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Abstract

Background: According to the World Health Organization (WHO), in 2018, an estimated 228 million

malaria cases occurred worldwide with most cases occurring in sub-Saharan Africa. Scale-up of

vector control tools coupled with increased access to diagnosis and effective treatment has

resulted in a large decline in malaria prevalence in some areas, but other areas have seen little

change. Although interventional studies demonstrate that preventing malaria during pregnancy can

reduce the rate of low birth weight (i.e. child’s birth weight <2500 g), it remains unknown whether

natural changes in parasite transmission and malaria burden can improve birth outcomes.
Methods: We conducted an observational study of the effect of changing malaria burden on low

birth weight using data from 18,112 births in 19 countries in sub-Saharan African countries during

the years 2000–2015. Specifically, we conducted a difference-in-differences study via a pair-of-pairs

matching approach using the fact that some sub-Saharan areas experienced sharp drops in malaria

prevalence and some experienced little change.
Results: A malaria prevalence decline from a high rate (Plasmodium falciparum parasite rate in

children aged 2-up-to-10 (i.e. PfPR2-10) > 0.4) to a low rate (PfPR2-10 < 0.2) is estimated to reduce

the rate of low birth weight by 1.48 percentage points (95% confidence interval: 3.70 percentage

points reduction, 0.74 percentage points increase), which is a 17% reduction in the low birth weight

rate compared to the average (8.6%) in our study population with observed birth weight records

(1.48/8.6 » 17%). When focusing on first pregnancies, a decline in malaria prevalence from high to

low is estimated to have a greater impact on the low birth weight rate than for all births: 3.73

percentage points (95% confidence interval: 9.11 percentage points reduction, 1.64 percentage

points increase).
Conclusions: Although the confidence intervals cannot rule out the possibility of no effect at the

95% confidence level, the concurrence between our primary analysis, secondary analyses, and

sensitivity analyses, and the magnitude of the effect size, contribute to the weight of the evidence

suggesting that declining malaria burden can potentially substantially reduce the low birth weight

rate at the community level in sub-Saharan Africa, particularly among firstborns. The novel

statistical methodology developed in this article–a pair-of-pairs approach to a difference-in-

differences study–could be useful for many settings in which different units are observed at

different times.
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Introduction
In 2018, according to the WHO, 2019 published by the WHO, an estimated 228 million malaria

cases occurred worldwide, with an estimated 405,000 deaths from malaria globally (WHO, 2019).

Dellicour et al., 2010 estimated that around 85 million pregnancies occurred in 2007 in areas with

stable Plasmodium falciparum (one of the most prevalent malaria parasites) transmission and there-

fore were at risk of malaria. Pregnant women are particularly susceptible to malaria, even if they

have developed immunity from childhood infections, in part because parasitized cells in the placenta

express unique variant surface antigens (Rogerson et al., 2007). Women who are infected during

pregnancy may or may not experience symptoms, but the presence of parasites has grave conse-

quences for both mother and unborn baby. Parasites exacerbate maternal anemia and they also

sequester in the placenta, leading to intrauterine growth restriction, low birth weight (i.e. birth

weight <2500 g), preterm delivery and even stillbirth and neonatal death. Preventing malaria during

pregnancy with drugs or insecticide treated nets has a significant impact on pregnancy outcomes

(Eisele et al., 2012; Kayentao et al., 2013; Radeva-Petrova et al., 2014).

Observational and interventional studies of malaria in pregnant women are complicated by the

difficulty of enrolling women early in their pregnancy. However, in one study, early exposure to Plas-

modium falciparum (before 120 days gestation), prior to initiating malaria prevention measures, was

associated with a reduction in birth weight of more than 200 g and reduced average gestational age

of nearly 1 week (Schmiegelow et al., 2017). For other representative studies on the negative influ-

ence of malaria infection during early pregnancy on birth outcomes, see Menendez et al., 2000,

Ross and Smith, 2006, Huynh et al., 2011, Valea et al., 2012, Walker et al., 2014, and

Huynh et al., 2015. These results suggest the impact of malaria infection on stillbirths, perinatal,

and neonatal mortality may be substantial and needs more careful examination (Fowkes et al.,

2020; Gething et al., 2020).

In the last few decades, malaria burden has declined in many parts of the world. Although the

magnitude of the decline is difficult to estimate precisely, some reports suggest that the global

cases of malaria declined by an estimated 41% between 2000 and 2015 (WHO, 2016) and the clini-

cal cases of Plasmodium falciparum malaria declined by 40% in Africa between 2000 and 2015

(Bhatt et al., 2015). However, estimates of changing morbidity and mortality do not account for the

effects of malaria in pregnancy. In the context of global reductions in malaria transmission, we

expect fewer pregnancies are being exposed to infection and/or exposed less frequently. This

should result in a significant reduction in preterm delivery, low birth weight and stillbirths. However,

declining transmission will also lead to reductions in maternal immunity to malaria. Maternal immu-

nity is important in mitigating the effects of malaria infection during pregnancy as is evidenced by

the reduced impact of malaria exposure on the second, third and subsequent pregnancies. Thus, we

anticipate a complex relationship between declining exposure and pregnancy outcomes that

depends on both current transmission and historical transmission and community-level immunity

(Mayor et al., 2015).

Understanding the potential causal effect of a reduction in malaria burden on the low birth weight

rate is crucial as low birth weight is strongly associated with poor cognitive and physical develop-

ment of children (McCormick et al., 1992; Avchen et al., 2001; Guyatt and Snow, 2004). Although

we know from previous interventional studies that preventing malaria in pregnancy is associated

with higher birth weight (Eisele et al., 2012; Radeva-Petrova et al., 2014), we do not know whether

natural changes in malaria transmission intensity are similarly associated with improved birth out-

comes. To address this question, we make use of the fact that while the overall prevalence of malaria

has declined in sub-Saharan Africa, the decline has been uneven, with some malaria-endemic areas

experiencing sharp drops and others experiencing little change. We use this heterogeneity to assess

whether reductions in malaria prevalence reduce the proportion of infants born with low birth weight

in sub-Saharan African countries. Our approach conducts a difference-in-differences study (Card and

Krueger, 2000; Angrist and Pischke, 2008; St. Clair and Cook, 2015) by leveraging recent
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developments in matching, a nonparametric statistical analysis approach that can make studies more

robust to bias that can arise from statistical model misspecification (Rubin, 1973; Rubin, 1979; Han-

sen, 2004; Ho et al., 2007).

Materials and methods

Overview
In this analysis, we combine two rich data sources: (1) rasters of annual malaria prevalence means

(Bhatt et al., 2015) and (2) the Demographic and Health Surveys (DHS) (ICF, 2019), and we marry

two powerful statistical analysis methods of adjusting for covariates – difference-in-differences

(Card and Krueger, 2000; Abadie, 2005; Athey and Imbens, 2006; Angrist and Pischke, 2008;

Dimick and Ryan, 2014; St. Clair and Cook, 2015) and matching (Rubin, 1973; Rubin, 2006; Rose-

nbaum, 2002; Hansen, 2004; Stuart, 2010; Zubizarreta, 2012; Pimentel et al., 2015). We match

geographically proximal DHS clusters that were collected in different time periods (early vs. late)

and then identify pairs of early/late clusters that have either maintained high malaria transmission

intensity or experienced substantial declines in malaria transmission intensity. We then match pairs

of clusters that differ in their malaria transmission intensity (maintained high vs. declined) but are

similar in other key characteristics. Once these quadruples (pairs of pairs) have been formed, our

analysis moves to the individual births within these clusters. We use multiple imputation to catego-

rize missing children’s birth weight records as either low birth weight or not, relying on the size of

the child at birth reported subjectively by the mother and other demographic characteristics of the

mother. Finally, we estimate the effect of declined malaria transmission intensity on the low birth

weight rate by looking at the coefficient of the malaria prevalence indicator (low vs. high) contribut-

ing to the low birth weight rate in a mixed-effects linear probability model adjusted for covariates

that are potential confounding variables, the group indicator (individual being within a cluster with

declined vs. maintained high malaria transmission intensity), and the time indicator (late vs. early).

eLife digest Malaria infects around 230 million people each year, mostly in sub-Saharan Africa,

and causes more than 400,000 deaths. Pregnant women are particularly susceptible to malaria. The

parasite that causes malaria can sap the mother’s iron stores and may starve the baby of nutrients.

Babies born to infected mothers often have low birth weights, which can have lasting effects on their

health and brain development.

Previous studies suggest that preventing malaria in pregnant women using insecticide-treated

bed nets or medications may improve birth outcomes. Successful efforts to prevent malaria have led

to substantially fewer infections in sub-Saharan Africa. But success has been uneven with some

communities continuing to have high rates of infection. These differences may allow scientists to

better understand the community-level impact of falling rates of malaria on pregnancy outcomes in

the real world.

Heng et al. estimated that reducing malaria transmission minimises the number of infants born

with low birth weights in communities in sub-Saharan Africa. In an observational study, they used

data on more than 18,000 births in 19 countries in this region between 2000 and 2015 to assess the

effects of declining malaria rates on birth weights. They found that a decrease of malaria prevalence

is estimated to reduce the rate of low birth weight by 1.48%, which is a 17% reduction in the

number of observed newborns with low birth weight in the study population. First-born infants

appeared to benefit the most.

This highlights that malaria interventions are beneficial for pregnant women and their newborns.

Most analyses of the impact and cost-benefit of malaria control have ignored the potential

advantages of malaria control on birth weight, and may thus undermine the benefits of malaria

control. The approach used by Heng et al. may further be useful for other epidemiologists studying

global health.
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Data resources
The data we use in this work comes from the following three sources:

1. Rasters of annual malaria prevalence: These image data, constructed by the Malaria Atlas Proj-
ect (MAP) (Hay and Snow, 2006; MAP, 2020), estimate for sub-Saharan Africa the spatial dis-
tribution of the Plasmodium falciparum parasite rate (i.e. the proportion of the population that
carries asexual blood-stage parasites) in children from 2 to 10 years old (PfPR2�10) for each
year between 2000 and 2015 (Bhatt et al., 2015). PfPR2�10 has been widely used for measur-
ing malaria transmission intensity (Metselaar and Van Thiel, 1959; Smith et al., 2007;
Bhatt et al., 2015; WHO, 2019) and we use it in this work. The value in each pixel indicates
the estimated annual PfPR2�10 (ranging from 0 to 1) with a resolution of 5 km by 5 km.

2. Demographic and Health Surveys (DHS): The DHS are nationally-representative household sur-
veys mainly conducted in low- and middle- income countries that contain data with numerous
health and sociodemographic indicators (Corsi et al., 2012; ICF, 2019). We used the Inte-
grated Public Use Microdata Series’ recoding of the DHS variables (IPUMS-DHS) which makes
the DHS variables consistent across different years and surveys (Boyle et al., 2019).

3. Cluster Global Positioning System (GPS) data set: This data set contains the geographical
information (longitude, latitude and the indicator of urban or rural) of each cluster in the DHS
data. In order to maintain respondent confidentiality, the DHS program randomly displaces
the GPS latitude/longitude positions for all surveys, while ensuring that the positional error of
the clusters is at most 10 kilometers (at most 5 km for over 99% of clusters) and all the posi-
tions stay within the country and DHS survey region (DHS, 2019).

Data selection procedure
In this article, we set the study period to be the years 2000–2015, and correspondingly, all the

results and conclusions obtained in this article are limited to the years 2000–2015. We set the year

2000 as the starting point of the study period for two reasons. First, the year 2000 is the earliest

year in which the estimated annual PfPR2�10 is published by MAP, 2020. Second, according to

Bhatt et al., 2015, ‘the year 2000 marked a turning point in multilateral commitment to malaria con-

trol in sub-Saharan Africa, catalysed by the Roll Back Malaria initiative and the wider development

agenda around the United Nations Millennium Development Goals’. We set the year 2015 as the

ending point based on two considerations. First, when we designed our study in the year 2017, the

year 2015 was the latest year in which the estimated annual PfPR2�10 was available to us. We

became aware after starting our outcome analysis that MAP has published some post-2015 esti-

mated annual PfPR2�10 data since then, but, following Rubin, 2007’s advice to design observational

studies before seeing and analyzing the outcome data, we felt it was best to stick with the design of

our original study for this report and consider the additional data in a later report. Second, the year

2015 was set as a target year by a series of international goals on malaria control. For example, the

United Nations Millennium Development Goals set a goal to ‘halt by 2015 and begin to reverse the

incidence of malaria’ and ‘the more ambitious target defined later by the World Health Organization

(WHO) of reducing case incidence by 75% relative to 2000 levels.’ (WHO, 2008; Bhatt et al., 2015).

It is worth emphasizing that although we set the years 2000–2015 as the study period and did not

investigate any post-2015 MAP data because of the above considerations, those published or

upcoming post-2015 MAP data should be considered or leveraged for future related research or fol-

low-up studies.

After selecting 2000–2015 as our study period, we take the middle point years 2007 and 2008 as

the cut-off and define the years 2000–2007 as the ‘early years’ and the years 2008–2015 as the ‘late

years.’ We include all the sub-Saharan countries that satisfy the following two criteria: (1) The rasters

of estimated annual PfPR2�10 between 2000 and 2015 created by the Malaria Atlas Project include

that country. (2) For that country, IPUMS-DHS contains at least one standard DHS between

2000 and 2007 (‘early year’) and at least one standard DHS between 2008 and 2015 (‘late year’), and

both surveys include the cluster GPS coordinates. If there is more than one early (late) years for

which the above data are all available, we chose the earliest early year (latest late year). This choice

was made to maximize the time interval for the decrease of malaria prevalence, if any, to have an

effect on the birth weight of infants. For those countries that have at least one standard DHS with

available cluster GPS data in the late year (2008–2015), but no available standard DHS or GPS data

in the early year (2000–2007), we still include them if they have a standard DHS along with its GPS
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data for the year 1999 (with a possible overlap into 1998). In this case, we assign MAP annual

PfPR2�10 estimates from 2000 to the 1999 DHS data. This allows us to include two more countries,

Cote d’Ivoire and Tanzania. The 19 sub-Saharan African countries that meet the above eligibility cri-

teria are listed in Table 1.

From Table 1, we can see that among the 19 countries, only two countries (Congo Democratic

Republic and Zambia) happen to take the margin year 2007 as the early year and no countries take

the margin year 2008 as the late year. This implies that our study is relatively insensitive to our way

of defining the early years (2000–2007) and the late years (2008–2015) as most of the selected early

years and late years in Table 1 do not fall near the margin years 2007 and 2008.

Statistical analysis
Motivation and overview of our approach: difference-in-differences via pair-
of-pairs
Our approach to estimating the causal effect of reduced malaria burden on the low birth weight rate

is to use a difference-in-differences approach (Card and Krueger, 2000; Abadie, 2005; Athey and

Imbens, 2006; Angrist and Pischke, 2008; Dimick and Ryan, 2014; St. Clair and Cook, 2015) com-

bined with matching (Rubin, 1973; Rosenbaum, 2002; Hansen, 2004; Stuart, 2010; Zubizar-

reta, 2012; Pimentel et al., 2015). In a difference-in-differences approach, units are measured in

both an early (before treatment) and late (after treatment) period. Ideally, we would like to observe

how the low birth weight rate changes with respect to malaria prevalence within each DHS cluster,

so that the DHS clusters themselves could be the units in a difference-in-differences approach. How-

ever, this is not feasible because within each country over time the DHS samples different locations

(clusters) as the representative data of that country. We use optimal matching (Rosenbaum, 1989;

Hansen and Klopfer, 2006) to pair two DHS clusters, one in the early year and one in the late year

as closely as possible, mimicking a single DHS cluster measured twice in two different time periods.

Table 1. The 19 selected sub-Saharan African countries along with their chosen early/late years of

malaria prevalence (i.e. estimated parasite rate PfPR2�10) and IPUMS-DHS early/late years.

Note that some DHS span over two successive years.

Country

Malaria prevalence IPUMS-DHS

Early year Late year Early year Late year

Benin 2001 2012 2001 2011–12

Burkina Faso 2003 2010 2003 2010

Cameron 2004 2011 2004 2011

Congo Democratic Republic 2007 2013 2007 2013–14

Cote d’Ivoire 2000 2012 1998–99 2011–12

Ethiopia 2000 2010 2000 2010–11

Ghana 2003 2014 2003 2014

Guinea 2005 2012 2005 2012

Kenya 2003 2014 2003 2014

Malawi 2000 2010 2000 2010

Mali 2001 2012 2001 2012–13

Namibia 2000 2013 2000 2013

Nigeria 2003 2013 2003 2013

Rwanda 2005 2014 2005 2014–15

Senegal 2005 2010 2005 2010–11

Tanzania 2000 2015 1999 2015–16

Uganda 2000 2011 2000–01 2011

Zambia 2007 2013 2007 2013–14

Zimbabwe 2005 2015 2005–06 2015
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After this first-step matching, we define the treated units as the high-low pairs of clusters, meaning

that the early year cluster has high malaria prevalence (i.e. PfPR2�10 > 0.4) while the late year cluster

has low malaria prevalence (i.e. PfPR2�10 < 0.2), and define the control units as the high-high pairs

of clusters, meaning that both the early year and late year clusters have high malaria prevalence (i.e.

PfPR2�10 > 0.4) and the absolute difference between their two values of PfPR2�10 (one for the early

year and one for the late year) is less than 0.1. The difference-in-differences approach (Card and

Krueger, 2000; Angrist and Pischke, 2008; Dimick and Ryan, 2014; St. Clair and Cook, 2015)

compares the changes in the low birth weight rate over time for treated units (i.e. high-low pairs of

clusters) compared to control units (i.e. high-high pairs of clusters) adjusted for observed covariates.

The difference-in-differences approach removes bias from three potential sources (Volpp et al.,

2007):

. A difference between treated units and control units that is stable over time cannot be mis-
taken for an effect of reduced malaria burden because each treated or control unit is com-
pared with itself before and after the time at which reduced malaria burden takes place in the
treated units.

. Changes over time in sub-Saharan Africa that affect all treated or control units similarly cannot
be mistaken for an effect of reduced malaria burden because changes in low birth weight over
time are compared between the treated units and control units.

. Changes in the characteristics (i.e. observed covariates) of the populations (e.g. age of mother
at birth) in treated or control units over time cannot be mistaken for an effect of reduced
malaria burden as long as those characteristics are measured and adjusted for.

The traditional difference-in-differences approach requires a parallel trend assumption, which

states that the path of the outcome (e.g. the low birth weight rate) for the treated unit is parallel to

that for the control unit (Card and Krueger, 2000; Angrist and Pischke, 2008; Dimick and Ryan,

2014; St. Clair and Cook, 2015). One way the parallel trend assumption can be violated is if there

are events in the late period whose effect on the outcome differs depending on the level of

observed covariates and those observed covariates are unbalanced between the treated and control

units across time (Shadish et al., 2002). For example, suppose that there are advances in prenatal

care in the late year that tend to be available more in urban areas, then the parallel trends assump-

tion could be violated if there are more treated units (i.e. high-low pairs of clusters) in urban areas

than control units (i.e. high-high pairs of clusters). To make the parallel trend assumption more likely

to hold, instead of conducting a difference-in-differences study simply among all the treated and

control units, we use a second-step matching to pair treated units with control units on the observed

covariates trajectories (from the early year to the late year) to make the treated units and control

units similar in the observed covariates trajectories as they would be under randomization (Rose-

nbaum, 2002; Stuart, 2010), and discard those treated or control units that cannot be paired with

similar observed covariates trajectories. For example, by matching on the urban/rural indicator tra-

jectories between the treated and control units, we adjust for the potential source of bias resulting

from the possibility that there may be advances in prenatal care in the late year that are available

more in urban areas.

Another perspective on how our second-step matching helps to improve a difference-in-differen-

ces study is through the survey location sampling variability (Fakhouri et al., 2020). Recall that when

constructing representative samples, the DHS are sampled at different locations (i.e. clusters) across

time (ICF, 2019; Boyle et al., 2019). Therefore, if we simply implemented a difference-in-differences

approach over all the high-low and high-high pairs of survey clusters and did not use matching to

adjust for observed covariates, this survey location sampling variability may generate imbalances (i.e.

different trajectories) of observed covariates across the treated and control groups, and therefore

may bias the difference-in-differences estimator (Heckman et al., 1997). Imbalances of observed

covariates caused by the survey location sampling variability may occur in the following three cases:

(1) The survey location sampling variability is affecting the treated and control groups in the oppo-

site direction. Specifically, there is some observed covariate for which the difference between the

high-low pairs of sampled clusters tends to be larger (or smaller) than the country’s overall difference

between the high malaria prevalence regions in the early years and the low malaria prevalence

regions in the late years and conversely, the difference in that observed covariate between the high-

high pairs of sampled clusters tends to be smaller (or larger) than the country’s overall difference
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between the high malaria prevalence regions in the early years and the high malaria prevalence

regions in the late years. (2) The survey location sampling variability is affecting the treated and con-

trol groups in the same direction but to different extents. (3) The survey location sampling variability

only happened in the treated or control group. Specifically, there is some observed covariate for

which the difference between the high-low (or high-high) pairs of sampled clusters tends to differ

from the country’s overall difference between the high malaria prevalence regions in the early years

and the low (or high) malaria prevalence regions in the late years, but this is not the case for the

high-high (or high-low) pairs of sampled clusters. Using matching as a nonparametric data prepro-

cessing step in a difference-in-differences study can remove this type of bias because the observed

covariates trajectories are forced to be common among the matched treated and control groups

(St. Clair and Cook, 2015; Basu and Small, 2020).

An additional important aspect of our approach is that we use multiple imputation to address

missingness in the birth weight records. The fraction of missingness in birth weight in the IPUMS-

DHS data set is non-negligible and previous studies have noted that failing to carefully and appropri-

ately address the missing data issue with the birth weight records can significantly bias the estimates

of the low birth weight rate derived from surveys in developing countries (Boerma et al., 1996;

Robles and Goldman, 1999). We address the missing data issue by using multiple imputation with

carefully selected covariates. Multiple imputation constructs several plausible imputed data sets and

appropriately combines results obtained from each of them to obtain valid inferences under an

assumption that the data is missing at random conditional on measured covariates (Rubin, 1987).

Our workflow is summarized in Figure 1, in which we indicate both the data granularity (country-

level, cluster-level, and individual-level) and the corresponding steps of our statistical methodology

(including the data selection procedure described in the previous section and the Steps 1–4 of the

statistical analysis listed below).

Step 1: Proximity prioritized in the matching of high-high and high-low
clusters
The DHS collects data from different clusters within the same country in different survey years. To

construct pairs of early year and late year clusters which are geographically close such that each pair

of clusters can mimic a single cluster measured twice in two different time periods to serve as the

unit of a difference-in-differences study, we use optimal matching (Rosenbaum, 1989; Hansen and

Klopfer, 2006) to pair clusters within the same country, one from the early year and one from the

late year, based on the geographic proximity of their locations. Specifically, we minimize the total

rank-based Mahalanobis distance based on the latitude and longitude of the cluster with a propen-

sity score caliper to pair clusters so that the total distance between the paired early year cluster and

late year cluster is as small as possible (Rosenbaum, 1989; Hansen and Klopfer, 2006). The number

of clusters to pair for each country is set to be the minimum of the number of clusters in the early

year and the number of clusters in the late year of that country.

Step 2: Matching on sociodemographic similarity is emphasized in second
matching
We first divide malaria prevalence into three levels with respect to the estimated Plasmodium falci-

parum parasite rates PfPR2�10 (ranging from 0 to 1): high (PfPR2�10 > 0.4), medium (PfPR2�10 lies in

[0.2, 0.4]), and low (PfPR2�10 < 0.2). For clusters in the year 1999, we use the PfPR2�10 in the nearest

year in which it is available, that is, the year 2000. We select the pairs of the early year and late year

clusters as formed in Step 1 described above that belong to either one of the following two catego-

ries: (1) High-high pairs: both of the estimated parasite rates of the early year and late year clusters

within that pair are high (>0.4), and the absolute difference between the two rates is less than 0.1.

(2) High-low pairs: the estimated parasite rate of the early year cluster within that pair is high (>0.4),

while the estimated parasite rate of the late year cluster within that pair is low (<0.2). A total of 950

out of 6812 pairs of clusters met one of these two criteria with 540 being high-high pairs and 410

high-low pairs. We removed one high-low pair in which the late year cluster had an estimated para-

site rate value (i.e. PfPR2�10) of zero for every year between 2000 and 2015; this cluster was in a

high altitude area with temperature unsuitable for malaria transmission and thus was not comparable

in malaria transmission intensity to its paired early year cluster with high malaria transmission
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intensity. Since we would like to study the effect of reduced malaria burden on the low birth weight

rate of infants, we consider high-low pairs of clusters as treated units and high-high pairs of clusters

as control units, and conduct a matched study by matching each high-low pair with a high-high pair

that is similar with respect to covariates that might be correlated with either the treatment (changes

in malaria prevalence) or the outcome (low birth weight). We allow matches across different coun-

tries. The covariates we match on are cluster averages of the following individual-level covariates,

where we code the individual-level covariates as quantitative variables with higher values suggesting

higher sociodemographic status:

. Household electricity: 0 – dwelling has no electricity; 1 – otherwise.

. Household main material of floor: 1 – natural or earth-based; 2 – rudimentary; 3 – finished.

. Household toilet facility: 0 – no facility; 1 – with toilet.

. Urban or rural: 0 – rural; 1 – urban.

. Mother’s education level: 0 – no education; 1 – primary; 2 – secondary or higher.

Figure 1. Work flow diagram of the study.
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. Indicator of whether the woman is currently using a modern method of contraception: 0 – no;
1 – yes.

The above six sociodemographic covariates were chosen by looking over the variables in the

Demographic and Health Surveys (DHS) and choosing those which we thought met the following cri-

teria: (1) The above six covariates are potentially strongly correlated with both the risk of malaria

(Baragatti et al., 2009; Krefis et al., 2010; Ayele et al., 2013; Roberts and Matthews, 2016;

Sulyok et al., 2017) and birth outcomes (Sahn and Stifel, 2003; Gemperli et al., 2004; Chen et al.,

2009; Grace et al., 2015; Padhi et al., 2015), and therefore may be important confounding varia-

bles that need to be adjusted for via statistical matching (Rosenbaum and Silber, 2009; Rose-

nbaum, 2010; Stuart, 2010). (2) The records of the above six covariates are mostly available for all

the countries and the survey years in our study samples. Specifically, for the above six covariates, the

percentages of missing data (missingness can arise either because the question was not asked or the

individual was asked the question but did not respond) among the total individual records from

IPUMS-DHS among the 6812 pairs of clusters remaining after Step 1 are all less than 0.3%.

For each cluster, we define the corresponding six cluster-level covariates by taking the average

value for each of the six covariates among the individual records from IPUMS-DHS which are in that

cluster, leaving out all missing data. This method of building up cluster-level data from individual-

level records from DHS has been commonly used (Kennedy et al., 2011; Larsen et al., 2017). We

form quadruples (pairs of pairs) by pairing one high-low pair of clusters (a ‘treated’ unit) with one

high-high pair of clusters (a ‘control’ unit), such that all the six cluster-level observed covariates are

balanced between both the early and late year clusters for the paired high-low and high-high pairs.

We use optimal cardinality matching to form these quadruples (Zubizarreta et al., 2014;

Visconti and Zubizarreta, 2018). Optimal cardinality matching is a flexible matching algorithm

which forms the largest number of pairs of treated and control units with the constraint that the

absolute standardized differences (absolute value of difference in means in standard deviation units;

see Rosenbaum, 2010) are less than a threshold; we use a threshold of 0.1, which is commonly used

to classify a match as adequate (Neuman et al., 2014; Silber et al., 2016). After implementing the

optimal cardinality matching, 219 matched quadruples (pairs of high-low and high-high pairs of clus-

ters) remain. See Figure 2 for illustration of the process of forming matched quadruples (pairs of

pairs).

Figure 2. Formed quadruples (pairs of pairs) of matched high-low and high-high pairs of clusters. In Step 1, pairs of clusters from the early and late

time periods are matched on geographic proximity and categorized as ‘high-high’ (comparison, or control) or ‘high-low’ (treated). In Step 2, pairs of

high-high clusters are matched with pairs of high-low clusters based on cluster-level sociodemographic characteristics. The difference-in-differences

estimate of the coefficient of changing malaria burden on the low birth weight rate is based on comparing (D–C) to (B–A).
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Step 3: Low birth weight indicator with multiple imputation to address
missingness
We then conduct statistical analysis at the individual child level. Among all the 19,310 children’s

records from the quadruples formed above, we exclude multiple births (i.e. twins, triplets etc), leav-

ing 18,499 records. The outcome variable is the indicator of low birth weight, which is defined as

child’s birth weight less than 2500 g. However, 48% of the birth weight records of children among

these 18,499 records are missing. To handle this, we perform multiple imputation, under the

assumption of missing at random (Heitjan and Basu, 1996), with 500 replications. An important pre-

dictor that is available for imputing the missing low birth weight indicator is the mother’s subjective

reported size of the child. The mother’s reported size of the child is relatively complete in the

IPUMS-DHS data set and has been shown to be a powerful tool to handle the missing data problem

with birth weight (Blanc and Wardlaw, 2005). We exclude the small number of records with missing

mother’s subjective reported size of the child, leaving 18,112 records, 47% of which (8509 records)

have missing low birth weight indicator. Among the 9603 records with observed birth weight, 825

(8.6%) had low birth weight. We first use the bayesglm function (part of the arm package in R) to fit

a Bayesian logistic regression for the outcome of the low birth weight indicator among those chil-

dren for whom low birth weight is not missing. To make it more plausible that the missing at random

assumption holds, the following covariates are included as predictors in this regression because they

might affect both missingness and the low birth weight rate:

. The size of the child at birth reported subjectively by the mother: 1 – very small or smaller than
average; 2 – average; 3 – larger than average or very large.

. Mother’s age in years.

. Child’s birth order number: 1 – the first child born to a mother; 2 – the second, third or fourth
child born to a mother; 3 – otherwise.

. Household wealth index: 1 – poorest; 2 – poorer; 3 – middle; 4 – richer; 5 – richest.

. Urban or rural: 0 – rural; 1 – urban.

. Mother’s education level: 0 – no education; 1 – primary; 2 – secondary or higher.

. Child’s sex: 0 – female; 1 – male.

. Mother’s current marital or union status: 0 – never married or formerly in union; 1 – married or
living together.

. Indicator of whether the child’s mother received any antenatal care while the child was in
utero: 0 – no or missing; 1 – yes.

We also include quadratic terms for mother’s age in years and child’s birth order in the regression

since according to Selvin and Janerich, 1971, the influences of mother’s age and child’s birth order

on the birth weight do not follow a linear pattern. Note that among the remaining 18,112 records,

there are no missing data for all of the above covariates. The prior distributions for the regression

coefficients follow the default priors of the bayesglm function, that is, independent Cauchy distribu-

tions with center 0 and scale set to 10 for the regression intercept term, 2.5 for binary predictors,

and 2.5/(2 �sd) for other numerical predictors, where sd is the standard deviation of the predictor in

the data used for fitting the regression (i.e. the 9603 records with observed birth weight). This

default weakly informative prior has been shown to outperform Gaussian and Laplacian priors in a

wide variety of settings (Gelman et al., 2008). After fitting this Bayesian logistic regression model,

we get the posterior distribution of the regression coefficient associated with each predictor; see

Table 2. From Table 2, we can see that in the imputation model, mother’s age, child’s birth order,

mother’s education level, and the mother’s reported birth size are significant predictors, which

agrees with the previous literature (e.g. Fraser et al., 1995; Strobino et al., 1995; Richards et al.,

2001; Valero De Bernabé et al., 2004).

We then conduct the following procedure in each run of multiple imputation. For each individual

with missing birth weight, we first draw from the posterior distribution of the regression coefficients

in Table 2, we then use these regression coefficients and the individual’s covariates (as predictors)

to find the probability of the individual having low birth weight and then we use this probability to

randomly draw a low birth weight indicator for the individual. We conduct this procedure 500 times,

getting 500 independent data sets with imputed low birth weight indicators.
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Step 4: Estimation of causal effect of reduced malaria burden on the low
birth weight rate
For each of the 500 imputed data sets, we then fit a mixed-effects linear probability model (using

the lmer function in the R package lme4) where there is a random effect (random intercept) for each

cluster to account for the potential correlations between the outcomes among the individual records

within the same cluster (Gałecki and Burzykowski, 2013). We include in the model the covariates

which might be related to both whether an individual is in a high-low vs. high-high pair of clusters

and the low birth weight rate. Specifically we include the predictors from the Bayesian logistic

regression for multiple imputation as covariate regressors in the mixed-effects linear probability

model (listed in Table 2), except for the mother’s reported birth size. We do not include reported

birth size because it is not a pretreatment variable and is a proxy for the outcome (Rose-

nbaum, 1984). In addition to the above covariates, we include in the model the following three indi-

cators: (1) Low malaria prevalence indicator: indicates whether the individual is from a cluster with a

low malaria prevalence (PfPR2�10 < 0.2). (2) Time indicator: 0 – if the individual is from a early year

cluster; 1 – if the individual is from a late year cluster. (3) Group indicator: 0 – if the individual is from

a cluster in a high-high pair of clusters; 1 – if the individual is from a cluster in a high-low pair of clus-

ters. Through adjusting for the time varying covariates via matching and including the above three

indicators in the regression, our study uses a difference-in-differences approach for a matched

observational study (Wing et al., 2018). Note that even though we do not explicitly incorporate

matching into the final model (i.e. the mixed-effects linear probability model [1]), matching still

reduces the bias due to potential statistical model misspecification in our analysis by being a non-

parametric data preprocessing step which makes the distributions of the observed covariates of the

selected treated and control units identical or similar, lessening the dependence of the results on

the model used to adjust for the observed covariates (Hansen, 2004; Ho et al., 2007). Let 11ðAÞ be
the indicator function of event A such that 11ðAÞ ¼ 1 if A is true and 11ðAÞ ¼ 0 otherwise. To conclude,

we consider the following mixed-effects linear probability model for the individual j in cluster i:

PðYij ¼ 1 j i;XijÞ ¼ k0 þ k1 � 11ði is a low malaria prevalence clusterÞþ k2 � 11ði is a late year clusterÞ
þk3 � 11ði is from a high� low pair of clustersÞþbT

Xij;

with two error terms ai ~Nð0;s0Þ and �ij ~Nð0;s1Þ:
(1)

In Model (1), Yij is the observed outcome (i.e. the low birth weight indicator) and Xij the covariate

regressors (including the quadratic terms of mother’s age and child’s birth order) of the individual j

in cluster i, and ai is the random effect for cluster i. See Table 3 for an interpretation of the coeffi-

cients of the three indicators and the intercept term (i.e. the k0;k1;k2;k3) within each matched

Table 2. Summary of the Bayesian logistic regression model fitted over records with observed birth weight which is used to predict

missing low birth weight indicators.

Predictor Posterior mean Posterior std z-score p-value

(Intercept) 1.916 0.628 3.051 0.002**

Mother’s age (linear term) �0.207 0.045 �4.562 <0.001***

Mother’s age (quadratic term) 0.003 0.001 3.987 <0.001***

Wealth index 0.060 0.037 1.591 0.112

Child’s birth order (linear term) �0.989 0.338 �2.925 0.003**

Child’s birth order (quadratic term) 0.211 0.086 2.447 0.014*

0 - rural; 1 - urban 0.126 0.103 1.214 0.225

Mother’s education level �0.226 0.062 �3.633 <0.001***

Child is boy �0.068 0.083 �0.815 0.415

Mother is married or living together �0.173 0.117 �1.482 0.138

Indicator of antenatal care �0.046 0.093 �0.493 0.622

Indicator of low birth size 2.410 0.090 26.776 <0.001***

Indicator of large birth size �1.387 0.129 �10.786 <0.001***
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quadruple. The estimated causal effect of reduced malaria burden (low vs. high malaria prevalence)

on the low birth weight rate is the mean value of the 500 estimated coefficients on the low malaria

prevalence indicator obtained (i.e. the k1) from 500 runs of the mixed-effects linear regression

described above. See Appendix 2 for more details on the statistical inference procedure with multi-

ple imputation, which are also referred to as Rubin’s rules (Carpenter and Kenward, 2012).

It is worth clarifying that although we take a Bayesian approach when imputing (i.e. predicting)

the missing low birth weight indicators in Step 3 (i.e. imputation model) and then take a frequentist

approach when conducting the 500 separate outcome analyses with the 500 imputed data sets in

Step 4 (i.e. substantive model), these two different statistical perspectives (i.e. Bayesian and fre-

quentist) do not conflict with each other when we apply Rubin’s rules to combine these 500 separate

outcome analyses as the single estimator and inference reported in Table 6. This is because the fre-

quentist validity of applying Rubin’s rules to combine separate outcome analyses with multiple

imputed data sets only explicitly depends on the asymptotic normal approximation assumption for

each coefficient estimator in Model (1) (see Appendix 2 for more details), and does not directly

depend on how the multiple imputed data sets are generated (e.g. either using a Bayesian imputa-

tion model as in Step 3 or using a frequentist imputation model instead). Using a Bayesian imputa-

tion model followed by a frequentist substantive model is one of the most common strategies when

applying Rubin’s rules to conduct statistical inference with multiple imputation; see Rubin, 1996,

Chapter 3 of Rubin, 1987, and Chapter 2 of Carpenter and Kenward, 2012. For representative

works on justifying the advantages of using a Bayesian imputation model in multiple-imputation

inferences, see Meng, 1994 and Chapter 2 of Carpenter and Kenward, 2012.

Secondary analyses
We also conducted the following four secondary analyses (SA1) – (SA4) which examine the causal

hypothesis that reduced malaria transmission intensity cause reductions in the low birth weight rate

in various ways.

. (SA1) In the first secondary analysis, we fit the mixed-effects linear probability model with mul-
tiple imputation only on the children whose age at the corresponding survey is no older than
one year old (7156 out of 18,112 records) to mitigate the potential bias resulting from the
births that did not occur in exactly the same year as the year of the corresponding malaria
prevalence measurement.

. (SA2) In the second secondary analysis, we fit the mixed-effects linear probability model with
multiple imputation over first born children only (3890 out of 18,112 records) to check if the
potential effect of reduced malaria burden on the low birth weight rate is especially substan-
tial/weak for first born children or not.

. (SA3) In the third secondary analysis, we make the difference between high malaria prevalence
and low prevalence more extreme. Specifically, we redefine the malaria prevalence levels
(ranging from 0 to 1) as: high (PfPR2�10 > 0.45), medium (PfPR2�10 lies in [0.15, 0.45]), and low
(PfPR2�10 < 0.15). We then conduct the same statistical analysis procedure as in the primary
analysis to check if a moderately greater reduction in malaria burden would lead to more of a
decrease in the low birth weight rate or not.

Table 3. An interpretation of the coefficients of the intercept term and the three indicators defined in model (1) (i.e. the k0; k1; k2; k3)

within each matched quadruple.

The coefficient of the low malaria prevalence indicator (i.e. the k1) incorporates the information of the magnitude of the effect of

changing malaria burden (from high to low) on the low birth weight rate.

Cluster Prevalence Time Pair Coefficients

Within-pair Between-pair

Contrast Contrast

1 High Early High-low k0 þ k3 k1 þ k2 k1

2 Low Late High-low k0 þ k1 þ k2 þ k3

3 High Early High-high k0 k2

4 High Late High-high k0 þ k2
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. (SA4) In the fourth secondary analysis, we conduct the same procedure as in (SA3), but making
the high-medium-low malaria prevalence cut-offs even more extreme: high (PfPR2�10 > 0.5),
medium (PfPR2�10 lies in [0.1, 0.5]), and low (PfPR2�10 < 0.1) to check if a substantially more
dramatic reduction in malaria burden would cause a more dramatic decrease in the low birth
weight rate or not.

Sensitivity analyses
As discussed in the ‘Motivation and overview of our approach’ section, using matching as a data pre-

processing step in a difference-in-differences study can reduce the potential bias that may result

from a violation of the parallel trend assumption arising from failing to adjust for observed covariates

and the survey location sampling variability when using the survey data to conduct a difference-in-

differences study. However, neither matching nor difference-in-differences can directly adjust for

unobserved covariates (i.e. unmeasured confounders or events). The estimated treatment effect (i.e.

the estimated coefficient of the low malaria prevalence indicator contributing to the low birth weight

rate) from our primary analysis can be biased by failing to adjust for any potential unobserved covari-

ates. How potential unobserved covariates may bias the estimated effect in a difference-in-differen-

ces study has been understood from various alternative perspectives in the previous literature.

These alternative perspectives are intrinsically connected and we briefly list three of them here (for

more detailed descriptions, see Appendix 3):

. Perspective 1: The potential violation of the unconfoundedness assumption (Rosenbaum and
Rubin, 1983b; Heckman and Robb, 1985; Heckman et al., 1997).

. Perspective 2: The potential violation of the parallel trend assumption in a difference-in-differ-
ences study (Card and Krueger, 2000; Angrist and Pischke, 2008; Hasegawa et al., 2019;
Basu and Small, 2020).

. Perspective 3: The difference-in-differences estimator may be biased if there is an event that is
more (or less) likely to occur as the intervention happens and the occurrence probability of this
event cannot be fully captured by observed covariates (Shadish, 2010; West and Thoemmes,
2010).

To assess the robustness of the results of our primary analysis to potential hidden bias, we adapt

an omitted variable sensitivity analysis approach (Rosenbaum and Rubin, 1983a; Imbens, 2003;

Ichino et al., 2008; Zhang and Small, 2020). Specifically, our sensitivity analysis model (i.e. Model

(3) in Appendix 3) extends Model (1) by including a hypothetical unobserved covariate U that is cor-

related with both the low malaria prevalence indicator and the low birth weight indicator. Specifi-

cally, let Uij denote the value of U of individual j in cluster i, we consider the following data

generating process for Uij:

PðUij ¼ 1Þ ¼ 50%þ p1% � 11ði is a low malaria prevalence clusterÞ
þp2% � 11ðthe observed or the imputed Yij ¼ 1Þ; (2)

where p1 and p2 are prespecified sensitivity parameters of which the unit is a percentage point. Our

sensitivity analyses investigate how the estimated treatment effect varies over a range of prespeci-

fied values for ðp1;p2Þ. See Appendix 3 for the details of the design of the sensitivity analyses and on

how our proposed sensitivity analysis model helps to address the concerns about the hidden bias

from Perspectives 1–3 listed above.

Results
In this section, we report and interpret the results of matching, primary analysis, secondary analyses,

and sensitivity analyses relating changes in malaria burden to changes in the birth weight rate

between 2000–2015 in sub-Saharan Africa. The R (R Development Core Team, 2020) code for pro-

ducing all the main results and tables of this article is posted on GitHub (https://github.com/siyu-

heng/Malaria-and-Low-Birth-Weight, Heng, 2021a, copy archived at swh:1:rev:

faf6455f95bca6bab364ab95699ea7cd81af1061 Heng, 2021b).
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Matching
We first evaluate the performance of the first-step matching where we focus on the geographical

closeness of paired early year and late year clusters from the following three perspectives: (1) the

geographic proximity of the early year and the late year clusters within each pair, which is evaluated

through the mean distance of two paired clusters, the within-pair longitude’s correlation and lati-

tude’s correlation between the paired early year and late year clusters, and the mean values of the

longitudes and the latitudes of the paired early year and late year clusters; (2) the closeness of the

mean annual malaria prevalence (PfPR2�10) of the early year and late year clusters at the early year

(i.e. the early malaria prevalence year in Table 1); (3) the closeness of the mean annual malaria preva-

lence of the early year and the late year clusters at the late year (i.e. the late malaria prevalence year

in Table 1). We report the results in Table 4, which indicate that the first step of our matching pro-

duced pairs of clusters which are close geographically and in their malaria prevalence at a given

time. Of note, the mean Haversine distance of the early year clusters and late year clusters is 24.1

km among the 219 high-low pairs of clusters, and 28.7 km among the 219 high-high pairs of clusters.

The within-pair longitudes’ and latitudes’ correlations between the paired early year and late year

clusters among the high-low and high-high pairs are all nearly one.

We then evaluate the performance of the second-step matching, where we focus on the closeness

of the sociodemographic status of paired high-low and high-high pairs of clusters, by examining the

balance of each covariate among high-low and high-high pairs of early year and late year clusters

before and after matching. Recall that for each cluster, we calculate the six cluster-level covariates

(i.e. urban or rural, toilet facility, floor facility, electricity, mother’s education level, contraception

indicator) by averaging over all available individual-level records in that cluster. In each high-low or

high-high pair of clusters, there are 12 associated covariates, six for the early year cluster in that pair

and six for the late year cluster in that pair. Table 5 reports the mean of each covariate among high-

low pairs of clusters and high-high pairs of clusters before and after matching, along with the abso-

lute standardized differences before and after matching. From Table 5, we can see that before

matching, the high-high pairs are quite different from the high-low pairs, all absolute standardized

differences are greater than 0.2. The high-low pairs tend to be sociodemographically better off than

the high-high pairs (higher prevalence of improved toilet facilities and floor material facilities, higher

prevalence of domestic electricity, higher levels of mother’s education, higher rate of contraceptive

use, and more urban households). To reduce the bias from these observed covariates, we leverage

optimal cardinality matching, as described above, to pair a high-low pair of clusters with a high-high

pair and throw away the pairs of clusters for which the associated covariates cannot be balanced

Table 4. The mean Haversine distance of the early year clusters and late year clusters is 24.1 km among the 219 high-low pairs of

clusters, and 28.7 km among the 219 high-high pairs of clusters.

The within-pair longitudes’ and latitudes’ correlations between the paired early year and late year clusters among the high-low and

high-high pairs all nearly equal one. The mean values of the longitudes, the latitudes, the annual malaria prevalence (i.e. PfPR2�10)

measured at the early year, denoted as PfPR2�10 (early), and at the late year, denoted as PfPR2�10 (late), of the paired early year clus-

ters (clusters sampled at the early year) and late year clusters (clusters sampled at the late year) among the 219 high-low and 219 high-

high pairs of clusters used for the statistical inference respectively. Note that an early year cluster has a late year PfPR2�10 and a late

year cluster has an early year PfPR2�10 since the MAP data contain PfPR2�10 for each location and for each year between 2000 and

2015.

High-low pairs High-high pairs

Mean within-pair haversine distance 24.1 km 28.7 km

Within-pair correlation of longitude 0.9999 0.9996

Within-pair correlation of latitude 0.9998 0.9997

Longitude Latitude PfPR2�10 (early) PfPR2�10 (late)

Early clusters among high-low pairs 16.92 �1.15 0.52 0.17

Late clusters among high-low pairs 16.88 �1.15 0.48 0.12

Early clusters among high-high pairs 19.15 0.43 0.51 0.47

Late clusters among high-high pairs 19.13 0.46 0.53 0.49
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well. After matching, we can see that all 12 covariates are balanced well – all absolute standardized

differences after matching are less than 0.1.

Effect of reduced malaria burden on the low birth weight rate
Appendix 1—table 3 summarizes the low malaria prevalence indicators, the time indicators, the

group indicators, the covariates, and the birth weights of the 18,112 births in the matched clusters.

Table 6 reports the estimated causal effect of reduced malaria burden (low vs. high malaria preva-

lence) on the rate of births with low birth weight, which is represented as the coefficient on the

malaria prevalence indicator (diagnostics for the multiple imputation that was used in generating the

estimates in Table 6 are shown in Appendix 2—table 1). We estimate that a decline in malaria prev-

alence from PfPR2�10 > 0.40 to less than 0.20 reduces the rate of low birth weight by 1.48

Table 5. Balance of each covariate before matching (BM) and after matching (AM).

We report the mean of each covariate (including early and late years) for high-low and high-high pairs of clusters, before and after

matching. We also report each absolute standardized difference (Std.dif) before and after matching.

Before matching After matching Std.dif

High-low High-high High-low High-high BM AM

(410 pairs) (540 pairs) (219 pairs) (219 pairs)

Urban/rural (early) 0.44 0.20 0.26 0.26 0.53 0.00

Urban/rural (late) 0.60 0.21 0.37 0.32 0.85 0.09

Toilet facility (early) 0.88 0.60 0.82 0.79 0.86 0.10

Toilet facility (late) 0.94 0.69 0.90 0.88 0.90 0.10

Floor material (early) 1.90 1.68 1.60 1.67 0.31 0.10

Floor material (late) 2.22 1.79 1.92 1.87 0.59 0.07

Electricity (early) 0.36 0.12 0.17 0.16 0.70 0.02

Electricity (late) 0.54 0.18 0.33 0.30 0.99 0.10

Mother’s education (early) 1.00 0.36 0.69 0.64 1.36 0.10

Mother’s education (late) 1.23 0.42 0.87 0.83 1.78 0.10

Contraception indicator (early) 0.16 0.12 0.15 0.17 0.27 0.10

Contraception indicator (late) 0.22 0.18 0.24 0.26 0.23 0.10

Table 6. Inference with multiple imputation and mixed-effects linear probability model (1).

The unit of estimates and CIs is a percentage point.

Regressor Estimate 95% CI p-value

0 - high prevalence; 1 - low prevalence �1.48 [�3.70, 0.74] 0.191

0 - early year; 1 - late year �0.06 [�1.82, 1.69] 0.943

0 - high-high pairs; 1 - high-low pairs 0.21 [�1.40, 1.82] 0.797

Mother’s age (linear term) �1.86 [�2.48, �1.23] <0.001***

Mother’s age (quadratic term) 0.03 [0.02, 0.04] <0.001***

Child’s birth order (linear term) �13.91 [�18.49, �9.32] <0.001***

Child’s birth order (quadratic term) 2.91 [1.82, 4.00] <0.001***

Wealth index 0.09 [�0.38, 0.56] 0.709

0 - rural; 1 - urban 0.82 [�0.63, 2.27] 0.269

Mother’s education level �2.02 [�2.82, �1.22] <0.001***

Child is boy �1.75 [�2.75, �0.74] <0.001***

Mother is married or living together �1.43 [�3.04, 0.19] 0.083

Antenatal care indicator �0.96 [�2.06, 0.13] 0.085
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percentage points (95% confidence interval: 3.70 percentage points reduction, 0.74 percentage

points increase). A reduction in the low birth weight rate of 1.48 percentage points is substantial;

recall that among the study individuals with nonmissing birth weight, the low birth weight rate was

8.6%, so a 1.48 percentage points reduction corresponds to a 17% reduction in the low birth weight

rate. The results in Table 6 also show that there is strong evidence that mother’s age, child’s birth

order, mother’s education level and child’s sex are also associated with the low birth weight rate.

For example, mothers with higher education level are less likely to deliver a child with low birth

weight, and boys are less likely to have low birth weight than girls, which agrees with the previous lit-

erature (e.g. Brooke et al., 1989; Valero De Bernabé et al., 2004; Zeka et al., 2008). Our esti-

mated reduction in the low birth weight rate of 1.48 percentage points from reducing malaria

prevalence from high to low is similar to that from a naive difference-in-differences estimator that

ignores covariates and missingness of birth weight records. The observed low birth weight rates

among the records with observed birth weight within the early year clusters in high-low pairs is

9.33%, in the late year clusters in high-low pairs is 7.52%, in the early year clusters in high-high pairs

is 9.18%, and in the late year clusters in high-high pairs is 9.06%. Therefore, the naive difference-in-

differences estimator for the effect of reduced malaria burden without adjusting for covariates and

missingness of birth weight records is (7.52% � 9.33%) � (9.06% � 9.18%) = � 1.69% (i.e. 1.69 per-

centage points reduction on the low birth weight rate).

Among all the high-low pairs of clusters in our sample, there has been a decrease in the low birth

weight rate from the early years to the late years of 1.81 percentage points (from 9.33% to 7.52%)

for records with observed birth weight and an estimated decrease of 2.04 percentage points (from

10.48% to 8.44%) when multiple imputation is used to impute missing birth weight records. We now

explore how much of this decrease can be attributed to reduced malaria burden over time. The esti-

mated effect in Table 6 of the time indicator (late year vs. early year) is a 0.06 percentage points

reduction, which is much less than that of the low malaria prevalence indicator. Moreover, the esti-

mated change in the low birth weight rate over time among high-low pairs that comes from changes

in the covariates over time is a 0.52 percentage points reduction. This is calculated by looking at the

difference between bbT
xearly and bbT

xlate, where bbT is the estimated coefficients of the covariate

regressors listed in Table 6, and xearly and xlate are the average values in high-low pairs of the covari-

ate regressors of the individuals within the early year clusters and those within the late year clusters

respectively. These results suggest that after adjusting for the observed covariates listed in Table 6

and missingness of birth weight records, the observed decrease in the low birth weight rate over

time in high-low pairs comes mainly from reduced malaria burden over time instead of changes over

time in the low birth weight rate that affect both high-low and high-high pairs of clusters. To illus-

trate this point and further verify the potentially substantial effect of reduced malaria burden on the

low birth weight rate, we also plot the estimated low birth weight rate of each cluster among the

high-high pairs and high-low pairs in our study sample in Figure 3. From Figure 3, we can see that

although in general, for both high-high pairs and high-low pairs, the birth weight rates of the late

year clusters are lower than those of the early year clusters, it is clear that the reductions in low birth

weight rate from early year to late year among the high-low pairs are considerably greater than

those among high-high pairs, suggesting that reducing community-level malaria burden can poten-

tially substantially reduce the low birth weight rate.

Results of secondary analyses
The results of our secondary analyses support the interpretation of our primary analysis:

. (SA1) In the first secondary analysis, when only conducting statistical analysis among children
whose age at the survey year is no older than 1 year, the point estimate of the coefficient of
the low malaria prevalence indicator (1 if PfPR2�10 < 0.2) is �1.31 percentage points (95% CI:
[�4.70, 2.08]), which in general agrees with the result of our primary analysis and implies that
our causal conclusion drawn from the primary analysis is relatively robust to the potential hid-
den bias caused by the births that occurred in different years from the years of the malaria
prevalence measurement.

. (SA2) In the second secondary analysis, performing our statistical analysis among first born chil-
dren only, the estimated coefficient of the low malaria prevalence indicator is �3.73 percent-
age points (95% CI: [�9.11, 1.64]). This implies that the effect of reduced malaria burden on
the low birth weight rate may be especially substantial among first born children.
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. (SA3) In the third secondary analysis, after slightly enlarging the difference between high
malaria prevalence and low prevalence and repeating the two-stage matching procedure
described above, there remain 100 high-high pairs of clusters and 100 high-low pairs, with
8611 individual records remaining in the final model. In (SA3), the point estimate of the coeffi-
cient of low malaria prevalence indicator is �1.48 percentage points (95% CI: [�4.44, 1.48]). In
this case, slightly enlarging the gap between the cutoffs for high/low malaria prevalence did
not result in an obvious additional reduction in the low birth weight rate. A possible reason is
that the new cut-offs are just slightly different from the previous ones and the changes may still
lie within the margin of error of measuring the PfPR2�10 or there may not be enough power. In
thinking about the results of (SA3), it is useful to also consider the results from (SA4).

. (SA4) In the fourth secondary analysis, after making the high prevalence and low prevalence
cut-offs quite extreme and repeating the two-stage matching procedure, there remain 35
high-high pairs of clusters and 35 high-low pairs, with 3135 individual records remaining in the
final model. In (SA4), the point estimate of the coefficient of low malaria prevalence indicator
is �3.04 percentage points (95% CI: [�8.50, 2.41]). This implies that a more dramatic reduction
in malaria burden can potentially lead to a more dramatic decrease in the low birth weight
rate and supports the above hypothesis that the fact that slightly enlarging the gap between
the high/low malaria prevalence cutoffs in (SA3) did not result in an evident additional reduc-
tion in the low birth weight rate may be due to the potential measurement error of the
PfPR2�10 or lack of power.

Results of the sensitivity analyses
Recall that in the ‘Sensitivity analyses’ section and Appendix 3, our sensitivity analyses consider a

hypothetical unobserved covariate U that is correlated with both the low malaria prevalence indica-

tor and the low birth weight indicator. For various values of the sensitivity parameters ðp1; p2Þ, we
report the corresponding point estimates and 95% CIs of the estimated treatment effect (i.e. the

coefficient of the low malaria prevalence indicator contributing to the low birth weight rate) in

Appendix 3—table 1. The results from Appendix 3—table 1 show that the estimated treatment

effect ranges from 1.13 percentage points reduction to 1.83 percentage points reduction (on the

low birth weight rate) if both p1 and p2 are between �10 and 10. Recall that p1 (or p2) equals 10 (or

�10) means that the probability of the U taking value one increases (or decreases) by 10 percentage

points if the individual’s low malaria prevalence indicator (or the low birth weight rate indicator)

equals 1. That is, allowing both the magnitude of p1 and the magnitude of p2 can be up to 10 means

Figure 3. The estimated low birth weight rate of each cluster within the 219 high-high pairs and the 219 high-low pairs. The estimated low birth weight

rate for each cluster are obtained from averaging over all the 500 imputed data sets of the 18,112 individual records. We draw a line to connect two

paired clusters (one early year cluster and one late year cluster). Box plots for the low birth weight rates are also shown. Two of the four outliers of the

late year clusters among the high-low pairs (i.e. the top four late year clusters in terms of low birth weight rate among the high-low pairs) may result

from their extremely small within-cluster sample sizes (no more than three individual records for both two clusters).
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that we allow the existence of a nontrivial magnitude of unmeasured confounding in our sensitivity

analyses. Therefore, the estimated treatment effect ranging from 1.13 percentage points reduction

to 1.83 percentage points reduction when both p1 and p2 are between �10 and 10 means that the

magnitude of the estimated treatment effect is still evident (no less than 1.13 percentage points)

even if the magnitude of unmeasured confounding is nontrivial (both jp1j and jp2j can be up to 10).

See Appendix 3 for the detailed results and interpretations of the sensitivity analyses.

To conclude, although the confidence intervals of the coefficient of the low malaria prevalence

indicator on the low birth weight rate presented in the ‘Results’ section cannot exclude a possibility

of no effect at level 95% based on our proposed study sample selection procedure and statistical

approach, the results and the corresponding interpretations of the primary analysis, the secondary

analyses, and the sensitivity analyses have contributed to the weight of the evidence that reduced

malaria burden has an important influence on the low birth weight rate in sub-Saharan Africa at the

community level.

Discussion
We have developed a pair-of-pairs matching approach to conduct a difference-in-differences study

to examine the causal effect of a reduction in malaria prevalence on the low birth weight rate in sub-

Saharan Africa during the years 2000–2015. Although we cannot rule out no effect at a 95% confi-

dence level, the magnitude of the estimated effect of a reduction from high malaria prevalence to

low malaria prevalence on the low birth weight rate (1.48 percentage points) is even greater than

the estimated effect of a factor thought to be important, antenatal care during pregnancy (0.96 per-

centage points). In a secondary analysis, we find that reduction in malaria burden from high to low is

estimated to be especially crucial for reducing the low birth weight rate of first born children, reduc-

ing it by 3.73 percentage points (95% CI: 9.11 percentage points reduction, 1.64 percentage points

increase). This agrees with previous studies which demonstrate that the effects of malaria on birth

outcomes are most pronounced in the first pregnancy (e.g. McGregor et al., 1983).

Previous studies have shown that individual malaria prevention during pregnancy reduces the

chances of the woman’s baby having low birth weight (Kayentao et al., 2013). In this paper, we

examine the community-level effect of reductions in malaria on pregnancy outcomes as opposed to

the individual-level effect of malaria prevention interventions during pregnancy. Our results support

extrapolation of studies of antenatal malaria interventions on birth weight to populations experienc-

ing declining malaria burden. Furthermore, we conclude that reports of declining malaria mortality

underestimate the contribution of reduced malaria exposure during pregnancy on pregnancy out-

comes and neonatal survival. Although some studies have documented higher rates of adverse preg-

nancy outcomes in malaria-infected women with declining antimalarial immunity, such as may be

seen in communities with declining malaria exposure (Mayor et al., 2015), our study demonstrates

that overall reduction in exposure to infection, including during pregnancy, outweighs these individ-

ual changes in risk once infected.

Strengths of our study include that we use state-of-the-art causal inference methods on a large

representative data set. We develop a novel pair-of-pairs matching approach to conduct a differ-

ence-in-differences study to estimate the real world effectiveness of public health interventions by

combining DHS data with other data sources. There are two major difficulties when using the DHS

data to conduct a difference-in-differences study. The first major difficulty is that within each country

the DHS samples different locations (clusters) over different survey years. Our first-step matching

handles this difficulty through using optimal matching to pair the early year DHS clusters and the

late year DHS clusters within the same country based on the geographic proximity of their locations.

Then each formed pair of clusters can mimic a single cluster measured twice in two different survey

years, which serves as the foundation of a difference-in-differences study. The second major difficulty

is that although an advantage of the DHS data is that they contain many potentially important clus-

ter-level and individual-level covariates, it may be difficult to come up with a statistical model that is

both efficient and robust to adjust for these covariates. A traditional approach to estimating the real

world effectiveness of an intervention in such settings is to run a regression of an outcome of interest

on a measure of adherence to the treatment (zero if in the period before the intervention was avail-

able and ranging from 0 to 1 after the intervention was available), covariates (individual-level and

cluster-level covariates) and a random effect for the cluster (Goetgeluk and Vansteelandt, 2008).
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This regression approach relies heavily on correct specification of the model by which the covariates

affect the outcome (e.g. linear, quadratic, cubic), therefore the result can be severely biased by

model misspecification (Rubin, 1973; Hansen, 2004; Ho et al., 2007). We instead use a second-

step matching to first optimally select and match the treated units (i.e. high-low pairs of clusters)

and control units (i.e. high-high pairs of clusters) to ensure that they have balanced distributions of

covariates across time and then run the regression with the dummy variables for the matched sets.

Such a nonparametric data preprocessing step before running a regression can potentially reduce

bias due to model misspecification (Rubin, 1973; Hansen, 2004; Ho et al., 2007).

Our merged study data set makes use of two aspects of the richness of the relevant data resour-

ces. First, from the perspective of sample size and length of time span, the data set includes over

18,000 births in 19 countries in sub-Saharan Africa and describes changes in the low birth weight

rate over a 15-year period. Some of the studied regions had substantial changes in malaria parasite

prevalence during this time period, whereas others did not, which provides us ample heterogeneity

necessary for conducting a difference-in-differences study. Second, from the perspective of the com-

prehensiveness of information, our merged data set includes various types of information: from clus-

ter-level to individual-level records; from geographic to sociodemographic characteristics; from

surveyed data to predicted data.

Some potential limitations of our study should be considered. First, we discretized the mean

malaria prevalence (i.e. PfPR2�10 from 0 to 1) into high (PfPR2�10 > 0.4), medium (PfPR2�10 lies in

[0.2, 0.4]), and low (PfPR2�10 < 0.2), which means that the magnitude of the estimated causal effect

depends on how we define these cut-offs. Our primary analysis suggests that reducing the malaria

burden from high to low may substantially help control the low birth weight rate, and our secondary

analyses suggest that a more dramatic reduction in malaria prevalence can lead to a more dramatic

drop in the low birth weight rate. More research needs to be done on the minimum magnitude of

the reduction in malaria prevalence that is needed to cause a substantial drop in the low birth weight

rate. Second, we assigned the malaria prevalence (i.e. PfPR2�10) data to children’s records based on

the DHS survey years which may not be exactly the same years as children’s actual birth years. For

example, a child whose age is three years at the corresponding DHS survey year should have been

born three years earlier before that DHS survey year, in which case we might have assigned the

wrong PfPR2�10 to that child’s gestational period. We examined this issue via SA1 and the result

suggested that this did not induce much bias to the results of our primary analysis.

The novel design-based causal inference approach developed in this work, a pair-of-pairs match-

ing approach to conduct a difference-in-differences study (i.e. the two-step matching procedure to

form matched pairs of pairs as a nonparametric data preprocessing step in a difference-in-differen-

ces study), is potentially useful for researchers who would like to reduce the estimation bias due to

potential model misspecification in the traditional difference-in-differences approach. Moreover, the

general statistical methodology developed in this work can be applied beyond the malaria settings

to handle the heterogeneity of survey time points and locations in data sets such as the Demo-

graphic and Health Surveys (DHS).

In summary, the contribution of malaria to stillbirth and neonatal mortality, for which low birth

weight is a proxy, are currently not accounted for in global estimates of malaria mortality. Using a

large representative data set and innovative statistical evidence, we found point estimates that sug-

gested that reductions in malaria burden at the community level substantially reduce the low birth

weight rate. To our knowledge, this is the first study of its kind to evaluate the causal effects of

malaria control on birth outcomes using a causal inference framework. Although our confidence

intervals do include a possibility of no effect, the evidence from our primary analysis and secondary

analyses is strong enough to merit further study and motivate further investments in mitigating the

intolerable burden of malaria.
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Appendix 1

More details on the data selection procedure
We give more details on how we select the study countries (among all sub-Saharan African countries)

and their corresponding late year and early year for each of the three data sets: malaria prevalence

data (MAP data), IPUMS-DHS data, and DHS cluster GPS data. We define ‘early year’ as 2000–2007

and ‘late year’ as 2008–2015. We first select countries that have both IPUMS-DHS data and DHS

GPS data for at least one year between 2000–2007 and one year between 2008–2015. If there are

more than one early (late) years available, we choose the earliest early year and latest late year.

Note that some DHS can span over two years. In this case, we stick to the way how IPUMS-DHS

codes the year of that DHS data set. For example, both Malawi and Tanzania have a standard DHS

with GPS data that spans over 2015–2016. We call them Malawi 2015–2016 DHS and Tanzania

2015–2016 DHS respectively. In IPUMS-DHS, the year for Malawi 2015–2016 DHS is coded as 2016,

and that for Tanzania 2015–2016 DHS is coded as 2015. Therefore, for Malawi, we use Malawi 2010

DHS as the study sample for the late year and exclude Malawi 2015–2016 DHS. While for Tanzania,

we use Tanzania 2015 DHS for the late year. As we have mentioned in the main text, if a country has

at least one year between 2008–2015 with available IPUMS-DHS data of which the GPS data is also

available, but no available IPUMS-DHS data or the corresponding GPS data between 2000–2007, we

still include that country if it has IPUMS-DHS data along with the corresponding GPS data for the

year 1999 (possibly with overlap into 1998). This selection procedure results in 19 study countries in

total. Note that for the DHS that span over two successive years, sometimes IPUMS-DHS and the

GPS data code their years in different ways. In these cases, when attaching the malaria prevalence

data to each cluster, we stick to the year which is used by the GPS data; see Appendix 1—table 1.

For example, for Benin 2011–2012 DHS, IPUMS-DHS codes its year as 2011 while the GPS data

codes its year as 2012. In these cases, we use the malaria prevalence data for 2012 for the clusters

within Benin 2011–2012; see the row ‘Benin (BJ)’ in Appendix 1—table 1.

Appendix 1—table 1. The early and late years coded in the IPUMS-DHS and GPS data sets.

GPS data Malaria prevalence IPUMS-DHS

Early Late Early Late Early Late

Benin 2001 2012 2001 2012 2001 2011

Burkina Faso (BF) 2003 2010 2003 2010 2003 2010

Cameron (CM) 2004 2011 2004 2011 2004 2011

Congo Democratic Republic (CD) 2007 2013 2007 2013 2007 2013

Cote d’Ivoire (CI) 1998 2012 2000 2012 1998 2011

Ethiopia (ET) 2000 2010 2000 2010 2000 2011

Ghana (GH) 2003 2014 2003 2014 2003 2014

Guinea (GN) 2005 2012 2005 2012 2005 2012

Kenya (KE) 2003 2014 2003 2014 2003 2014

Malawi (MW) 2000 2010 2000 2010 2000 2010

Mali (ML) 2001 2012 2001 2012 2001 2012

Namibia (NM) 2000 2013 2000 2013 2000 2013

Nigeria (NG) 2003 2013 2003 2013 2003 2013

Rwanda (RW) 2005 2014 2005 2014 2005 2014

Senegal (SN) 2005 2010 2005 2010 2005 2010

Tanzania (TZ) 1999 2015 2000 2015 1999 2015

Uganda (UG) 2000 2011 2000 2011 2001 2011

Zambia (ZM) 2007 2013 2007 2013 2007 2013

Zimbabwe (ZW) 2005 2015 2005 2015 2005 2015
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Country summary

Appendix 1—table 2. The numbers of the high-high pairs of clusters and high-low pairs of clusters

contributed by each of the 19 selected sub-Saharan African countries after the matching in Step 1

and Step 2.

We also summarize the total number of pairs of clusters after Step 1 matching in the first column.

Country

Step 1 matching Step 2 matching

Total pairs High-high High-low High-high High-low

Benin 247 29 6 4 6

Burkina Faso 400 150 0 19 0

Cameron 466 17 163 16 51

Congo Democratic Republic 300 11 55 11 24

Cote d’Ivoire 140 19 2 7 2

Ethiopia 539 0 0 0 0

Ghana 412 24 18 18 8

Guinea 295 47 12 10 12

Kenya 400 2 10 2 8

Malawi 560 96 15 81 15

Mali 402 101 21 17 19

Namibia 260 0 0 0 0

Nigeria 362 24 11 16 1

Rwanda 462 0 0 0 0

Senegal 376 0 0 0 0

Tanzania 176 0 68 0 57

Uganda 298 19 29 17 16

Zambia 319 1 0 1 0

Zimbabwe 398 0 0 0 0

Total 6812 540 410 219 219

Some remarks on the IPUMS-DHS data used in this article
There are different units of analysis for data browsing in IPUMS-DHS (Boyle et al., 2019). In ‘Step 2:

Matching on sociodemographic similarity is emphasized in second matching,’ for the covariates

‘Household electricity,’ ‘Household main material of floor,’ and ‘Household toilet facility,’ the

IPUMS-DHS data we used is at the household members level (each record is a household member).

For the covariates ‘Mother’s education level’ and ‘Indicator of whether the woman is currently using

a modern method of contraception,’ the IPUMS-DHS data we used is at the birth level (each record

is a birth reported by a woman of childbearing age). The covariate ‘Urban or rural’ obtained from

the DHS GPS data is at the DHS clusters level. In ‘Step 3: Low birth weight indicator with multiple

imputation to address missingness’ and ‘Step 4: Estimation of causal effect of reduced malaria bur-

den on the low birth weight rate,’ the IPUMS-DHS data we used is at the child level (each record is a

child under age 5).
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More details on the final study population

Appendix 1—table 3. Summary of the low malaria prevalence indicators, the time indicators, the

group indicators, the covariates, and the birth weight records among the 18,112 study individual

records.

Variables Percentages of some categories

Low malaria prevalence indicator High prevalence (70.6%)

Low prevalence (29.4%)

Time indicator Early year (50.3%)

Late year (49.7%)

Group indicator High-high pairs (40.9%)

High-low pairs (59.1%)

Mother’s age in years �19 (7.1%)

20–29 (52.5%)

30–39 (31.4%)

�40 (8.9%)

Wealth index Poorest (20.2%)

Poorer (23.3%)

Middle (22.8%)

Richer (20.4%)

Richest (13.3%)

Child’s birth order 1 (21.5%)

2–4 (46.0%)

4+ (32.6%)

Urban or rural Rural (77.1%)

Urban (22.9%)

Mother’s education level No education (36.6%)

Primary (47.2%)

Secondary or higher (16.2%)

Child’s sex Female (49.3%)

Male (50.7%)

Mother’s marital status Never married or formerly in union (11.6%)

Married or living together (88.4%)

Indicator of antenatal care Yes (61.9%)

No or missing (38.1%)

Self-reported birth size Very small or smaller than average (13.0%)

Average (45.5%)

Larger than average or very large (41.5%)

Low birth weight indicator Yes (4.6%)

No (48.5%) or Missing (47.0%)
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Appendix 2

Statistical inference with multiple imputation applying Rubin’s rules
We apply Rubin’s rules (Rubin, 1987; Schafer, 1999; Carpenter and Kenward, 2012) to combine

all the imputed data sets to obtain the point estimate, the p-value, and the 95% confidence interval

for each coefficient in the mixed-effects linear probability model (1) summarized in Table 6 of the

main text. Suppose that there are M imputed data sets (M ¼ 500 in our study). Suppose that for the

m-th imputed data set, m ¼ 1; . . . ; 500, the estimate for the coefficient of the i-th regressor gi (includ-

ing the intercept term), i ¼ 1; . . . ; 14, is bgm;i, and let Vi be its squared standard error and bVm;i be the

estimated squared standard error from the m-th imputed data set. Suppose that the following nor-

mal approximations hold

ðbgm;i �giÞ=
ffiffiffiffiffiffiffiffi
bVm;i

q
~Nð0;1Þ; i¼ 1; . . . ;14; m¼ 1; . . . ;500:

According to Rubin’s rules (Rubin, 1987; Schafer, 1999; Carpenter and Kenward, 2012), we

estimate gi with gi ¼M�1
PM

m¼1
bgm;i. Consider the corresponding between-imputation variance Bi ¼

ðM� 1Þ�1
PM

m¼1
ðbgm;i�giÞ2 and the within-imputation variance V i ¼M�1

PM
m¼1

bVm;i. Then the estimated

total variance is

Ti ¼ ð1þM�1ÞBiþV i; i¼ 1; . . . ;14:

Then we can get the corresponding two-sided p-values and 95% confidence intervals based on a

Student’s t-approximation

ðgi � giÞ=
ffiffiffiffi
Ti

p
~ tvi ; i ¼ 1; . . . ; 14; with degrees of freedom vi ¼ ðm� 1Þ½1þ V i

ð1þM�1ÞBi
�2:

Multiple imputation diagnostics
Note that in our multiple imputation procedure, the variance ratios are all less than 0.5, indicating

that for each regressor the variance due to missing data (between-imputation variance) is much less

than the average estimated squared standard error over the 500 imputed data sets. More replica-

tions of imputation (larger M) will more sufficiently reduce the variation due to missingness and

therefore lead to more reliable estimation (Rubin, 1987; Schafer, 1999). We take a sufficiently large

number of replications M ¼ 500 to ensure that the variance due to missingness has been sufficiently

controlled.

Appendix 2—table 1. Diagnostics for multiple imputation with the mixed-effects linear probability

model.

We report the between-imputation variance (‘Between var’), the within-imputation variance (‘Within

var’), and the variance ratio: (between-imputation variance)/(within-imputation variance), denoted as

‘Var ratio’.

Regressor Between var Within var Var ratio

0 - high prevalence; 1 - low prevalence 3.21 � 10�5 9.62 � 10�5 0.334

0 - early year; 1 - late year 2.20 � 10�5 5.81 � 10�5 0.379

0 - high-high pairs; 1 - high-low pairs 1.92 � 10�5 4.83 � 10�5 0.398

Mother’s age (linear term) 3.32 � 10�6 6.85 � 10�6 0.486

Mother’s age (quadratic term) 8.28 � 10�10 1.68 � 10�9 0.493

Child’s birth order (linear term) 1.60 � 10�4 3.87 � 10�4 0.413

Child’s birth order (quadratic term) 8.55 � 10�6 2.24 � 10�5 0.382

Wealth index 1.74 � 10�6 4.05 � 10�6 0.430

0 -rural; 1 - urban 1.27 � 10�5 4.21 � 10�5 0.303

Continued on next page
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Appendix 2—table 1 continued

Regressor Between var Within var Var ratio

Mother’s education level 4.56 � 10�6 1.20 � 10�5 0.380

Child is boy 7.12 � 10�6 1.91 � 10�5 0.373

Mother is married or living together 1.83 � 10�5 4.96 � 10�5 0.370

Antenatal care indicator 9.63 � 10�6 2.16 � 10�5 0.447
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Appendix 3

Design of the sensitivity analyses
In Section ‘Sensitivity analyses’ of the main text, we very briefly described three perspectives on how

potential unobserved covariates that cannot be adjusted by matching may bias the estimated effect

in a difference-in-differences study. Here we give more detailed descriptions of them with connec-

tions to our study for reference:

. Perspective 1: The potential violation of the unconfoundedness assumption (Rosenbaum and
Rubin, 1983b; Heckman and Robb, 1985). Roughly speaking, the unconfoundedness assump-
tion states that, after adjusting for observed covariates (measured confounders), there are no
differential trends over time of any characteristics, other than the intervention itself, between
the treated group and the control group, that may be correlated with their outcomes. This
assumption may be violated if there is selection bias on unobserved covariates across time
(Heckman and Robb, 1985; Heckman et al., 1997) such that there are differences in these
observed covariates of the treated group and the control group which impact their trends in
the outcome (Ashenfelter and Card, 1985; Doyle et al., 2018). For example, in our study,
the unconfoundedness assumption can be violated if the sharp drops in malaria prevalence
experienced by some areas could be explained by the changes of some unobserved character-
istics over time that could also predict the low birth weight rate.

. Perspective 2: The potential violation of the parallel trend assumption in a difference-in-differ-
ences study (Card and Krueger, 2000; Angrist and Pischke, 2008; Hasegawa et al., 2019;
Basu and Small, 2020). Recall that the parallel trend assumption behind a difference-in-differ-
ences study states that, in the absence of the treatment (i.e. intervention), after adjusting for
relevant covariates, the outcome trajectory of the treated group would follow a parallel trend
with that of the control group. Therefore, to make the parallel trend assumption more likely to
hold, ideally each observed or unobserved covariate should be well balanced (i.e. follow a
common trajectory) between the treated group and the control group, before and after the
intervention. Matching can balance observed covariates by ensuring each covariate follows a
common trajectory in the treated and control groups. However, matching cannot directly
adjust for unobserved covariates and their trajectories among the treated and control groups
may differ and correspondingly the parallel trend assumption may not hold.

. Perspective 3: A difference-in-differences study may be biased if there is an event that is more
(or less) likely to occur as the treatment (i.e. intervention) happens in the treated group, but,
unlike the case discussed in Section ‘Motivation and overview of our approach’ of the main
text, the occurrence probability of this event cannot be fully captured by observed covariates.
In this case, if this event can affect the outcome, its contribution to the outcome will be more
(or less) substantial within the treated group after the treatment (i.e. intervention) than that
within the control group (Shadish, 2010; West and Thoemmes, 2010). For example, areas
experiencing sharp drops in malaria prevalence might also be more likely to experience other
events (e.g. sharp drops in the prevalence of other infectious diseases) that can contribute to
decreasing the low birth weight rate.

We use an omitted variable sensitivity analysis approach (Rosenbaum and Rubin, 1983a;

Imbens, 2003; Ichino et al., 2008; Zhang and Small, 2020) to evaluate the sensitivity of the results

of our primary analysis to potential hidden bias caused by unobserved covariates. Specifically, we

propose the following sensitivity analysis model (3) which extends Model (1) by considering a hypo-

thetical unobserved covariate (unmeasured confounding variable or event) U that is correlated with

both the low malaria prevalence indicator and the low birth weight indicator. Let Uij denote the

exact value of U for individual j in cluster i, we consider:

PðYij ¼ 1 j i;Xij;UijÞ ¼ k0 þ k1 � 11ði is a low malaria prevalence clusterÞþ k2 � 11ði is a late year clusterÞ
þk3 � 11ði is from a high-low pair of clustersÞþbT

Xijþl �Uij;
(3)

with two error terms ai ~Nð0;s0Þ and �ij ~Nð0;s1Þ. We assume that Uij follows a Bernoulli distribu-

tion (taking value 0 or 1) with

PðUij ¼ 1Þ ¼ 50%þ p1% � 11ði is a low malaria prevalence clusterÞ
þp2% � 11ðthe observed or the imputed Yij ¼ 1Þ: (4)
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In Model (3) along with the corresponding data generating model (4) of the unobserved covariate

U, the ðp1;p2Þ are sensitivity parameters of which the unit is a percentage point. Prespecifying a posi-

tive (or negative) p1 corresponds to a positive (or negative) correlation between the unobserved

covariate U and the low malaria prevalence indicator, and prespecifying a positive (or negative) p2
corresponds to a positive (or negative) correlation between the unobserved covariate U and the low

birth weight indicator. It is clear that a larger magnitude of p1 (or p2) corresponds to a larger magni-

tude of correlation between U and the low malaria prevalence indicator (or the low birth weight indi-

cator). We now discuss how the proposed sensitivity analysis model helps to address concerns about

the potential hidden bias from Perspectives 1–3 listed above:

. For Perspective 1: The proposed sensitivity analysis model covers Perspective 1 by considering
a hypothetical unobserved covariate U such that it is correlated with both the low malaria
prevalence indicator (i.e. the indicator for units who have experienced sharp drops in malaria
prevalence) (by prespecifying various p1) and the low birth weight indicator (by prespecifying
various p2). With the unobserved covariate U, the unconfoundedness assumption may be vio-
lated as matching can only adjust for observed covariates but cannot directly adjust for unob-
served covariates.

. For Perspective 2: The proposed sensitivity analysis model also covers Perspective 2 by includ-
ing the unobserved covariate U in the final outcome model. This is because by setting a non-
zero p1, the distributions of U between high-low and high-high pairs of clusters will be imbal-
anced (i.e. will not follow a common trajectory). Meanwhile, by setting a non-zero p2 (corre-
sponds to a non-zero l in Model (3)), the imbalances of U across the treated and controls will
make the outcome trend of the high-low pairs of clusters (i.e. the treated group) in the
absence of the treatment deviate from a parallel trend with that of the high-high pairs (i.e. the
control group).

. For Perspective 3: When setting p1 6¼ 0, the hypothetical unobserved covariate U in our sensi-
tivity analysis model can also be regarded as some event of which the occurrence probability
varies across the treated group and the control group and is not directly associated with
observed covariates. Meanwhile, by setting some p2 6¼ 0, the contribution of that event to the
low birth weight rate differs across the treated group and the control group as that event
occurs more (or less) frequently in the treated group. Therefore, our sensitivity analyses also
cover Perspective 3 of the potential hidden bias.

After setting up the sensitivity analysis model (3), the detailed sensitivity analysis procedure is as

follows. For each pair of prespecified sensitivity parameters ðp1; p2Þ and for each imputed data set

(500 in total) obtained from Step 3 (the multiple imputation stage), we generate the value of Uij for

each individual j in cluster i according to Model (4) and calculate the corresponding point estimate

and estimated standard error of the coefficient of the low malaria prevalence indicator under Model

(3). Similarly to the primary analysis, for each pair of prespecified ðp1; p2Þ, the corresponding esti-

mated causal effect of reduced malaria burden on the low birth weight rate is the mean value of the

500 estimated coefficients on the low malaria prevalence indicator obtained from 500 runs of Model

(3). The corresponding p-value and 95% CIs can also be obtained via applying Rubin’s rules with

treating the imputed U as an usual regressor in Model (3). We conduct the above procedure for vari-

ous ðp1; p2Þ and examine how the results differ from those in the primary analysis.

Detailed results of the sensitivity analyses
When reporting the sensitivity analyses for the coefficient of the low malaria prevalence indicator

under the sensitivity analysis model (3) with various prespecified values of the sensitivity parameters

ðp1; p2Þ, we divide the results into the following four cases:

. Case 1: p1>0; p2>0. That is, the hypothetical unobserved covariate U is positively correlated
with both the low malaria prevalence indicator (i.e., the indicator for units who have experi-
enced sharp drops in malaria prevalence) and the low birth weight indicator (i.e., the outcome
variable).

. Case 2: p1>0; p2<0. That is, the hypothetical unobserved covariate U is positively correlated
with the low malaria prevalence indicator while it is negatively correlated with the low birth
weight indicator.
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. Case 3: p1<0; p2>0. That is, the hypothetical unobserved covariate U is negatively correlated
with the low malaria prevalence indicator while it is positively correlated with the low birth
weight indicator.

. Case 4: p1<0; p2<0. That is, the hypothetical unobserved covariate U is negatively correlated
with both the low malaria prevalence indicator and the low birth weight indicator.

We report the results of the sensitivity analyses in Appendix 3—table 1. Specifically, for each

ðp1; p2Þ, we report the point estimate, the 95% CI, and the p-value (under null effect) of the low

malaria prevalence indicator under Model (3) in which the hypothetical unobserved covariate Uij is

generated from Model (4) within each imputed data set.

We list the interpretations of the results in Appendix 3—table 1 case by case:

. Cases 1 and 4: In these two cases, the magnitude of the estimated treatment effect obtained
from the primary analysis assuming no observed covariates (1.48 percentage points reduction,
listed in Table 6 of the main text) is smaller than that obtained from the sensitivity analyses in
which the unobserved covariate U is taken into account. This implies that if the unobserved
covariate more (or less) frequently appears in the treated group and predicts the outcome in
the opposite (or same) direction as the treatment does, the primary analysis tends to underes-
timate the actual treatment effect. This pattern agrees with the previous literature on sensitiv-
ity analyses (Rosenbaum and Silber, 2009). However, as shown in Appendix 3—table 1, the
magnitude of this potential estimation bias is estimated to be no greater than |�1.83�
(�1.48)| = 0.35 percentage points as long as p1; p2 2 (0, 10) percentage points or p1; p2 2 [�10,
0) percentage points.

. Cases 2 and 3: In these two cases, the magnitude of the estimated treatment effect obtained
from the primary analysis is smaller than that obtained from the sensitivity analyses with U

taken into account. This implies that if the unobserved covariate more (or less) frequently
appears in the treated group and predicts the outcome in the same (or opposite) direction as
the treatment does, the primary analysis tends to overestimate the actual treatment effect.
This pattern also agrees with the previous literature on sensitivity analyses (Rosenbaum and
Silber, 2009). However, as shown in Appendix 3—table 1, the magnitude of this potential
estimation bias is estimated to be no greater than |�1.13�(�1.48)| = 0.35 percentage points
as long as jp1j � 10 percentage points and jp2j � 10 percentage points.

Appendix 3—table 1. The results of the sensitivity analyses for the coefficient of the low malaria

prevalence indicator under various sensitivity parameters ðp1; p2Þ divided into the four cases: Case 1:

p1>0; p2>0; Case 2: p1>0; p2<0; Case 3: p1<0; p2>0; Case 4: p1<0; p2<0.

The unit of estimates and CIs is a percentage point.

Case 1

p2 ¼ 5:0 p2 ¼ 10:0

Estimate 95% CI p-value Estimate 95% CI p-value

p1 ¼ 2:5 �1:52 ½�3:74; 0:70� 0.179 �1:56 ½�3:77; 0:66� 0.168

p1 ¼ 5:0 �1:57 ½�3:79; 0:66� 0.167 �1:65 ½�3:86; 0:57� 0.145

p1 ¼ 7:5 �1:61 ½�3:83; 0:61� 0.156 �1:73 ½�3:95; 0:48� 0.125

p1 ¼ 10:0 �1:65 ½�3:88; 0:57� 0.145 �1:82 ½�4:04; 0:40� 0.107

Case 2

p2 ¼ �5:0 p2 ¼ �10:0

Estimate 95% CI p-value Estimate 95% CI p-value

p1 ¼ 2:5 �1:44 ½�3:66; 0:78� 0.204 �1:39 ½�3:62; 0:83� 0.219

p1 ¼ 5:0 �1:40 ½�3:62; 0:83� 0.218 �1:31 ½�3:53; 0:92� 0.249

p1 ¼ 7:5 �1:35 ½�3:58; 0:87� 0.234 �1:22 ½�3:44; 1:00� 0.282

p1 ¼ 10:0 �1:31 ½�3:53; 0:92� 0.250 �1:13 ½�3:36; 1:09� 0.318

Case 3

p2 ¼ 5:0 p2 ¼ 10:0

Estimate 95% CI p-value Estimate 95% CI p-value

p1 ¼ �2:5 �1:44 ½�3:66; 0:78� 0.204 �1:39 ½�3:61; 0:83� 0.219

p1 ¼ �5:0 �1:39 ½�3:61; 0:83� 0.219 �1:30 ½�3:52; 0:91� 0.249

Continued on next page
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p1 ¼ �7:5 �1:35 ½�3:57; 0:87� 0.234 �1:22 ½�3:43; 1:00� 0.282

p1 ¼ �10:0 �1:31 ½�3:53; 0:92� 0.250 �1:13 ½�3:35; 1:09� 0.319

Case 4

p2 ¼ �5:0 p2 ¼ �10:0

Estimate 95% CI p-value Estimate 95% CI p-value

p1 ¼ �2:5 �1:52 ½�3:75; 0:70� 0.179 �1:56 ½�3:79; 0:66� 0.168

p1 ¼ �5:0 �1:57 ½�3:79; 0:66� 0.167 �1:65 ½�3:87; 0:57� 0.146

p1 ¼ �7:5 �1:61 ½�3:84; 0:61� 0.156 �1:74 ½�3:96; 0:49� 0.126

p1 ¼ �10:0 �1:66 ½�3:88; 0:57� 0.145 �1:83 ½�4:05; 0:40� 0.108
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