib showed good tolerance and
safety in the treatment of mutant mCRC (115). The
therapeutic effects of dabrafenib/trametinib, vemurafenib/
cobimetinib, and encorafenib/binimetinib on BARF mutant
mCRC were compared in parallel. The encorafenib/binimetinib
joint scheme has the longest OS time and higher security. The
adverse event of dabrafenib/trametinib regimen is fever, and that
of vemurafenib/cobimetinib regimen is photosensitive reaction.
Therefore, encorafenib combined with binimetinib has superior
curative effect and tolerance (118). Clinical trials of encorafenib
and binimetinib combined immunotherapy for melanoma are in
progress, for example, two combined clinical trials of CTLA4
antibody ipilimumab and PD1 antibody pembrolizumab (119).

A total of 60% of patients with BRAF mutant MBMs had
brain metastasis, which seriously affected the treatment effect and
prognosis of patients. The treatment of encorafenib combined
with binimetinib shows the effect of resisting melanoma brain
metastasis, and the specific efficacy and safety need further study.
In addition, metastatic melanoma is easily resistant to BRAF
inhibitors, and serine synthesis may be the cause of drug
resistance (120). Furthermore, antifolate methotrexate can be
used as sensitizer for BRAF inhibitors dabrafenib and
encorafenib. At the same time, the activation mutation of RAS
codon 12 is a prognostic marker of the therapeutic effect of
methotrexate combined with BRAF inhibitor (121).
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8.2 Ivosidenib
8.2.1 New Mechanisms
The mutation of IDH1 and IDH2 can cause excessive production
of D-2-hydroxyglutaric acid (2-HG) and impaired cell
differentiation. RTK pathway mutation and 2-HG restoration
mutation (including isomer transformation and the appearance
of mIDH1-S280F) are the mechanisms of ivosidenib secondary
drug resistance. Furthermore, 2-HG can enter specific cell types,
such as tumor-associated immune cells, which may lead to
immunosuppression. The emergence of multiple nondominant
mutations at the second site of IDH1 can be used as a basis for
the combination of mIDH1 inhibitors and other therapies, which
will reduce the probability of ivosidenib resistance (122).

8.2.2 New Indications
In the treatment of mIDH1 cholangiocarcinoma without
progression after chemotherapy, ivosidenib can significantly
prolong the progression-free survival (PFS), prolong OS to
10.8 months, and reduce the risk of disease progression and
death by 63%, which provides a reliable basis for ivosidenib to
treat mIDH1 cholangiocarcinoma. Ivosidenib is suitable for the
treatment of advanced mIDH1 cholangiocarcinoma (123).

Ivosidenib has a certain potential in the treatment of
advanced mIDH1 chondrosarcoma, which was well tolerated,
had no dose-limiting toxicity, and almost had no treatment-
related adverse events of grade ≥3. Biopsy report showed that the
content of 2-HG decreased significantly after ivosidenib was
used. Ivosidenib has the potential to be a candidate drug for
patients with advanced mIDH1 chondrosarcoma without
treatment options (124).

8.2.3 Novel Combination Regimens
For mIDH1 AML patients with FLT3 and RAS mutations, dual
treatment with kinase inhibitors has certain therapeutic
potential. The dual pharmacological inhibition of mIDH1 and
mIDH2 may alleviate the restoration of 2-HG caused by
homotypic transformation. In addition, the combination with
nontargeted drugs can also improve the prognosis. Ivosidenib
combined with intensive chemotherapy drug enasidenib can
enhance induction and consolidate treatment for mIDH1/2
AML. Its safety and tolerance are also within the acceptable
range (125).

In the treatment of solid tumors (cholangiocarcinoma,
osteosarcoma, etc.), ivosidenib shows good oral exposure, rapid
absorption, and long terminal half-life after single administration
(average 40–102 h after single administration). The
accumulation of ivosidenib in tumor reached a stable state
after 15 days of administration, which was moderate
accumulation. The reduction of 2-HG reached 98%, which has
reached the health standard. The disease characteristics of
patients and the concurrent administration of weak CYP3A4
inhibitor/inducer did not affect the exposure of ivosidenib.
Ivosidenib at 500 mg q.d. is an appropriate dose (126).
Ivosidenib can be used to treat mIDH1 glioma which showed
brain penetrance and decreased 2-HG compared with the control
group (127).
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8.3 Duvelisib
8.3.1 New Mechanisms
In the combination of duvel is ib with ibrutinib or
dexamethasone, the inhibition of phosphorylated (p) Akt at
serine473 was observed within 12 h after duvelisib application,
and the reactivation of mTOCR2-dependent pAKT was obvious
within 24 h. Combined medication significantly inhibited the
activation, prolonged the inhibition time of pAKT, and further
inhibited the survival and growth signal mediated by mTORC1/
2 (128).

Mechanically, duvelisib inhibits PI3K-d/g, and then
upregulates the apoptosis-promoting BH3-only protein, thus
initiating the apoptosis process of CLL cells. Cell survival is
caused by the upregulation of BCL-2. Venetoclax can inhibit
BCL-2, thus increasing the degree of apoptosis. At the same time,
Duvelisib can reduce MCL-1 mRNA and expressed protein to a
small extent, because MCL-1 can promote the survival of
malignant lymphoma cells, which may increase the sensitivity
of CLL cells to venetoclax[134.

8.3.2 New Indications
Duvelisib is superior to ofatumumab in efficacy and safety in the
treatment of R/R CLL/SLL and can improve the PFS of
patients (129).

8.3.3 Novel Combination Regimens
Through high-throughput collaborative screening (128), it was
found that the combination of duvelisib and several drugs has
significant activity in vivo and in vitro, especially in the treatment
of duvelisib combined with ibrutinib or dexamethasone.

The treatment of duvelisib combined with venetoclax can
cause more apoptosis of CLL (130). An Ib/II study discussed the
efficacy and safety of duvelisib combined with fludarabine,
cyclophosphamide, and rituximab (FCR) in the treatment of
young patients with CLL. The second-stage dose was determined
to be 25 mg b.i.d. About 2/3 of patients reached BM-uMRD.
However, 73% of patients’ 3-year PFS did not show significant
advantages compared with FCR triple therapy. At the same time,
duvelisib combined with FCR can cause common immune-
mediated toxicity and infection complications, which can be
controlled by intervention (131).

8.4 Talazoparib
8.4.1 New Mechanisms
Temozolomide resistance often occurs in patients with
glioblastoma. The mechanism of DNA repair is considered one
of the possible reasons for poor temozolomide resistance.
Mechanically, talazoparib enhances temozolomide by
inhibiting BER-mediated repair of N3MeA and N7MeG DNA
damage. PARP trapping produces protein-DNA complex in BER
intermediate, which causes cytotoxicity and leads to apoptosis.
The results of cell experiments in vitro further confirm this
theory. Furthermore, talazorib had a significant tendency of
multidrug resistance protein 1 (MDR 1) efflux, which probably
caused talazorib to pass through the blood-brain barrier only in a
small amount (132). This provides an explanation for the loss of
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TMZ sensitization mediated by talazoparib in GBM
xenograft model.

There will also be resistance to radiotherapy in GBM
treatment, which is directly related to the powerful DNA
repair ability of glioblastoma stem cells (GSCs). Compared
with photon irradiation combined with TMZ, talazoparib
significantly reduced the active number of CSC in GBM cell
lines and can obviously prolong G2/M phase tissues and inhibit
cell proliferation (133).

A new functional IncRNA was discovered, which was named
POLO oxykinase 4-related IncRNA (IncRNA PLK4). In the
tissues and cells of hepatocellular carcinoma (HCC), the
content of IncRNA RLK4 was significantly downregulated,
while talazoparib could increase its expression. Furthermore,
talazoparib could enhance the inactivation of YES-related
protein (YAP) and cell aging by upregulating the content of
IncRNA PLK4, thus achieving the purpose of inhibiting the
survival and growth of hepatoma cells (134).

8.4.2 New Indications
In the treatment of solid tumors, there was no clinical-related
change in PR, QRS, QTcF, or RR interval, heart rate, or ECG
morphology after treatment with talazoparib at 1 mg daily (135).
Talazoparib has the potential to be an adjuvant therapy for breast
cancer patients with gBRCA positive before operation. The
patients took talazoparib orally every day before operation for
6 months without taking other chemotherapy methods, and the
proportion of patients with RCB-0 (complete pathological
remission) increased significantly, and the safety and tolerance
were within the controllable range (136).

In vitro studies showed that talazoparib is the substrate of P-
glycoprotein and breast cancer drug-resistant protein
transporter. Itraconazole (P-glycoprotein inhibitor) increased
the plasma exposure of talazobarib, and when P-glycoprotein
inhibitor must be combined, the dosage of talazobarib should be
appropriately reduced (from 1 mg to 0.75 mg/day). Rifampicin
also caused a similar increase in exposure to talazoparib, which
indicated that P-glycoprotein inducer had limited effect on
talazoparib (137). In the meantime, the treatment of
talazoparib combined with these two drugs has good tolerance
and safety.

8.4.3 Novel Combination Regimens
Talazoparib that inhibits DNA repair have the potential to
become a means to solve temozolomide drug resistance (132).
In addition to GBM radiotherapy, talazoparib can increase the
sensitivity of SCLC to radiotherapy, which can effectively inhibit
the sensitivity of SCLC cell line and xenograft model to
radiotherapy, and high PARP trapping activity can improve
the sensitivity of SCLC to radiotherapy (136). Also, talazoparib
can make melanoma cells sensitive to radiotherapy, while healthy
tissue cells are less affected, indicating that combined therapy has
certain selectivity. Because the research shows great
heterogeneity, it is best to detect tumor cells before using this
therapy (138).

The combination of PARP inhibitor and APE1 inhibitor may
be a candidate treatment for malignant hematological tumors,
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such as myelodysplastic syndromes/chronic myelomonocytic
leukemia and acute myeloid leukemia. Also, talazoparib and
APE inhibitor III shows remarkable antileukemia effect,
meanwhile, low dose of talazoparib and APE inhibitor can
enhance the cytotoxicity of decitabine inmyelodysplastic
syndromes/chronic myelomonocytic leukemia and acute
myeloid leukemia (139).

8.5 Lorlatinib
8.5.1 New Mechanisms
Mechanically, both lorlatinib and crizotinib can inhibit
endothelial cells, but lorlatinib is more obvious for hcmec/D3
(normalized human brain microvascular endothelial cells). In
SH-SY5Y (human neurobionoma cells) hypoxia model,
lorlatinib also showed better protection against injured nerve
cells than crizotinib. In addition, lorlatinib can downregulate the
expression of SPP1, VEGF, TGF-b, and claudin in brain tissue
and upregulate the expression of early growth transcription
factor (Egr1), which may lead to the decrease of tight junctions
between BBB cells, thus increasing the permeability of blood-
brain barrier, which leads to higher brain exposure of lorlatinib.
At the same time, the protective effect of lorlatinib on nerve cells
and its characteristic of not affecting the quantity of P-
glycoprotein may be the reason why the central nervous
system is less resistant to it (140).

Patients of ALK rearrangement lung cancer shows drug
resistance to lorlatinib; these mechanisms include epitheilial-
mesogenic transition susceptible to combined ALK/Src
inhibition, ALK compound mutations, and a novel bypass
mechanism, mediated by Nf2 loss and outcome by mtor
inhibition (141). Continuous use of ALK inhibitors in
prophase treatment is likely to promote the occurrence of
ALK-compliant mutations. Lorlatinib, the third-generation
ALK inhibitor, might avoid refractory ALK mutation in early
treatment and optimize clinical treatment effect. Also, the highly
targeted inhibition of lorlatinib may cause ALK-independent
drug resistance, and this drug resistance mechanism is difficult to
overcome once established (142).

8.5.2 New Indications
Lorlatinib has the potential to treat ALK/ROS-positive NSCLC-
inhibiting drug-resistant mutation, which has a good therapeutic
effect on patients who have received more than two TKI
treatments and failed to be treated, and its safety is in a
controllable range (141). A patient with ALK-positive central
nervous system disease was successfully treated with lorlatinib
for central nervous system metastasis (142). The patient had
previously used a large dose of brigatinib.

Lorlatinib is often more effective for patients who fail to be
treated well using the second-generation ALK-TKI, and it is very
important to further study the plasma and tissue genotyping of
ALK mutations and make a prospective prediction of ALK-TKI
types for ALK resistance mutations of patients, which is very
important for ALK TKI selection of advanced ALK-positive
NSCLC patients (143, 144).

In the treatment of advanced ALK/ROS-positive NSCLC
patients with drug-resistant mutations, lorlatinib, as a
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sequential drug in the treatment of brigatinib and alectinib, can
significantly exert its therapeutic activity, and patients have good
tolerance to lorlatinib without serious adverse reactions (145).
Crizotinib and entrectinib have been approved for the treatment
of advanced ROS1 rearrangement lung cancer, and lorlatinib has
shown good activity in crizotinib-resistant environment. When
the drug resistance of crizotinib and entrectinib is ROS1-G2032R
mutation mediated by nontargeted drug resistance, lorlatinib can
be used as the second-line treatment for ROS1-rearranged lung
cancer, which can appropriately prolong the progression-free
survival time of patients (146).

8.5.3 Novel Combination Regimens
Compared with crizotinib, lorlatinib is intended for first-line
treatment, and the best solution is to use lorlatinib as a
combination drug to avoid ALK-dependent and ALK-
independent drug resistance (147).

8.6 Larotrectinib
8.6.1 New Mechanisms
The chimeric protein encoded by NTRK after rearrangement has
carcinogenic effect, and at the same time drives constitutive
expression and ligand-independent activation. Larotrectinib has
a wide range of anti-NTRK fusion cancer effects, regardless of
cancer type, age, and fusion partner (148). It is necessary to add
NTRK status to the diagnosis workflow of tumor types, which
means that some patients will benefit from targeted therapy.

8.6.2 New Indications
Larotrectinib is used in children with locally advanced TRK
fusion sarcoma, which can help the subsequent surgical resection
of sarcoma, which is expected to be a preoperative drug for
children with newly diagnosed TRK fusion sarcoma (149). When
larotrectinib is used in infants, children, and adolescents, the
recommended second-stage dose is 100 mg/m², which has
nothing to do with the age of patients. Also, high response rate
and good tolerance have been observed (150). Patients with
advanced childhood cancer should be screened for TRK fusion,
so as to determine whether larotrectinib can be used for
preoperative treatment. Safety data confirmed the feasibility of
long-term use of larotrectinib (151).

Rare patients with cervical sarcoma will become the
beneficiary group of targeted therapy (152). Larotrectinib also
shows certain therapeutic activity in the treatment of infant
glioblastoma driven by NTRK, but there is a lack of long-term
clinical research data of larotrectinib and this group. At the same
time, small molecule targeted therapy may interact with
radiotherapy. Therefore, the efficacy and safety of larotrectinib
in the treatment of infant glioblastoma need to be further
studied (153).

In addition, a clinical study of a Ph-like ALL case presents two
genome mutations, one NRASGly12Asp mutation and one ETV6-
NTRK3 rearrangement, which activate signal transduction. This
case is resistant tomanychemotherapies and immunotherapies and
cannot avoid the recurrence after treatment (154). Researchers
speculate that larotrectinib may be used in the early stage of the
disease to achieve better curative effect.
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8.7 Glasdegib
8.7.1 New Indications
In the treatment of primary/secondary MF treated with at least
one JAKI, glasdegib was safe and tolerant when used alone. Also,
the study confirmed that glasdegib has a long-term sustained
treatment response to MF (155).

8.7.2 Novel Combination Regimens
The therapeutic effect and controllable safety of glasdegib
combined with cytarabine have been proved on newly
diagnosed AML patients (156). It is preliminarily determined
that patients with moderate or severe renal damage may not need
to reduce the initial dose of glasdegib (157).

Glasdegib combined with cytarabine showed better
therapeutic effect than cytarabine alone. Glasdegib showed
population-related adverse events, such as hematological
events, gastrointestinal toxicity and fatigue, and adverse events
related to hedgehog inhibitors (hair loss, muscle spasm,
dysosmia, etc). The above adverse events are within the
controllable range. Glasdegib is suitable for long-term
treatment (158). Also, glasdegib combined with low-dose
cytarabine significantly prolonged the OS of patients, and the
therapeutic effect of this combination therapy was more
prominent in patients with secondary AML. The third-stage
clinical development of glasdegib for 7 + 3 intensive
chemotherapy is underway (159).

In AML patients who could not receive chemotherapy or
patients with high-risk myelodysplastic syndrome, the combined
regimen of glasdegib and cytarabine is therapeutic. However,
there were 12 gene mutation states which had no obvious
correlation with clinical reaction. This shows that the
relationship between gene mutation and response or
nonresponse to treatment may not be significant, which should
be further studied (160). In addition, glasdegib combined with
JAKI has certain potential for MF treatment (155).
9 THE CHIRAL SMALL MOLECULAR
TARGETED ANTITUMOR DRUGS
APPROVED BY THE FDA IN 2019

Zanubrutinib (20), darolutamide (21), and alpelisib (22) were
approved to its list by the FDA in 2019. Zanubrutinib is for adult
mantle cell lymphoma (R/R MCL) patients who had received at
least one treatment before. Darolutamide is for nonmetastatic
castration-resistant prostate cancer (NM-CRPC). Alpelisib
combined with fulvestrant is for the treatment of advanced
metastatic breast cancer with hormone receptor positive (HR
+)/human epidermal growth factor receptor 2 negative (HER2−)
and PIK3CAmutation in male and postmenopausal women. The
active enantiomers of the three drugs are (S)-enantiomers.

9.1 Zanubrutinib
9.1.1 New Mechanisms
Zanubrutinib and ibrutinib share the same binding site as
ibrutinib in BTK-cysteine 481 in the adenine triple-binding
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pocket of BTK, which means that with the further extension of
follow-up, C481S mutant cells may be reported (161).

Ibrutinib and zanubrutinib can show different inhibitions of
action in the stages of virus entry and replication, and have the
potential to become new candidate drugs for inhibiting the onset
of COVID-19 (162).

9.1.2 New Indications
In the treatment of Waldenstrom macroglobulinemia, the
incidence and severity of BTK-related toxic events after
aanubrutinib treatment were lower than those of ibrutinib. In
addition, the two both showed good curative effect, and the
difference was not statistically significant (163). Waldenstrom
macroglobulinemia has a rare complication—Bing-Neel
syndrome, which is often manifested as clonal lymphoplasmacyte
infiltration in the central nervous system, in which zanubrutinib
has a good effect (164).

Ibrutinib and zanubrutinib showed similar inhibitory effects
on MCL cell line Rec-1. Meanwhile, the inhibitory effect of
zanubrutinib on ITK is 20 times lower than that of ibrutinib,
and it takes 10–45 times of zanubrutinib to achieve the same
inhibitory effect on PLCg1 or IL-2 secretion as ibrutinib. The two
are equally effective and more selective in vitro. In addition,
ibrutinib showed a more significant inhibitory effect on NK cells
than zanubrutinib (165). In the treatment of patients with R/R
MCL, zanubrutinib achieved a high response rate of 84% in
patients, and PFS was significantly prolonged. Meanwhile, good
tolerance and safety were observed. Also, zanubrutinib has
monotherapy activity on activated B-cell (ABC)-diffused large
B-cell lymphoma cell line (161).

At the same time, BTK inhibitors can improve the symptoms
of dyspnea, hypoxia, and thromboinflammation in patients with
COVID-19, and the specific mechanism is still under further
study (162).

9.1.3 Novel Combination Regimens
In addition, zanubrutinib showed synergistic effect on all cell
lines with MEK inhibitor pimasertib and BCL2 inhibitor
venetoclax in ibrutinib-sensitive model (166). Zanubrutinib
and BET bromide inhibitor birabresib are synergistic in three
cell lines and additive in two cell lines, while XPO1 antagonist
selinexor is beneficial in four cell lines (synergistic in three cell
lines and additive in one) (167).

Eighty-one patients with CLL/SLL or R/R follicular lymphoma
(FL) showed good overall tolerance and low incidence of adverse
reactions after using the regimen of zanubrutinib and obinuzumab.
The controlled trial of sample enlargement is in progress (168).

9.2 Darolutamide
9.2.1 New Mechanisms
The results of transactivation experiments showed that
darolutamide and its two optical isomers and major
metabolite-keto-darolutamide showed strong competitive
antagonism against AR wild type, which have differences in
inhibiting AR activity in prostate cancer VCaP, LAPC-4, and LN
CaP cell lines. In addition, darolutamide and its enantiomers and
metabolites on AR dimerization have inhibitory activities in
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prostate cancer AR wild type, AR W742C mutant, and AR
W742L mutant cell lines (169).

After intravenous or oral administration, the level of (S,S)-
darolutamide was higher than that of (S,R)-darolutamide, and it
was also observed that (S,R)-darolutamide changed to (S,S)-
darolumide. The diastereomer is similar to keto-darolutamide
in pharmacology in vitro. In addition, due to the high protein
binding characteristics of keto-darolutamide, its contribution in
human body is low (170).

The functional gain mutation of AR is one of the main
reasons for the resistance of PCa to AR antagonists. In 68 AR
mutants, darolutamide showed a complete inhibitory effect on
AR mutants in 67, even if the concentration of AR mutants
increased, there was no partial activation. Bicalutamide led to
partial or complete activation to 63% mutants, and eight mutants
were completely or partially activated by enzalutamide (171).
The research preliminarily confirmed the broad-spectrum
inhibitory effect of darolutamide on AR and its mutants.

Mechanically, darolutamide could block the whole genome
AR enhancer, super-enhancer activation, and downstream
transcription. In addition, a dynamic AR cistron dependent on
androgen level was found, which exists in the high AR affinity
region of prostate cancer cell lines and tissue samples.
Darolutamide causes the binding of AR to genome to be
greatly reduced, which strongly inhibits the activation of
normal enhancer and super-enhancers, and then hinders
several downstream pathways which are very important for
prostate cancer proliferation. In addition, carcinogenic super-
enhancers is easily affected by the defects of cellular DNA repair
mechanism, which provides a theoretical basis for the effective
antitumor effect of endocrine therapy combined with DNA
damage repair drugs. Related clinical research is underway (172).

Interleukin-23(IL-23) can significantly inhibit the cell aging
induced by enzalutamide or darolutamide in castration-resistant
C4-2, and 22Rv1 cells, but not in androgen-sensitive LNCaP
cells. This indicates that castration-resistant PCa cells have
specific reaction to IL-23 which may be one of the causes of
resistance to AR antagonists. Developing targeted drugs for IL-23
may be an effective way to improve the efficacy of AR
antagonists. The specific reasons for the different expression of
IL-23 in above three cells are still under further study (173).

In addition, the overexpression of AKR1C3 is the key
regulator of drug resistance of castration-resistant PCa to
apalutamide and darolutamide. KV-49g can significantly
inhibit AKR1C3 and greatly improve the drug resistance of
cancer cells to these two drugs. Therefore, AKR1C3 is a new
potential target, and KV-49g is an emerging lead compound,
which is currently used for preclinical evaluation (174).

9.2.2 New Indications
In the nonstatistical casting-resistant prostate cancer of Japan,
the efficacy and safety of darolutamide has been proved.
However, it is impossible to determine whether there is a
safety difference between the Japanese population and the
general ARAMIS population (175).

Comparing theefficacyand safetyofdarolutamide, apalutamide,
and enzalutamide, the three drugs can obtain the median
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metabolism-free survival prolongation effect superior to placebo
compared with placebo, among which apalutamide has the best
effect, followed by enzalutamide and darolutamide. In prostate-
specific antigen progression-free survival (PSA-PFS), the
performance of three drugs is the same as the median
metabolism-free survival. Darolutamide has the lowest incidence
of adverse events and the most controllable tolerance (176).

9.2.3 Novel Combination Regimens
The combination regimens of darolutamide and other drugs
provide almost no DDI, but possibly exert influence on metabolic
enzymes or transporters. In addition, the inhibition of
darolutamide and rosuvastatin on intestinal efflux transporters
was observed, but which did not show significant impact on
safety. There is little interaction between darolutamide and other
compounds at therapeutic concentration, so the increased
exposure of intestinal efflux transporter substrates and possible
hepatic uptake transporter substrate may be the main interaction
(174). The low potential DDI of darolutamide ensures less
complications in the treatment of nonmetastatic castration-
resistant prostate cancer.

9.3 Alpelisib
9.3.1 New Mechanisms
Tamoxifen is the first-line hormone therapy drug for
premenopausal women with estrogen receptor (ER)-positive
metastatic breast cancer, and the activation of PI3K/AKT
pathway will lead to resistance. Alpelisib or buparlisib and
tamoxifen have synergistic effects in treating ER-positive breast
cancer cell lines with different PI3K mutations. In vitro,
significant tumor shrinkage was observed, and their synergistic
effect depended on PIK3CA, AKT, and wild-type ER. Potentially,
ER and PI3K/AKT pathways are similar to a bidirectional circuit,
and the circuit is a standby mechanism for each other (177).

Alpelisib can inhibit the phosphorylation of AKT, mTOR,
and ribosomal protein S6, while rapamycin can activate the
phosphorylation of AKT (178). When the two are combined,
this effect is reversed, and the overall expression is the inhibition
of AKT phosphorylation, thus inhibiting the growth of tumor
cells (179).

9.3.2 New Indications
In the treatment of lipoma associated with PIK3CA-related
overgrowth syndrome, alpelisib has shown good therapeutic
effect (179).

9.3.3 Novel Combination Regimens
PI3K inhibitor and tamoxifen have synergistic effect, which can
also delay the occurrence of drug resistance to any single
treatment (177). Alpelisib can show good antitumor activity in
vitro and in vivo when used alone or in combination with
paclitaxel. Meanwhile, alpelisib with paclitaxel can significantly
inhibit the migration of cancer cells. The combination of these
two drugs has the value of further clinical research (180).

The combination therapy of alpelisib and olaparib had good
efficacy and safety in patients with epigenetic ovarian cancer, and
themaximum tolerable dose was determined to be 200mg q.d. and
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200 mg b.i.d. Preliminarily, alpelisib combined with olaparib
showed significant synergistic effect in ovarian cancer to platinum
resistance to gBRCAwt and BRCAwt. This combination scheme
superior to monotherapy has research value (181).

In nonkeratinizing nasopharyngeal carcinoma models,
different results were obtained by using ribocilib alone and
using ribocilib and alpelisib in combination. Combined
medication significantly inhibited tumor growth, and the
tumor volume decreased even more (182). In vitro, when
alpelisib is used alone or in combination with rapamycin, the
reduction of cell proliferation is characterized by concentration
and time dependence. Alpelisib alone did not directly kill cells
but accelerated cell aging (179).

In colorectal cancer patients with BRAF mutation, double
therapy (encorafenib 200 mg/day + cetuximab) and triple
therapy (encorafenib 200 mg/day + alpelisib 300 mg/day +
cetuximab) showed good clinical efficacy and safety. At the
same time, it was observed that alpelisib in triple-therapy
group had mild DDI with encorafenib at higher dose, that is,
the exposure of encorafenib increased by 2 times. This may be
because alpelisib inhibited CYP3A4, the metabolic enzyme of
encorafenib. Cetuximab and encorafenib did not affect the
exposure of alpelisib (117).
10 DISCUSSION

The introduction of the concept of chirality provides new ideas
for the research of small molecular targeted anticancer drugs.
Most of the chiral small molecular targeted drugs approved by
the FDA are the single enantiomer, and the enantiomers of these
drugs are either inactive, low in activity, or high in activity.
Crizotinib in market, for example, has a chiral compound with
the (R)-configuration, approved by the FDA. Although the (S)-
configuration is not approved, it targets different enzyme named
MTH1, making it certain anticancer activity either. The (R)-
configuration of ruxolitinib shows higher target binding priority
than the (S)-configuration because of its stereostructure
specificity. Darolutamide and its (S,S)-configuration and (S,R)-
configuration as well as its metabolites have AR inhibitory
activity in vivo.

In this review, the chiral smallmolecular targeted drugs approved
by the FDA from 2011 to 2019were systematically summarized, and
the new mechanisms, new indications, and novel combination
regimens of each drug in recent years were presented. It can be
seen that the research on unapproved enantiomers of these drugs is
relatively scarce, and researchers pay less attention to explore the
chiral characteristics of these drugs, which may be directly related to
the difficulty of chiral resolution in certain situations. In fact, the
chirality of drug molecules will directly affect its distribution,
absorption, metabolism, and excretion in vivo, as well as
pharmacodynamics and pharmacotoxicology. A well-designed
study of chiral drug molecules can better grasp the metabolism and
mechanism of drug molecules in human body (178).

Undeniably, small molecular targeted drugs have certain
limitations in the treatment of tumors. Many patients often
need genetic testing to determine whether they meet the
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medication requirements. Drug resistance and relatively high
treatment cost also become the limitations of further
popularization of this treatment method. Clinically, small
molecular targeted drugs are often used in combination with
other drugs to achieve the purpose of optimizing efficacy,
overcoming drug resistance, and improving safety. In addition,
it is a pleasure for researchers to actively explore new indications
of existing small molecular targeted drugs in order to expand the
population of beneficiary patients, and the research results of
some drugs have been satisfactory. Talazorib was initially
approved by the FDA for the treatment of breast cancer with
BRCA gene mutation. Because of its remarkable curative effect,
researchers actively carried out research on other indications of
this drug, and finally found that talazoparib had unexpected
therapeutic effect on triple negative breast cancer, and this
indication has been approved by the FDA (183, 184).

We have speculated that the reason that talazoparib shows
distinctive superiority is probably related to its chirality. As the
fourth-generation PARP inhibitor, its efficacy is more than 100
times that of the first-generation PARP inhibitor olaparib (no
chirality), which may also be caused by its chiral center.
Therefore, in order to effectively solve the current problems in
small molecular targeted therapy, the advantage of chiral
structure to drugs is a kind of guidance, which will lead us to
find a new idea for directing our furture research.
Frontiers in Oncology | www.frontiersin.org 18
In a word, studying the pharmacological activities of drug
molecules and their chiral enantiomers can provide extensive
data for the clinical application of drugs, help researchers to
know the role of chiral centers in drug activity, and provide new
evidence and ideas for the joint use of drugs and the discovery of
new signal pathways.
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Craig MD, et al. A Phase I/II Dose-Escalation Study Investigating All-Oral
Ixazomib-Melphalan-Prednisone Induction Followed by Single-Agent
Ixazomib Maintenance in Transplant-Ineligible Newly Diagnosed Multiple
Frontiers in Oncology | www.frontiersin.org 20
Myeloma. Haemato log i ca (2018) 9 :1518–26 . do i : 10 .3324/
haematol.2017.185991

72. Castillo JJ, Meid K, Flynn CA, Chen J, Demos MG, Guerrera ML, et al.
Ixazomib, Dexamethasone, and Rituximab in Treatment-Naive Patients
With Waldenström Macroglobulinemia: Long-Term Follow-Up. Blood
Adv (2020) 16:3952–9. doi: 10.1182/bloodadvances.2020001963

73. Gupta N, Hanley MJ, Venkatakrishnan K, Bessudo A, Rasco DW, Sharma S,
et al. Effects of Strong CYP3A Inhibition and Induction on the
Pharmacokinetics of Ixazomib, an Oral Proteasome Inhibitor: Results of
Drug-Drug Interaction Studies in Patients With Advanced Solid Tumors or
Lymphoma and a Physiologically Based Pharmacokinetic Analysis. J Clin
Pharmacol (2018) 2:180–92. doi: 10.1002/jcph.988

74. Rinnerthaler G, Gampenrieder SP, Petzer A, Burgstaller S, Fuchs D,
Rossmann D, et al. Ixazomib in Combination With Carboplatin in
Pretreated Women With Advanced Triple-Negative Breast Cancer, a
Phase I/II Trial of the AGMT (AGMT MBC-10 Trial). BMC Cancer
(2018) 18:1074. doi: 10.1186/s12885-018-4979-0

75. Kumari A, Yokota Y, Li L, Bradley RM, Mistretta CM. Species
Generalization and Differences in Hedgehog Pathway Regulation of
Fungi form and Circumva l l a te Pap i l la Tas te Funct ion and
Somatosensation Demonstrated With Sonidegib. Sci Rep (2018) 8:16150.
doi: 10.1038/s41598-018-34399-3

76. Ross AE, Hughes RM, Glavaris S, Ghabili K, He P, Anders NM, et al.
Pharmacodynamic and Pharmacokinetic Neoadjuvant Study of Hedgehog
Pathway Inhibitor Sonidegib (LDE-225) in Men With High-Risk Localized
Prostate Cancer Undergoing Prostatectomy. Oncotarget (2017) 61:104182–
92. doi: 10.18632/oncotarget.22115

77. DeFilipp Z, Nazarian RM, El-Jawahri A, Li S, Brown J, Del Rio C, et al. Phase
1 Study of the Hedgehog Pathway Inhibitor Sonidegib for Steroid-Refractory
Chronic Graft-Versus-Host Disease. Blood Adv (2017) 22:1919–22.
doi: 10.1182/bloodadvances.2017011239

78. Villani A, Fabbrocini G, Costa C, Scalvenzi M. Sonidegib: Safety and Efficacy
in Treatment of Advanced Basal Cell Carcinoma. Dermatol Ther (Heidelb)
(2020) 3:401–12. doi: 10.1007/s13555-020-00378-8

79. Gupta V, Wolleschak D, Hasselbalch H, Vannucchi AM, Koschmieder S,
Cervantes F, et al. Safety and Efficacy of the Combination of Sonidegib and
Ruxolitinib in Myelofibrosis: A Phase 1b/2 Dose-Finding Study. Blood Adv
(2020) 13:3063–71. doi: 10.1182/bloodadvances.2019001212

80. Ribas A, Daud A, Pavlick AC, Gonzalez R, Lewis KD, Hamid O, et al.
Extended 5-Year Follow-Up Results of a Phase 1b Study (BRIM7) of
Vemurafenib and Cobimetinib in BRAF-Mutant Melanoma. Clin Cancer
Res (2020) 1:46–53. doi: 10.1158/1078-0432.CCR-18-4180
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3 DUO Trial: Duvelisib vs Ofatumumab in Relapsed and Refractory CLL/
SLL. Blood (2018) 23:2446–55. doi: 10.1182/blood-2018-05-850461

130. Patel VM, Balakrishnan K, Douglas M, Tibbitts T, Xu EY, Kutok JL, et al.
Duvelisib Treatment Is Associated With Altered Expression of Apoptotic
Regulators That Helps in Sensitization of Chronic Lymphocytic Leukemia
Cells to Venetoclax (ABT-199). Leukemia (2017) 9:1872–81. doi: 10.1038/
leu.2016.382

131. Davids MS, Fisher DC, Tyekucheva S, McDonough M, Hanna J, Lee B, et al.
A Phase 1b/2 Study of Duvelisib in Combination With FCR (DFCR) for
Frontline Therapy for Younger CLL Patients. Leukemia (2021) 35(4):1064–
72. doi: 10.1182/blood-2018-05-850461

132. Kizilbash SH, Gupta SK, Chang K, Kawashima R, Parrish KE, Carlson BL,
et al. Restricted Delivery of Talazoparib Across the Blood-Brain Barrier
Limits the Sensitizing Effects of Poly (ADP-Ribose) Polymerase Inhibition
on Temozolomide Therapy in Glioblastoma. Mol Cancer Ther (2017)
12:2735–46. doi: 10.1158/1535-7163.MCT-17-0365

133. Lesueur P, Chevalier F, El-Habr EA, Junier M-P, Chneiweiss H, Castera L,
et al. Radiosensitization Effect of Talazoparib, a Parp Inhibitor, on
Glioblastoma Stem Cells Exposed to Low and High Linear Energy
Transfer Radiation. Sci Rep (2018) 8:3664. doi: 10.1038/s41598-018-22022-4

134. Jia Y, Jin H, Gao L, Yang X, Wang F, Ding H, et al. A Novel lncRNA PLK4
Up-Regulated by Talazoparib Represses Hepatocellular Carcinoma
Progression by Promoting YAP-Mediated Cell Senescence. J Cell Mol Med
(2020) 24(9):5304–16. doi: 10.1111/jcmm.15186
Frontiers in Oncology | www.frontiersin.org 22
135. Hoffman J, Chakrabarti J, Plotka A, Naraine AM, Kanamori D, Moroose R,
et al. Talazoparib has No Clinically Relevant Effect on QTc Interval in
Patients With Advanced Solid Tumors. Anticancer Drugs (2019) 5:523–32.
doi: 10.1097/CAD.0000000000000772

136. Laird JH, Lok BH,Ma J, Bell A, de Stanchina E, Poirier JT, et al. Talazoparib Is a
Potent Radiosensitizer in Small Cell Lung Cancer Cell Lines and Xenografts.
Clin Cancer Res (2018) 24(20):5143–52. doi: 10.1158/1078-0432.CCR-18-0401
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