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Abstract: Due to the theragnostic potential of mesoporous silica nanoparticles (MSNs), these were
extensively investigated as a novel approach to improve clinical outcomes. Boasting an impressive
array of formulations and modifications, MSNs demonstrate significant in vivo efficacy when used
to identify or treat myriad malignant diseases in preclinical models. As MSNs continue transitioning
into clinical trials, a thorough understanding of the characteristics of effective MSNs is necessary.
This review highlights recent discoveries and advances in MSN understanding and technology.
Specific focus is given to cancer theragnostic approaches using MSNs. Characteristics of MSNs such
as size, shape, and surface properties are discussed in relation to effective nanomedicine practice and
projected clinical efficacy. Additionally, tumor-targeting options used with MSNs are presented with
extensive discussion on active-targeting molecules. Methods for decreasing MSN toxicity, improving
site-specific delivery, and controlling release of loaded molecules are further explained. Challenges
facing the field and translation to clinical environments are presented alongside potential avenues
for continuing investigations.

Keywords: mesoporous silica; theranostics; theragnostics; nanomedicine; cancer; active targeting;
toxicity; controlled release

1. Introduction

Small molecule approaches to diagnostic and therapeutic procedures suffer from mul-
tiple shortcomings, such as off-target toxicity and rapid clearance from the body. Boasting
the ability to simultaneously diagnose and treat patients, theragnostic (a.k.a. theranostic)
nanoparticles (NPs) emerged as a rapidly developing technology for overcoming these
obstacles and enhancing clinical outcomes. In particular, mesoporous silica nanoparticles
(MSNs) demonstrate a significant potential [1] to become a standard part of the therapeutic
armamentarium for various diseases. MSNs possess sufficient biocompatibility, partic-
ularly compared to other inorganic NPs, alongside highly structured and stable porous
networks, into which drug or dye molecules can be loaded in large quantities. Additionally,
the size, shape, and pore properties of MSNs can be highly controlled during synthesis
reactions [2], providing multiple NP formulations from the same composite elements.

Pairing with appropriate gatekeeper molecules can trap encapsulated molecules
within the MSN pores, allowing for efficacious cargo release. In addition, the gatekeeper
provides surface functionalization to prevent toxicity. These gatekeeper mechanisms
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protect the nontarget tissues—in the host environment—from loaded molecules, while
simultaneously protecting the loaded molecules from the environment. This two-way
shielding provided by MSNs allows for in vivo delivery of small molecules that, alone,
would be clinically ineffective as a result of their high hydrophobicity or toxicity [3].

The multifunctional nature of MSNs largely stems from the numerous surface mod-
ifications they can undergo. As mentioned, many different gatekeeper molecules can
be employed to the encapsulated molecules loaded into MSN pores. These gatekeeper
molecules can be chosen or designed to respond to disease-specific stimuli, thus, controlling
the release of loaded molecules and limiting off-target delivery [4]. The organic nature of
gatekeeper molecules also serves to limit immunogenic responses from the host that might
otherwise occur. If unmodified MSNs were administered with or without gatekeepers,
MSN surfaces could be effectively modified to specifically target them to selected tissues
or sites of disease. This feature differentiates MSNs from NP formulations that might
rely solely on passive targeting mechanisms to reach their target destination. The number
of possible active targeting molecules is vast and ever growing, further promoting the
application of MSNs in identifying and treating many different diseases.

Compared to the number of preclinical studies, very few silica-based nanomedicine
approaches were FDA approved for clinical trials [5,6]. Continued investigation of MSN
formulations is contingent upon understanding the myriad factors influencing MSN clini-
cal efficacy. As MSN technology advances, characteristics of MSNs and their correlating
structural modifications to function, specificity, and toxicity needs to be well understood.
This review highlights recent advances with MSNs relative to cancer theragnostics. MSN
properties (see Figure 1) that promote clinical efficacy are detailed with a particular focus
on surface properties and toxicity. Targeting strategies employed by MSNs are similarly
discussed, highlighting the advantages and options for active targeting methods. Therag-
nostic actions of MSNs are discussed as well, in addition to the many clinical applications
and strategies to reduce the potential toxicities from the MSNs. Finally, future directions
for the field are briefly analyzed, relative to enhancing clinical translation.

Pharmaceutics 2021, 13, x 3 of 29 
 

 

 

Figure 1. Characteristics of MSNs that drive theragnostic effect. 

2. Characteristics of MSNs 

While many reaction pathways might be used [7,8], MSNs are primarily synthesized 

through sol–gel reactions [9–12]. Surfactant molecules, such as hexadecyltrimethylammo-

nium bromide (CTAB), are dissolved in ultrapure water, prior to addition of cosolvents 

and tetralkoxy silicate precursor molecules. The most commonly used silicate precursor 

used in MSN synthesis is tetraethyl orthosilicate (TEOS). Tetrapropyl orthosilicate (TPOS) 

and tetramethyl orthosilicate (TMOS) are alternative options used in some studies, though 

TEOS is favored, given the apparent ease to control TEOS reaction output [7,13]. Selection 

of surfactant molecule, cosolvents (typically alcohols or strong bases), reaction tempera-

ture, and magnetic stir speed, all determine the size, shape, and porosity of the synthe-

sized MSN product. Investigations into the relation between silicate precursor and parti-

cle size are ongoing. Following synthesis of MSN core particles, template surfactant mol-

ecules, such as the commonly used CTAB, must be removed to maximize effective pore 

volmers. Additionally, surfactant molecules can be toxic in vivo, as is the case with CTAB 

[14–17], requiring their removal from MSN pores, prior to clinical applications. Several 

methods for surfactant removal might be applied, including washing with water and eth-

anol, dialysis [18], or calcination [19]. Surfactant removal might be followed by additional 

steps that modify core MSN functional groups, conjugate a gatekeeper system to the MSN 

surface, or conjugate active targeting ligands to the MSN nanovehicle. Figure 2 provides 

an overview of the functionalization and theragnostic action of MSNs. 

Figure 1. Characteristics of MSNs that drive theragnostic effect.



Pharmaceutics 2021, 13, 570 3 of 27

2. Characteristics of MSNs

While many reaction pathways might be used [7,8], MSNs are primarily synthesized
through sol–gel reactions [9–12]. Surfactant molecules, such as hexadecyltrimethylammo-
nium bromide (CTAB), are dissolved in ultrapure water, prior to addition of cosolvents
and tetralkoxy silicate precursor molecules. The most commonly used silicate precursor
used in MSN synthesis is tetraethyl orthosilicate (TEOS). Tetrapropyl orthosilicate (TPOS)
and tetramethyl orthosilicate (TMOS) are alternative options used in some studies, though
TEOS is favored, given the apparent ease to control TEOS reaction output [7,13]. Selection
of surfactant molecule, cosolvents (typically alcohols or strong bases), reaction temperature,
and magnetic stir speed, all determine the size, shape, and porosity of the synthesized
MSN product. Investigations into the relation between silicate precursor and particle size
are ongoing. Following synthesis of MSN core particles, template surfactant molecules,
such as the commonly used CTAB, must be removed to maximize effective pore volmers.
Additionally, surfactant molecules can be toxic in vivo, as is the case with CTAB [14–17],
requiring their removal from MSN pores, prior to clinical applications. Several methods
for surfactant removal might be applied, including washing with water and ethanol, dialy-
sis [18], or calcination [19]. Surfactant removal might be followed by additional steps that
modify core MSN functional groups, conjugate a gatekeeper system to the MSN surface, or
conjugate active targeting ligands to the MSN nanovehicle. Figure 2 provides an overview
of the functionalization and theragnostic action of MSNs.
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Figure 2. MSN precursors and theragnostic action. (A) The common orthosilicate precursors used in
MSN synthesis reactions. (B) MSN synthesis, loading, and controlled release. Note that the surface
of the MSN is coated with a biocompatible gatekeeper. The biocompatible gatekeeper has a dual
role in that it allows retention or release of dye/drug molecules and facilitates biocompatibility of
the nanoparticle to reduce toxicity. A stimulus can result in swelling or destruction of a stimuli-
responsive gatekeeper. A dye/drug can release based upon stimuli-responsive changes in the
gatekeeper, regardless of the presence/absence of an active targeting molecule by diffusion.
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Strategically tailoring MSN surface-oriented functional groups provides avenues to
better control interfacial interactions, while offering additional functionality like drug
loading and insertion of targeting domains. Both chemical treatment and polymer grafting
strategies are widely used approaches for chemically or morphologically modifying MSN
surfaces [20,21]. Self-assembled monolayers (SAMs), such as silanes on hydroxylated
surfaces, offer one facile and flexible approach at introducing a wide array of functional
groups to MSN surfaces. Comprising a head group, a hydrocarbon-based backbone, and
a functional end group, silane-based SAMs spontaneously adsorb onto the hydroxylated
surface of MSNs. Afterwards, SAMs self-organize to form larger structured domains (i.e.,
ca. 1–3 nm organic thin films) and become well-ordered through van der Waals interactions.
The result provides close-packed terminal groups that can be used as initiation sites for
grafting polymeric material [22]. Through the initiation of the surface-oriented SAM
functional groups, polymers exhibiting a plethora of confirmations and arrangements can
be surface-confined (i.e., grafted). Tailoring the grafting and polymerization approach
allows for the synthesis of reproducible, well-defined, polymeric brushes with tunable
macromolecular properties that enhance the MSN theragnostic potential.

Beyond the impact of polymeric, gatekeeper, or active targeting molecules, innate
properties of the core MSN serve as key predictors of physiological fate. Prior to admin-
istration, complete characterization of MSNs is critical to approximating MSN behavior
and correlating the theragnostic effect. Some of the common methods for verifying MSN
properties by analyzing synthesized particles are dynamic light scattering (DLS) [23] and
transmission electron microscopy (TEM); and by analyzing the specific surface area cal-
culations through the Brunauer–Emmett–Teller (BET) methods [24]. Understanding how
the tunable traits of MSNs influence potential theragnostic action is critical to optimizing
clinical efficacy.

2.1. Size

Several organ systems within the body possess structural or functional filtration abili-
ties. For example, the glomerular layers of the kidney are responsible for filtering foreign
and waste products that are smaller than approximately 5 nm [25,26]. Simultaneously, the
highly vascularized liver and spleen uptake particulates of 100 nm from the bloodstream
for removal via the reticuloendothelial system (RES), through Kupffer cells or splenic
macrophages, respectively [27–31]. Given these risks of RES clearance and excessive renal
filtration, it is important to synthesize particles that are of appropriate size for maximum
retention time and clinical efficacy. NPs within the size range of 20–80 nm appear to be most
favorable for avoiding the various physiological “traps” in the body, while promoting target
site accumulation [32–34]. Size-based studies of MSNs demonstrate the increased ability of
MSNs within this size range to reach target sites relative to larger MSNs [35–37]. Based
on these size restrictions, MSNs synthesized from TEOS might be less effective for in vivo
application, depending on the synthesis method employed. MSNs comprised of TMOS
suffer the disadvantage of an increased tendency to aggregate after synthesis [7,10], but this
issue is largely overshadowed by their smaller size of ~30 nm, prior to modification [38].

While control of the MSN size is primarily accomplished prior to treatment, it is
critical to consider the fact that significant changes in the nanovehicle size might occur
from physiological reactions in vivo. Following intravenous administration, MSNs are
exposed to numerous proteins in the blood. Under certain conditions, these proteins can
irreversibly bind the MSN surface through a process termed as opsonization [39,40]. The
resulting protein corona, with the NP in the center, has an increased effective size relative
to the original MSN. This can result in increased splenic or liver sequestration and clear-
ance. Opsonization might decrease the likelihood that the MSNs would be immediately
recognized as foreign material and subsequently trigger an immunological response [41].
This could result in increased MSN circulation time, although the interaction with target
cells is hampered by the large proteins bound to the nanovehicle surface. The magnitude
and variety of protein content in the corona was found to vary significantly, based on
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MSN size and surface functionalization [42–44]. Additionally, endogenous biomolecules
exposed to or existing as part of the protein corona might undergo structural and functional
alterations [45]. Such alterations might activate undesired signaling pathways or immune
cells, ultimately leading to immunogenic or toxic side effects [46–48]. Protection against
opsonization could be achieved by conjugating organic polymers or biomolecules (such as
gatekeepers or targeting ligands) to the surfaces of MSNs [49–51].

2.2. Shape and Porosity

The final shape of the MSN core plays a similarly critical role in physiological fate
and in vivo MSN behavior. MSNs are most commonly shaped as spheres or rods. The
final shape primarily depends on the identity and volume ratio relative to water, in the
cosolvent used during the sol–gel reaction [52]. The aspect ratio (AR) of synthesized rod
MSNs is similarly dependent on reaction conditions, namely temperature and magnetic stir
speed. MSN shape and aspect ratio significantly affect in vivo circulation time and tissue
penetration. In general, it was observed that rod shaped MSNs of sufficient AR (approxi-
mately 2.1–2.5) exhibit higher blood circulation times and tumor penetration depths, as
compared to spherical MSNs or rods of different AR values (see Figure 3D) [34,53–55]. Rate
of engulfment by target cells is also influenced by MSN shape and AR, though the results
might be cell-line dependent [56]. Other MSN morphologies were also explored [57]. For
example, MSNs possessing rough surfaces, demonstrated increased uptake by target cells,
as compared to both solid and mesoporous silica counterparts. These unique virus-like
MSNs were generated through additional synthesis steps, following the initial MSN core
formation [58,59].

Pharmaceutics 2021, 13, x 6 of 29 
 

 

tissue penetration. In general, it was observed that rod shaped MSNs of sufficient AR (ap-

proximately 2.1–2.5) exhibit higher blood circulation times and tumor penetration depths, 

as compared to spherical MSNs or rods of different AR values (see Figure 3D) [34,53–55]. 

Rate of engulfment by target cells is also influenced by MSN shape and AR, though the 

results might be cell-line dependent [56]. Other MSN morphologies were also explored 

[57]. For example, MSNs possessing rough surfaces, demonstrated increased uptake by 

target cells, as compared to both solid and mesoporous silica counterparts. These unique 

virus-like MSNs were generated through additional synthesis steps, following the initial 

MSN core formation [58,59]. 

 

Figure 3. Shape and porosity differences between MSNs influence outcomes. (A) Wormhole pore 

MSNs with a particle diameter of 25 nm and a pore diameter of 1.3 nm, reprinted with permission 

from [38], Elsevier, 2018. (B) Honeycomb pore MSNs with a particle diameter of 130 nm. (C) Rod-

shaped MSNs synthesized from TEOS, reprinted with permission from [60], Elsevier, 2020. (D) 

MSN rods of AR ≈ 2.1–2.5 (MSNP2) exhibited high uptake in HeLa cells, according to the RITC 

and FITC analysis, as compared to spheres (MSNP0) and rods of smaller (MSNP1) and larger 

(MSNP3) AR values; * indicates p < 0..05 when compared with MSNP0; # indicates p <0.05 when 

compared with MSNP1; $ indicates p < 0.05 when compared with MSNP3. Reprinted with permis-

sion from [53], ACS Publications, 2011. (E) Wormhole porous MSNs with chitosan gatekeeper 

networks exhibit more favorable pH-specific controlled release compared to (F) honeycomb po-

rous MSNs with the same gatekeeper. (A,B,E,F) reprinted with permission from [38], Elsevier, 

2018. 

Figure 3. Shape and porosity differences between MSNs influence outcomes. (A) Wormhole pore



Pharmaceutics 2021, 13, 570 6 of 27

MSNs with a particle diameter of 25 nm and a pore diameter of 1.3 nm, reprinted with permission
from [38], Elsevier, 2018. (B) Honeycomb pore MSNs with a particle diameter of 130 nm. (C) Rod-
shaped MSNs synthesized from TEOS, reprinted with permission from [60], Elsevier, 2020. (D) MSN
rods of AR ≈ 2.1–2.5 (MSNP2) exhibited high uptake in HeLa cells, according to the RITC and FITC
analysis, as compared to spheres (MSNP0) and rods of smaller (MSNP1) and larger (MSNP3) AR
values; * indicates p < 0..05 when compared with MSNP0; # indicates p <0.05 when compared with
MSNP1; $ indicates p < 0.05 when compared with MSNP3. Reprinted with permission from [53],
ACS Publications, 2011. (E) Wormhole porous MSNs with chitosan gatekeeper networks exhibit more
favorable pH-specific controlled release compared to (F) honeycomb porous MSNs with the same
gatekeeper. (A,B,E,F) reprinted with permission from [38], Elsevier, 2018.

MSN porosity is characterized by the shape, diameter, and number of pores. Pore
shape is primarily determined by the cosolvents used during synthesis. The standard
honeycomb pore shape is produced when strong bases such as NaOH are used for the
cosolvent [61,62]. Wormhole pores are generated when other cosolvents like triethy-
lanolamine (TEA) are included in the synthesis reaction [38,63]. Honeycomb MSNs exhibit
less restricted pore spaces and more stable colloidal suspensions than those with wormhole
pores. The release of honeycomb loaded molecules, however, occurs in a less controlled
fashion (resembling burst-release kinetics), as compared to the wormhole loaded agents
(see Figure 3E–F) [38]. After MSN synthesis, pore size could be decreased by up to ~0.5
nm via vacuum-assisted vapor deposition of TEOS or TMOS [64,65]. Such adjustment of
pore size permits finer control over the loaded molecule release rates and the functional
surface area of the MSN core. While this increase in surface area might promote MSN–cell
interactions, it also provides additional sites for MSNs to interact with healthy host cells,
increasing the risk of toxic effects or off-target accumulation [66].

2.3. Surface Properties, Charge, and Toxicity

The major function of MSNs is the specific delivery of encapsulated cargo to a target
location in vivo. To incorporate specificity, often a stimuli-sensitive gatekeeper is added to
the surface of the MSNs. In addition to providing stimuli-responsivity for cargo release, the
gatekeeper has the capability to circumvent toxicity. As the major benefit of the mesoporous
nature of the MSNs allows for release of a cargo in conjunction with a particular disease,
the MSN should have a gatekeeper on the surface of the MSN to allow promotion of site-
specific drug/dye release. While non-coated MSNs reportedly induced proinflammatory
and toxic responses, notably through accumulation in the liver and kidney [67,68], non-
coated MSNs do not have cargo release specificity, hindering clinical application. Addition
of gatekeeper molecules to the surface of MSNs provides the specificity for cargo release,
while simultaneously ameliorating toxicity concerns.

The primary functional group present on unmodified MSNs is silanol, which has
the general form ≡Si-OH [69]. The silica atom is bound to at least one oxygen atom,
which could be protonated or deprotonated, depending on the environmental pH or could
bind to other neighboring silica atoms [70]. The other groups bound to silica atoms are
dependent on the orthosilicate molecule used to synthesize the MSN (see Figure 2A for
common examples) and the reaction conditions applied. For example, the silanol group
can exist in an isolated ≡Si-OH form, a germinal =Si-(OH)2 form, or as a series of siloxanes
(e.g., ≡Si-O-Si-O-Si≡). Additionally, hydrogen bonds can form between silanols, based
on group density, forming vicinal silanol groups [70,71]. At physiological pH values of
~7.4, hydrogen-containing silanol groups can become deprotonated, resulting in a net
negative charge for MSN surfaces [72]. NPs with negative charges are less likely overall to
interact with or be engulfed by nonphagocytic cells, thus, prolonging the NP circulation
time [73,74]. This benefit of the negative charge comes at the cost of increased risk for
hemolytic interactions between MSNs and red blood cells, based on the MSN negative
charge [66,75,76]. The negative charges also interact unfavorably with the immune cells
and functions. For example, negatively charged MSNs are shown to inhibit growth and
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multiplication of lymphocytes [77,78]. The negative charge might increase the rate of op-
sonization as well [79]. Unsurprisingly, MSN shape, size, porosity, and dose concentration
influence the magnitude of these toxic effects, based on the number of negatively charged
silanol groups available for interaction.

Functional group modification is assessed as a method for altering MSN cellular
interactions. For example, silanol groups can be replaced with the amine functional
groups for the net positive surface charge [80]. MSNs possessing amine or carboxyl
surface functional groups demonstrated significantly lower immune cells cytotoxicity,
as compared to the unmodified MSNs [81]. Similarly, MSNs grafted with phosphonate
groups show enhanced drug delivery to tumor cells with limited undesirable cytotoxicity
or opsonization [35,76], despite having a negative charge. Amine- and phosphate-modified
MSNs show similarly mitigated proinflammatory responses that can be induced by the
unmodified MSNs and even MSNs conjugated with poly(ethylene glycol) (PEG) [67].
Relative to protecting blood lymphocytes from damage caused by unmodified MSNs,
surface modifications using vinyl and aminopropyl/vinyl functional groups exhibited a
limited cytotoxic effect [82]. While the discussed options focus on MSN surface groups in
relation to toxicity, surface modification was also performed to enhance MSN encapsulation
and delivery of molecular cargo [83].

Maintaining non-toxicity of MSNs is crucial in the pursuit of clinical adaptation. Thus
far, MSN coatings focus on alternative uses for the biocompatible materials used in appli-
cations such as wound healing [84] or topical biostimulation methods [85]. Chitosan is
a naturally occurring polysaccharide with pH-responsivity and is widely regarded as a
non-toxic coating for MSNs [86]. However, careful derivatization of chitosan is required to
ensure no potential toxic contamination occurs, notably by surpassing injection concen-
tration thresholds or due to reduction of the positive surface charge [87]. Hyaluronic acid
(HA) is a glycosaminoglycan occurring in the extracellular matrix critical to cell growth
and stability. HA was explored for topical and in vivo applications, ranging from skin
rejuvenation to cancer therapy. Similar to chitosan, HA can be used in vivo without sig-
nificant toxicity concerns, by adhering to the synthesis and conjugation guidelines [88].
Polydopamine and poly l-histidine are pH-sensitive polymers that could be incorporated
as an MSN coat to reduce the inflammatory responses. Each of these coatings, while
providing stimuli-responsivity for cargo delivery, also exhibit no cytotoxicity or indications
of fibrosis [89,90]. However, it is important to note that gatekeepers must be extensively
investigated prior to use as MSN coating agents; biocompatible gatekeepers might induce
undesired toxicity when conjugated to MSNs. For example, poly-ethylene glycol (PEG)
is often described as a non-toxic stealth coating. PEGylated nanoparticles raise toxicity
concerns, notably anaphylaxis [91], based on longer blood circulation times and limited
cellular uptake [92]. While such described gatekeepers show a potential for biocompatibil-
ity as MSN coatings, varying applications might provoke undesired interactions, resulting
in toxicity. Future investigations would require extensive evaluations of each MSN gate-
keeper to ensure elimination of toxicity concerns. In addition to offering tailorable surface
chemistries and limiting toxicity, graft polymerization stabilizes MSNs through electro-
static and steric effects, allows for the synthesis of a wide array of physical structures, and
provides additional material functionality [93,94]. Macromolecules are grafted to MSN sur-
faces through two main approaches—grafting-to and grafting-from. Grafting-to strategies
attach pre-formed polymers directly to MSNs, often utilizing click chemistry to attach a
functionalized end group to the MSN surface [95,96]. However, grafting-to strategies are
limited in polymer density, as the steric hindrance between polymer molecules increases
the distance between individual chains [97]. This can result in a higher exposure of the
bare MSN surface, increased risk of MSN toxicity, and decreased polymeric functionality.
Grafting-from strategies, on the other hand, rely on attaching initiator moieties to MSNs
and polymerizing directly from the MSN surface. This approach allows for higher grafting
densities, as well as the tailoring of more complex polymer architectures, such as partial
crosslinking to further increase surface density [97].
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Often, polymer synthesis strategies rely on controlled radical polymerization (CRP)
techniques, which allow for the controlled design of polymer architecture, chain length,
branching, functionality, tacticity, stereochemistry, and composition, among other features.
CRP strategies also retain functional end groups with high fidelity [98–102], allowing for
design of block copolymers for multiple applications. Further, these end groups might
be modified for conjugation to MSN surfaces or to active targeting moieties, to reduce
off-target accumulation [103]. Commonly utilized CRP techniques include atom transfer
radical polymerization (ATRP), reversible addition/fragmentation chain transfer poly-
merization (RAFT), and nitroxide-mediated polymerization (NMP). Due to the potential
toxicity of the transition metal catalyst species needed for ATRP, RAFT polymerization
received considerable attention as a more clinically suited method for controlled graft
polymerization [104]. Lower toxicity catalyst systems for ATRP were recently assessed,
including iron-mediated and even metal-free photo-ATRP [105,106]. Ultimately, CRP strate-
gies allowed for the design of novel MSN-composites with tunable surface properties and
interfacial interactions.

Besides altering the MSN surface chemistry, conjugation of organic molecules (such
as polymers) to the surface of MSNs is a common strategy for limiting unfavorable MSN–
host interactions. Conjugated molecules impart addition functions to MSN nanovehicles,
including gatekeeping and active targeting. Some modifications are performed to protect
the NP from the host, or vice versa. The most common example of such a molecule is PEG,
whose biocompatibility was demonstrated in numerous NP formulations [107]. While
PEG-modified MSNs show preclinical effectiveness with limited off-target toxicity and
opsonization [108–112], they reach disease sites through passive targeting methods. This
severely limits their efficacy and therapeutic potential in humans who benefit much more
from the actively targeted MSNs. Additionally, PEG molecules can inhibit MSN interactions
with target cells or limit long-term clinical effectiveness, as a result of the PEG-specific
antibody formation [113–115].

Polymers, polysaccharides, and other organic-based molecules added to the surface of
MSNs can substantially alter interactions between the host milieu and the NP, resulting in
reduced toxicity. These surface coatings or gatekeeper molecules must exhibit significant
biocompatibility and negligible toxicity. Specific assessment of toxicity for gatekeepers
was performed for select molecules, including chitosan [87,116], poly(L-histidine) [117],
polydopamine [89], and hyaluronic acid [118]. In each case, the molecules demonstrated
limited toxicity for both in vitro and in vivo models. Continued toxicity assessment of
current gatekeeper and surface functionalization molecules that show apparent preclinical
effectiveness in MSN formulations is warranted. Future studies should further consider
how MSN toxicity changes after surface modification and conjugation to targeting ligands.

3. Molecular Encapsulation and Stimuli-Specific Release Response

Given the porous nature of MSNs and the potential toxic effects associated with the
exposed functional groups, additional chemical and structural mechanisms are needed to
both encapsulate molecules loaded into MSN pores and to limit unfavorable interactions
between the MSN surface and the host. These “gatekeeper” systems, commonly comprised
of organic polymer networks, facilitate release of loaded molecules, once the MSNs reach
the target location or cell. Additionally, they serve as a surface onto which other molecules,
such as active targeting ligands, could be conjugated. A selection of polymeric gatekeeper
molecules that demonstrated stimuli-specific response in preclinical studies are provided
in Table 1.

Controlled release of encapsulated molecules is triggered by cell- or site-specific
stimuli that changes the gatekeeper system, exposing the pores of the MSN. Any loaded
molecules would then diffuse out of the MSN into the target environment. Appropriate
selection of gatekeeper molecule requires knowledge of any internal stimuli produced
in the target cell or environment that the gatekeeper would respond to. While common
stimuli are found internally, external stimuli provided by clinicians might also be used
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after sufficient accumulation of MSNs at the target site. Given the extensive and ever-
growing number of possible gatekeeper molecules, it is more valuable to consider the
methods of triggering gatekeeper stimuli-specific response. Upon identifying the stimuli
that matches the target disease, an appropriate gatekeeper can be used in formulating the
MSN nanovehicle.

Table 1. Selection of MSN Gatekeepers.

Molecule Stimuli/Response References

Chitosan pH/Protonation of primary amine results in swelling from like
charge repulsion [38,61,62,119–121]

Polyvinyl Pyridine pH/Protonation from acidic environment induces hydrophilic behavior [122,123]

Poly(L-histidine) pH/Amine group protonation results in degradation [90,95]

Poly(acrylic acid) pH/Protonation results in shrinking of polymer chain [124–126]

Hyaluronic Acid Enzymes and GSH/Hyaluronidase breaks down HA polymeric
network or GSH breaks disulfide bond between HA and MSN [127–131]

Gelatin pH & Enzymes/Protonation of amine groups results in network
swelling while MMPs degrade breakdown polymeric chains [127,132–135]

Polyglutamic Acid Enzymes/Degraded through catalytic interaction with pronases [136]

Polydopamine pH and Thermosensitivity/Acidity degrades polymer while high
energy from ultrasound or laser stimulation may induce unstable state [112,137–140]

Poly(N-isopropylacrylamide) Thermosensitivity/Temperatures above critical temperature result in
hypercoiled state of polymer, exposing MSN pores and surface [141–144]

3.1. Internal Stimuli
3.1.1. pH

The altered metabolic behavior of malignant cells results in the synthesis of acidic
byproducts that are transported to the extracellular environment [145]. This phenomenon
results in a decrease in extracellular pH from 7.4 (standard physiological pH) to as low
as 6.4 [146]. The lower extracellular pH in tumor tissues can be used as a strategy to
facilitate targeted release of anti-cancer therapeutics agents from MSNs. Similarly, the
acidic pH of endosomes and lysozymes into which MSNs are transported during endo-
cytosis and degradation, respectively, is also used to trigger the release of encapsulated
molecules [147]. The release results from the higher proton concentration, triggering a
chemical shift in the selected gatekeeper molecules. For example, chitosan is a naturally
occurring polymer that possesses a primary amine in its structure. At neutral pH values,
the amine group is deprotonated, tightening the polymer network around the MSN. In
acidic environments, the amine group is protonated, acquiring a positive charge and be-
coming highly hydrophilic [148]. This results in a swelling of the polymers around the
pores [149], exposing pore contents to the environment and permitting diffusion of the
encapsulated molecules out of the MSNs. While other functional or electrostatic groups
might be used in gatekeeper molecules, the principle remains the same—acidic pH results
in electrochemical changes that alter the gatekeeper network or interactions between the
gatekeeper molecules and the MSN itself.

Chitosan is successfully used as a pH-sensitive gatekeeper in several MSN pre-
clinical model studies [38,61,62,119–121]. Other polymers that demonstrate similar pH-
sensitivity include polyvinyl pyridine [122,123], poly(L-histidine) [90,95], poly(acrylic
acid) [124–126], gelatin [132,133], and polydopamine [112,137–139]. Bonds between the
gatekeeper molecules and the MSNs themselves could be chosen for their response to acidic
pH as well, largely resulting in dissociation of gatekeeper molecules from the MSN surface.
Examples of such formulations can utilize imine bonds [150–152], ester bonds [150,153,154],
or hydrazine bonds [155], among others [147]. In all these cases, the gatekeeper molecule
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is organic in nature, improving biocompatibility between the MSN nanovehicle and the
host while limiting toxicity. While organic pH-gated molecules are commonly used, inor-
ganic systems were studied as well. For example, latching mechanisms functionalized by
metal ions of cobalt, nickel, or calcium show pH-specific release of molecules loaded into
MSNs [156]. Zinc quantum dots were similarly studied as MSN gatekeepers, given their
rapid dissolution at acidic pH values [157,158]. One system showed similar biocompatibil-
ity and pH-sensitive release, when using calcium carbonate—which dissociates into Ca2+

and CO3
2− ions in acidic pH [159].

3.1.2. Enzymes

While pH-response can preferentially increase delivery to preferred tissues, it is
fundamentally a non-specific targeting strategy that can be neutralized by changes in pH.
Any change in the pH of the suspending solution would induce release of the loaded
molecules. Gatekeeper motifs can be constructed to break down in the presence of more
specific stimuli, such as enzymes. Malignant cells often overexpress enzymes that promote
proliferative or metastatic behavior [160]. These enzymes can be found in either the extra-
or intracellular environment, providing additional avenues for gatekeeper application.
Selection of gatekeeper molecules that are targeted for destruction by overexpressed or
lysosomal enzymes promotes controlled release.

As with pH-sensitive gatekeepers, many molecular networks stimulated by enzymes
comprise polymers. Hyaluronic acid (HA) is a common example used in MSN formula-
tions. HA is advantageous as it serves as both an active targeting molecule that binds
to overexpressed CD44 and as a gatekeeper molecule whose dissociation is catalyzed
by the lysosomal enzyme hyaluronidase [161]. CD44 is a transmembrane glycoprotein
receptor that is overexpressed in malignant cells and promotes metastatic behavior [162].
MSN formulations used HA for gatekeeping functions with great success in preclinical
models [127–129]. Lysozomal pronases similarly destroyed gatekeeper networks com-
prising polyglutamic acid, to release chemotherapeutic payloads into breast cancer cell
models [136]. While exhibiting pH-responsiveness, gelatin is simultaneously broken down
by matrix metalloproteinases (MMPs) in the extracellular tumor microenvironment. Such
behavior is exploited to induce enzyme-stimulated gatekeeper degradation and subsequent
controlled release from gelatin-coated MSNs in tumor tissue [127,134,135].

3.1.3. Small Molecules

Interactions between gatekeeper molecules and small molecules within the tumor
cell or microenvironment can also stimulate controlled release of encapsulated molecules.
Glutathione (GSH) is one such small molecule, residing in many tumor cell types at high
concentrations, relative to healthy cells [163]. GSH works in conjunction with acidic pH
environments to break disulfide bonds through redox reactions [164]. Disulfide bonds
can either be used to conjugate gatekeeper molecules to MSN surfaces or contribute to
gatekeeper morphology. When the disulfide bond is broken through reduction by GSH,
the gatekeeper molecule leaves the MSN surface or is otherwise structurally changed
to open the pores and release loaded molecules. The flexibility of using and targeting
disulfide bonds promoted multiple gatekeeper options with MSNs. Cyclic peptides can
be used to target tumor cells while covering pore openings until undergoing GSH re-
duction and becoming unstructured, thus, releasing loaded molecules [164–166]. Pro-
teins used as gatekeepers, such as transferrin, exhibit similar behavior in the presence of
GSH and can double as targeting agents [167]. The polymer HA, when bound to MSNs
through disulfide bonds, also demonstrated significant effectiveness as a tumor-specific
gatekeeper [130,131]. Disulfide-bound PEG gatekeepers are similarly dissociated through
interaction with GSH [168]. While gatekeeper dissociation through GSH is common, other
possibilities might be employed. For example, aptamers might be used as gatekeeper
molecules that selectively respond to intracellular small molecules like ATP [169].
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3.2. External Stimuli

While internal stimuli are abundant in vivo and provide overall ease of clinical ap-
plication, external stimuli were studied as a means of controlling release from MSNs.
These stimuli must be provided by clinicians following administration of MSNs. Further,
pharmacokinetic considerations are necessary to apply external stimuli at times when
MSN accumulation in target tissue is high. Multiple gatekeeper formulations requiring
external stimuli were paired with MSNs. Primarily, these gatekeepers are thermosensitive
in nature, requiring an increase of site-specific in vivo temperature [170]. Induction of lo-
calized hyperthermia results in degradation or alteration in the polymer network, releasing
the payload. Preclinical methods of triggering MSN gatekeeper thermosensitive release
included ultrasound [137,171–174] and laser irradiation [138,175–177].

Poly(N-isopropylacrylamide) (PNIPAM), the most studied temperature-sensitive poly-
mer evaluated for biomedical and drug delivery applications, displays a lower critical
solution temperature (LCST) at 37 ◦C [141–144]. The polymer remains fully solvated
below the LCST, but higher temperatures result in the polymer rapidly collapsing into
a hypercoiled state. As the LCST is within the standard physiological temperature con-
ditions, copolymers are often included with PNIPAM to increase its LCST to the range
of 40–45 ◦C [142–144]. MSNs using grafted PNIPAM copolymers demonstrated photo-
theragnostic potential with fluorescence and photoacoustic functionality. In-situ radical
polymerization strategies are employed with such formulations to increase particle loading
capacity and inhibit drug leakage [142]. The mechanism of release for PNIPAM is oppo-
site of the mechanism for pH-sensitive polymers, where increased protonation swells the
polymer coating to expose the MSN pores and release the loaded cargo. Rather, the native
conditions maintain the polymer in its solvated state, which is then collapsed on exposure
to external heating, rapidly collapsing the polymer shell and releasing the loaded drug.
The mechanism for this release is proposed to result from the high density of grafting-from
polymers. The dense polymer brushes can even grow short chains within the porous
interior of the MSNs, swelling to block the pores in their hydrated state [143]. Upon ex-
posure to external heating, the polymer brushes collapse, opening the pores to release the
loaded drug. The thermosensitive behavior of PNIPAM can be maintained when properly
copolymerized with other polymers, such as methacrylic acid, as shown in Figure 4.
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Figure 4. Loading and release of DOX and ICG from MSNs coated with PNIPAM copolymerized
with methacrylic acid. The copolymer is abbreviated as p(NIPAM-co-MA). Copolymers are grafted
from the surface of the MSN, generating dense brushes across the surface and into the porous interior.
While the polymers are hydrated, off-target release is restricted. Upon heating by an externally
applied NIR laser, the polymers collapse and release the loaded drug. Reprinted with permission
from [143], Elsevier, 2018.
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4. Targeting of MSNs and Barriers to In Vivo Efficacy

For any NP to be clinically effective, it must reach the target site being sequestered
in off-target tissue or otherwise cleared from the body. To accomplish this goal, multiple
disease-site targeting strategies were implemented in preclinical nanomedicine studies.
The primary options could be divided into three categories—passive targeting methods,
which take advantage of innate behaviors and characteristics of diseased tissue [178]; active
targeting methods, which utilize various molecular ligands that seek specific characteristics
of target cells [179]; and magnetic target, which uses magnetic fields to draw susceptible
NPs to disease sites [180]. While active and magnetic targeting approaches require specific
design or modification of synthesized MSNs, passive targeting is assumed to be acting
at all times in vivo, based on the innate physiological properties and behavior. Targeting
strategies can also be combined in attempts to improve theragnostic efficacy, such as
through conjugating antibodies to magnetically active NP formulations [181].

4.1. Passive Targeting

Diseased tissues are frequently characterized by the gaps between endothelial cells.
These gaps increase endothelial permittivity to large particles, such as NPs, while having
no effect on the extravasation of small molecules [182]. Subsequent residence time of NPs
within the diseased tissue is theoretically increased, as compared to the small molecules
based on NP size. This phenomenon, referred to as the enhanced permeability and retention
(EPR) effect, remains the driving force for a significant number of NP applications, since
its discovery in the 1980s [183]. Passive targeting effectiveness is primarily influenced
by MSN size, shape, and surface charge [184]. While preclinical evidence supporting the
efficacy of the EPR effect is vast, clinical studies showed that passively targeted NPs are
not more effective than lone molecules [185–188]. The differences in efficacy in preclinical
animal models and human subjects are thought to be the results of innate differences in
physiology and tumor features. Irregular or lack of blood flow in solid tumor bodies along
with passive targeting inability to target metastatic tumor cells are additional sources of
EPR ineffectiveness [188]. While MSNs did not undergo clinical trials to assess their passive
targeting effectiveness in humans, current evidence from other NP formulations suggest
that active targeting is a better strategy.

4.2. Active Targeting

Malignant cells possess different characteristics than healthy tissue. Examples of
such traits include altered metabolism, under- or overexpression of proteins and signaling
molecules, or changes in gene expression. Conjugating molecules that selectively respond
to these specific markers onto NP surfaces allows for active targeting of diseased cells.
Attaching the MSNs to the targeting ligands can occur by multiple strategies. For ex-
ample, reagents containing functional groups can be attached to MSN surfaces. These
selected reagents should possess reactive functional groups that promote bond forma-
tion with the specific targeting ligand of interest ligands. For example, N-succinimidyl
(maleimidomethyl) cyclohexanecarboxylate contains a reactive amine group that forms
maleimide bonds with thiol groups, such as those found on the amino acid cysteine [38].
Functional groups on the unconjugated surface of the MSNs might be similarly used for
attaching active targeting ligands [64]. Non-chemical methods, such as physisorption,
also demonstrated success in conjugating active targeting ligands to some MSN formula-
tions [189].

Employing active targeting strategies significantly enhances NP accumulation near
and engulfment by target cells. Several molecules were used to actively target MSNs to
specific cells. While most such options utilize specific ligand–receptor interactions, a few
unique cases warrant special attention. A discussion of different active targeting molecules
with apparent advantages and disadvantages is provided. For additional reference, Table 2
below presents several active targeting molecule options that were successfully used with
MSNs.
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Table 2. Active Targeting Molecules Used with MSNs.

Molecule Class Targeting Molecule Method of Action References

Proteins mAbs Specific binding with surface antigens on target cells [190–194]

Fabs Specific binding with surface antigens on target cells [195,196]

Transferrin Binds to overexpressed transferrin receptor 1 [167,197–199]

Affibodies Engineered proteins designed to selectively bind to
specific receptor on target cell [61,200]

Heparin Anti-angiogenesis agent and ligand-receptor
targeting with overexpressed surface heparanase [201]

Peptides RGD Overexpressed integrin αVβ3 are selectively bound [128,166,202]

pHLIPs Transmembrane insertion resulting from acidic
tumor microenvironment [38,62]

CPPs Specific or nonspecific interaction with the cell
membrane or proteins on its surface [189,203–209]

Nucleic Acids Aptamers Overexpressed surface receptor proteins (e.g.,
GLUT1) are targeted by designed nucleic acid chains [60,210–214]

Small Molecules Folate/Folic Acid Ligand-receptor targeting between folate and folate
receptor α [202,215–220]

Hyaluronic Acid Overexpressed CD44 on tumor cell surfaces binds
with HA [88,128,221]

4.2.1. Monoclonal Antibodies

The most prevalently used proteins for active targeting in nanomedicine, as well
as for NP-free cancer therapies, are monoclonal antibodies (mAbs). Separate from NP
applications, mAbs are well researched and clinically used against a myriad of diseases,
for decades [222–224]. mAbs possess antigen binding sites that are highly selective for
surface proteins on target cells [225]. Such selectivity permits specific interactions between
mAbs and cells presenting the surface protein of interest, while the mAbs effectively ignore
cells that do not produce the target antigen. This specificity for target cells, in addition to
mAbs is less likely to illicit immune responses, as these are derived from human B cell
antibodies [225] and serves as the primary reason for choosing mAbs as targeting molecules
for MSN theragnostics. If a new target protein is identified on the surface of a diseased cell,
mAbs that specifically bind to it can be created [226]. For these benefits, there are notable
drawbacks to using mAbs, mostly stemming from their large size, relative to other active
targeting molecules. The average mAb is around 10 nm in size and has a molecular weight
of ~150 kDa [227]. Such proportions affect NP performance in two ways—(1) increasing the
diameter of the NP, which can alter its physiological fate, and (2) decreasing the number of
mAbs that can bind to a single NP. The resulting lower ligand:NP ratio, relative to the ratio
seen with smaller targeting ligands, can limit the targeting ability of NPs or increase the
likelihood of NP sequestration by the immune system [228–230]. Despite these apparent
difficulties, numerous MSN formulations utilizing mAb active targeting demonstrated
significant tumor-specific delivery and therapeutic effect [190–194].

4.2.2. Antibody Fragments

To overcome the size obstacle experienced with mAbs while still taking advantage
of antibody targeting capabilities, antibody antigen-binding fragments (Fabs) can be
used [231,232]. Fabs are the binding domains in the variable region of the antibody [233]
and, thus, are the primary targeting factor of antibody action. By using Fabs as opposed
to whole antibodies, not only is the size of the entire NP reduced as compared to mAb
conjugations, but the ligand:NP ratio is subsequently increased as well, thus increasing
the likelihood of engulfment of MSNs by target cells. MSN formulations successfully
used antibody fragments as their targeting components for treating or detecting preclinical
ovarian cancer [195] and breast cancer models [196], respectively.
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4.2.3. Peptides

Similar to proteins, peptides possess the ability to selectively interact with diseased tis-
sue cells. The primary advantage peptides have over whole proteins is their much smaller
size. The smaller size promotes a more favorable ligand:NP ratio, and subsequently, a more
favorable ratio of targeting ligand to target. Smaller size does impart some disadvantages,
including high hydrophobicity and a lack of secondary structures, which result in less
overall stability as compared to whole proteins [234,235]. Many NPs employing peptides
as their active targeting agent overcome these challenges. As seen with proteins, receptor-
ligand interactions between peptides conjugated to NP surfaces and specific receptors
on target cell surfaces facilitate active targeting. A commonly used receptor-targeting
peptide in NP therapies is the RGD peptide, which was shown to target upregulated
integrins on tumor cells [236,237]. For tumor cells, integrins enhance proliferation, adhe-
sion, angiogenesis, invasion, migration, and inhibition of apoptosis [238]. Integrins that
promote these behaviors, namely the αvβ3 integrins [239,240], are upregulated, promoting
distinction between tumor cells and healthy tissue cells [241]. The ability of RGD-MSN
nanovehicles to selectively target these integrins and deliver loaded molecules to tumor
cells is well established in numerous studies over myriad studies, including several recent
advances [128,202,242–245].

Ligand–receptor targeting is not the only method through which diseased cells might
be distinguished from healthy cells. Often, diseased cells will alter the microenvironment
in which they reside. For example, tumor cells increase the acidity of their extracellular
environment from pH 7.4 (e.g., standard physiological pH) to between pH 6.0–6.8 [146,246].
Largely, this phenomenon is due to the altered metabolism [145,247]. Similar acidification
of the extracellular space is seen in inflamed tissues [248]. The lower pH around such dis-
eased cells serves as an identifier for pH-specific interactions between administered agents
and the target cells. pH-low insertion peptides (pHLIPs) undergo significant changes in
their secondary structure when exposed to (a) cellular membranes and (b) a decrease in
pH [249–252]. This targeting mechanism operates independent of specific receptors, thus,
potentially improving patient-to-patient outcomes as compared to receptor-dependent
targeting options. Through conjugating pHLIPs on the outside of NPs, researchers took ad-
vantage of the pH-specific targeting nature of these peptides [253,254]. pHLIP-conjugated
silica NPs with a chitosan gatekeeper is used to treat in vitro and in vivo ovarian cancer
cells through dual-action pH-dependence, as both the pHLIPs and the chitosan selectively
responded to the lower pH of the tumor environment [38]. Similar MSNs were used for
identifying preclinical pancreatic [62] and breast cancer models [255].

Another technique for targeting diseased cells uses cell-penetrating peptides (CPPs,
a.k.a. protein transduction domains or PTDs). Commonly derived from natural sources
such as viruses, CPPs can act on cells in many ways. CPP action is typically independent
of receptor-specific interactions. Their mechanisms does depend on the target cell type
or molecules the CPPs might be carrying, among other factors [256,257]. CPPs act on
cellular membranes, as a result of the hydrophobic or electrostatic interactions between
the CPPs and membrane phospholipids [208]. There are two primary ways to use CPPs
in NP therapies—nonspecific CPP targeting or specific CPP targeting. The former uses
CPPs that can enter into nearly any cell type, while the latter employs a CPP that is specific
to the diseased target cell. When using a nonspecific CPP, the peptide must be shielded
or inactivated to limit NP uptake by off-target cells. When in the extracellular microen-
vironment of the diseased cells, the CPPs can be unveiled or activated by extracellular
markers (e.g., acidic pH or extracellular enzymes), permitting the CPPs to act on the cells
and granting NP entry [258]. Both specific and nonspecific CPPs were paired with MSNs
to target myriad tumor models [189,203–205,209], or to cross biological barriers such as the
intestinal mucosal lining [206,207].
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4.2.4. Aptamers

MSNs might also be functionalized with aptamers, short strands of DNA or RNA that
can recognize and interact with malignant cell markers [259–261] via an active targeting
mechanism. Aptamers are highly tunable, due to their 20–60 nucleotide size [262], which
increases their potential to bind to myriad targets. The binding between aptamers and
target receptors occurs in a manner similar to protein–receptor interactions. Generally,
aptamers target upregulated or mutant proteins found on diseased cells or in the correlating
extracellular microenvironments. Examples of such proteins that are successfully targeted
by aptamer-functionalized MSN formulations include nucleolin [60,210], mucin-1 [211,214],
HER2 [212], and PTK7 [213].

4.2.5. Small Molecules

The examples presented thus far demonstrate the targeting effectiveness of large
biomolecules. While these larger molecules comprise a significant majority of applied
active targeting strategies, small molecule approaches can also be used in targeting dis-
eased cells [263]. The choice of small molecules for active targeting must match with an
appropriate tumor receptor. As previously discussed, HA binds to the overexpressed
CD44 receptors on tumor cells, making it an ideal choice for a small molecule targeting
agent with MSNs [88,221]. It should be noted that short HA chain lengths should be used
when using HA for targeting, as they increase the engulfment efficiency [264]. Tumor cell
overexpression of folate receptor α encourage the use of folate as another small molecule
active targeting option for MSNs [202,215–220].

4.3. Magnetic Targeting

Beyond physiological or molecular targeting options, magnetic manipulation of metal-
lic agents can be used to induce NP accumulation at target sites. By applying magnetic
fields around the desired site, NPs are attracted to the area, remaining in the tissue long
enough for their action (such as delivery of loaded molecules) to occur. SPIONs are the
primary component for magnetic targeting. While many approaches use such NPs alone or
modified [180], MSNs can be used to encapsulate SPIONs or other iron-based NPs to take
advantage of magnetic targeting [129,265,266]. Superparamagnetic iron oxide nanopar-
ticles (SPIONs) are also incorporated into MSNs as a means of inducing intracellular
hyperthermia, while enhancing the effect of chemotherapies [267]. There are two principle
ways through which the magnetic fields can be applied to control NP accumulation—apply
an external magnetic field near the target location [268,269] or implant a magnetic scaffold
near the target site [270,271]. The former method is primarily for targeting areas of minimal
depth, such as near the skin, while the latter permits targeting of bones or organs deep
within the body of the patient. As an example, magnetic targeting for diagnostic mag-
netic resonance imaging (MRI), using iron-oxide-based agents was approved for off-label
use by the FDA [272,273]. Trials assessing the use of lone magnetic targeting for drug
delivery, to date, did not show clinical efficacy [274,275]. The largest apparent hurdle
appears to be targeting deep organs (e.g., gastrointestinal or cardiovascular systems). One
proposed method to increase efficacy is to use active targeting methods in conjunction
with magnetic targeting. For example, MSNs containing iron NPs and functionalized with
transferrin demonstrated significant ability to cross the blood–brain barrier and deliver
chemotherapeutics to brain gliomas [197].

5. Challenges, Directions, and Conclusions

For all the advantages that MSNs possess, several challenges need to be overcome
prior to clinical translation. First, more human trials are needed to test the toxicity and
clinical efficacy of agents that were shown to have more therapeutic potential than the
lone molecules in preclinical animal models. The nature of passive targeting by the
EPR effect in humans must be better understood to ensure a greater clinical effect of NP
treatments [276]. This is especially crucial for enhancing the translation of nanomedicines
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from preclinical models (e.g., mice) to human patients. Further research into the interplay
between MSN size, shape, porosity, and surface chemistry, alongside impact on tissue
penetration, cellular uptake, and release kinetics is critical for optimizing MSN formulation
for greatest theragnostic effect. Additionally, assessment of gatekeeper molecule toxicity
and biocompatibility in humans is necessary. While such analysis was performed for some
of the described gatekeeper molecules in non-gatekeeper formulations [277–281], many
are yet to be tested for human safety. In order for MSN formulations to undergo FDA
investigational new drug (IND) pathways, reproducibility of particles on large scales is
necessary. To date, MSN formulations are synthesized in small-scale batches, limiting
translation to clinical environments. Understanding the regulatory synthetic requirements
for production of clinic-ready MSNs is critical, as MSN technology advances.

MSNs serve as a multifunctional platform for theragnostic nanomedicine. Innately,
MSNs possess high loading capacities, stable porous structures, and high surface-to-volume
ratios. Together, these characteristics provide a strong foundation for MSN encapsulation of
drug or dye molecules, or even other smaller NPs. By tailoring the MSN properties during
and after synthesis, in vivo behavior and clinical efficacy might be optimized. Surface
modification of functional groups or application of gatekeeper molecules might prevent
toxic interactions between the MSN core and the host environment. Simultaneously, the
gatekeeper controls the encapsulation and release of loaded molecules in a stimuli-specific
manner. The ability to functionalize MSNs with various targeting options is also highly
favorable for enhancing clinical outcomes. Many active targeting strategies demonstrated
significant preclinical potential with MSNs, with limited off-target accumulation. Based on
the current body of evidence, MSNs that are within the 20–80 nm diameter range paired
with stimuli-responsive gatekeepers and active targeting moieties, might operate as the
most clinically beneficial formulation. As research continues to address the apparent pre-
sented obstacles, MSN formulations will see growing prominence in clinical nanomedicine,
which might correlate to enhanced clinical outcomes and patient care.
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Abbreviations

NP Nanoparticle
MSN Mesoporous Silica Nanoparticle
CTAB Hexadecyltrimethylammonium Bromide
TEOS Tetraethyl Orthosilicate
TPOS Tetrapropyl Orthosilicate
TMOS Tetramethyl Orthosilicate
SAM Self-assembled Monolayer
DLS Dynamic Light Scattering
TEM Transmission Electron Microscopy
BET Brunauer–Emmett–Teller
RES Reticuloendothelial System
AR Aspect Ratio
TEA Triethylanolamine
PEG Poly(ethylene glycol)
CRP Controlled Radical Polymerization
ATRP Atom Transfer Radical Polymerization
RAFT Reversible Addition/Fragmentation Chain Transfer
NMP Nitroxide-Mediated Polymerization
HA Hyaluronic Acid
MMP Matrix Metalloproteinase
GSH Glutathione
PNIPAM Poly(N-isopropylacrylamide)
LCST Lower Critical Solution Temperature



Pharmaceutics 2021, 13, 570 17 of 27

EPR Enhanced Permeability and Retention
mAb Monoclonal Antibody
Fab Antibody Fragment
pHLIP pH-low Insertion Peptide
CPP Cell Penetrating Peptide
SPION Superparamagnetic Iron Oxide Nanoparticle
MRI Magnetic Resonance Imaging
IND Investigational New Drug
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