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Hepatocellular carcinoma (HCC) is the predominant subtype of primary liver cancer and
represents a highly heterogeneous disease, making it hard to predict the prognosis and
therapy efficacy. Here, we established a novel tumor immunological phenotype-related
gene index (TIPRGPI) consisting of 11 genes by Univariate Cox regression and the least
absolute shrinkage and selection operator (LASSO) algorithm to predict HCC prognosis
and immunotherapy response. TIPRGPI was validated in multiple datasets and exhibited
outstanding performance in predicting the overall survival of HCC. Multivariate analysis
verified it as an independent predictor and a TIPRGPI-integrated nomogram was
constructed to provide a quantitative tool for clinical practice. Distinct mutation profiles,
hallmark pathways, and infiltration of immune cells in tumor microenvironment were
shown between the TIPRGPI high and low-risk groups. Notably, significant differences in
tumor immunogenicity and tumor immune dysfunction and exclusion (TIDE) were
observed between the two risk groups, suggesting a better response to immune
checkpoint blockade (ICB) therapy of the low-risk group. Besides, six potential drugs
binding to the core target of the TIPRGPI signature were predicted viamolecular docking.
Taken together, our study shows that the proposed TIPRGPI was a reliable signature to
predict the risk classification, immunotherapy response, and drugs candidate with
potential application in the clinical decision and treatment of HCC. The novel “TIP
genes”-guided strategy for predicting the survival and immunotherapy efficacy, we
reported here, might be also applied to more cancers other than HCC.

Keywords: hepatocellular carcinoma, tumor immunological phenotype, immunotherapy efficacy, immune
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INTRODUCTION

Liver cancer is one of the deadliest malignancies in the world and
hepatocellular carcinoma (HCC) is the dominant type,
accounting for ~75% of all cases (1). In the past decade,
despite the great progress of surveillance, diagnosis and
management in HCC, the mortality rate of HCC remains
unacceptably high (2, 3). Due to the poor prognosis, the
incidence and mortality rates of HCC are roughly equivalent
(4). In 2018, the incidence rate per 100,000 in Eastern Asia was
17.7, whereas the corresponding mortality rate was 16.0 (5). The
high prevalence and poor survival of HCC largely result from the
heterogeneity of pathogenic factors, treatment responses, and
molecular profiles. For instance, multiple factors, including
chronic infections of Hepatitis B virus (HBV) or Hepatitis C
virus (HCV), alcohol consumption, metabolic syndrome are
strong causes for the incidence of HCC (2, 6, 7). While the
HBV vaccine has been introduced by a number of countries to
eliminate HBV-related HCC, there is still no vaccine available for
HCV-related HCC and nonviral HCC (4). The presently used
clinical characteristics including the tumor-node-metastasis
(TNM) staging system, vascular invasion, and tumor burden
status are limited in predicting the prognosis and treatment
sensitivities for HCC (8, 9). Thus, novel prognostic classifiers or
therapeutic biomarkers are urgently needed to improve the
clinical benefits of HCC patients.

Tumor immune microenvironment (TIME) is proven to play
a vital role in tumorigenesis and development (10).
Immunotherapy with immune checkpoint inhibitors (ICIs),
reversing the inactivation of immune cells to eliminate tumor
cells, has emerged as a promising therapy for a variety of cancers
in recent years (11). Multiple ICIs were approved for cancer
therapy such as nivolumab, pembrolizumab, and cemiplimab
targeting programmed death-1 (PD-1) and ipilimumab targeting
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) (12).
More agents targeting novel immune checkpoints such as T
cell immunoglobulin and mucin-domain containing-3 (TIM-3),
lymphocyte activation gene-3 (LAG-3), and T cel l
immunoglobulin and ITIM domain (TIGIT) are under
investigation to expand the scope of immunotherapy (13–15).
Adequate evidences suggested that chronic inflammation was a
major risk factor for the development of HCC and
immunotherapy might be the ideal approach to improve the
prognosis of HCC (16, 17). The composition of tumor
microenvironment (TME) of HCC is complex, in which a
number of immune and stromal cells interact to form an
immunosuppressive microenvironment and eventually lead to
a worse prognosis of HCC (11). Hopefully, checkpoint-based
therapy was effective and beneficial against advanced HCC
clinically (18, 19). However, owing to the low sensitivity and
unexpected resistance to ICIs, more useful and reliable
biomarkers should be identified to improve the accuracy of
predicting the prognosis and immunotherapy efficiency in
HCC (20). How to choose available and suitable targets for
personalized therapy is still a tricky question to be answered for
HCC patients.
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TME is a highly heterogeneous ecosystem involving different
types of stromal cells, vascular cells, and immune cells perturbed
by therapy, which are recognized as the potential determinants of
treatment response in cancer (21, 22). Tumor immunological
phenotype (TIP) is an emerging concept to evaluate the
immunological heterogeneity depending on the relative
infiltration of immune cells (23), and tumors are generally
classified into two TIPs: “hot” (inflamed) and “cold” (non-
inflamed) (23). Particular genes and pathways genetically
regulate the immunological phenotypes have been identified to
aid immunotherapy (24–27). Wang et al. recently reported 12
hot tumor-related genes and three cold tumor-related genes to
constitute the TIP gene signature using a text-mining approach
(26), which is significantly associated with the survival outcomes
of cancer patients and shows superior performance in predicting
immunotherapeutic responses than widely used immune
signatures such as tumor mutation burden (TMB), and tumor
immune dysfunction and exclusion (TIDE). Thus, these “TIP
genes” hold great promise in clinical application especially for
postoperative risk stratification and the discovery of immuno
therapeutic predictors.

Accumulating immune-based signatures have been established
to predict HCC patients’ outcomes. However, the predictive
accuracies of most signatures are still insufficient for clinical
practice and a more reliable and accurate signature predicting
the survival as well as the immunotherapy response of HCC
patients is urgently needed (28, 29). In this study, a “TIP
genes”-guided strategy was employed with several statistical
algorithms to construct TIP-related gene prognostic index
(TIPRGPI), a novel HCC signature, followed by comprehensive
validation to predict the prognosis and immunotherapy efficiency
for HCC patients. Besides, it is estimated that the low-risk group
might respond better to immunotherapies than those in the high-
risk group. Furthermore, we identified six potential drugs binding
well to the core target of TIPRGPI with molecular docking. The
workflow for this study is shown in Figure 1.
MATERIALS AND METHODS

Data Source
We carefully reviewed the mRNA expression datasets deposited
in the Cancer Genome Atlas (TCGA), International Cancer
Genome Consortium (ICGC), and Gene Expression Omnibus
(GEO), database and enrolled the patients with complete
annotation of overall survival (OS).Those patients with an
overall survival time of <30 days were excluded due to other
possible causes of mortality (29). Subsequently, the RNA-seq
gene expression data of 336 HCC patients was derived from the
TCGA database (https://portal.gdc.cancer.gov/) (TCGA-LIHC).
The corresponding clinical information and survival outcomes
including overall survival, progression-free survival (PFS),
disease-specific survival (DSS) and disease-free survival (DFS)
were also collected. Another RNA-seq expression profiling
dataset (ICGC-LIRI-JP) containing 238 patients with
survival information was obtained from the ICGC database
April 2022 | Volume 13 | Article 862527
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FIGURE 1 | Flowchart of this study.
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(https://dcc.icgc.org). In addition, we acquired a transcriptomic
microarray dataset (GSE14520) including a total of 221 HCC
patients (30, 31) from the GEO database (https://www.ncbi.nlm.
nih.gov/geo/). The summary of the demographic information was
listed in Supplementary Table 1. For the TCGA-LIHC dataset, the
Fragments per Kilobase Million (FPKM) value was used to generate
the Transcripts per KilobaseMillion (TPM) and further subjected to
log2 transformation for normalization. For the ICGC-LIRI-JP and
GSE14520 datasets, data were preprocessed as previously reported
(32, 33). The ESTIMATE algorithm was utilized to calculate the
immune score, stromal score, estimate score, and tumor purity for
all the patients in the TCGA-LIHC dataset (34, 35).

Somatic mutation information of TCGA-LIHC was gathered
from the TCGA data portal (http://tcga-data.nci.nih.gov/tcga/)
as the mutation annotation format (MAF) format by the R
package “maftools” (36). The CNV profile contained in the
“Masked Copy Number Segment” data type was downloaded
from TCGA.

Correlations of TIP Score With Prognosis
and TME of HCC
TIP score was calculated as previously reported (26) with some
modifications. Briefly, the gene expression matrix of three
predefined cold tumor-related genes (CXCL1, CXCL2, and
CCL20) and 12 predefined hot tumor-related genes (CXCR3,
CXCR4, CXCL9, CXCL10, CXCL11, CCL5, CD3, CD4, CD8a,
CD8b, CD274, and PDCD1) was extracted, followed by the
generation of expression z scores. TIP score was computed by
a summary score of RNA-seq z scores for the tumor
immunological phenotype genes. To evaluate the prognostic
value of the TIP score, all patients with available survival
information for OS, DFS, PFS, and DSS were divided into the
high- and low-score group by the optimal cutoff of TIP scores,
respectively (34), followed by the Kaplan-Meier analysis with a
log-rank test. To examine the relationship between TIP score and
TME, we carried out the Spearman correlation analysis between
TIP score and the ESTIMATE derived scores including immune
score, stromal score, estimate score, and tumor purity. And we
also checked the correlations of the TIP score and the fractions of
the activated CD4 and the activated CD8, as well as two immune
checkpoint molecules (PD1 and CTLA-4).

Weighted Gene Co-Expression Network
Analysis (WGCNA) and TIPRGPI
Establishment
WGCNA was performed on the expression data of TCGA-LIHC
using the “WGCNA” R package (37). Generally, all genes were
sorted by the median absolute deviation (MAD), and the top
5,000 genes were used for sample clustering, followed by the
removal of outlier samples. Then, the optimal soft threshold
power was specified to generate a scale-free network. Next, the
topological overlap matrix (TOM)-based dissimilarity
(dissTOM) was computed and further used to perform the
gene dendrogram and module recognition with the
minClusterSize of 30. Similar dynamic modules were merged
by the cutline of 0.2. Pearson correlation coefficients (PCC) and
Frontiers in Immunology | www.frontiersin.org 4
corresponding P values between module eigengenes and
clinicopathological parameters were subsequently calculated
and visualized by a heatmap. The most significant module that
correlated with the TIP score was identified and used for
further analysis.

Gene Ontology (GO) enrichment and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis were completed
for the most significant module by the “clusterProfiler” R
package (38) with the cutoff of p.adjust <0.05.

To establish a scoring system regarding TIP score, we first
adopted the Univariate Cox (UniCox) hazard regression to
screen the candidate genes from the most significant module.
Next, the popular least absolute shrinkage and selection operator
(LASSO) algorithm was applied for the best subset of prognostic
genes using the “glmnet” R package (39). For the purpose of
minimization of the overfitting risk, we conducted LASSO 200
times and chose the robust genes that appeared in the model
more than 160 times. A linear equation called “TIPRGPI” was
then established to predict the overall survival of HCC patients:
Risk score = S(coef (b)*EXPb), where b represents each
selected gene.

Survival Analysis
The TIPRGPI score was calculated for each patient of the
TCGA-LIHC training set, the ICGC-LIRI-JP validation set,
and the GSE14520 validation set. For each dataset, patients
were separated into the high- and low-risk groups by the
median value of the training set, which is crucial for clinical
practice. Kaplan-Meier survival curves were depicted to
compare the difference of distinct risk groups with a log-rank
test, and time-dependent receiver operating characteristic
(tROC) curves were drawn to assess the predictive power.
Moreover, stratified analysis was performed to further
validate the additional prognostic value of the TIPRGPI
model, and univariate and multivariate analyses were used to
determine the independent prognostic indicators for HCC.
Additionally, we also compared the 3- and 5-year ROC values
of the TIPRGPI and popular biomarkers for immunotherapy
and other published gene signatures of HCC, including a TP53-
related transcriptomic signature by Long et al. (“Long
signature”) (40), a metabolic gene signature by Huo et al.
(“Huo signature”) (27), a ferroptosis-related gene signature
(“Liang signature”) (41), an immune-related prognostic
signature (“Wang signature”) (42), and a hypoxia-related risk
signature by Zeng et al. (“Zeng signature”) (43).

Construction of a Predictive Nomogram
A TIPRGPI-integrated nomogram was constructed to
quantitatively evaluate the prognostic risk based on the result
of univariate analysis. Calibration curves for the 3- and 5-year
were drawn to examine the predictive capability of the
nomogram. The 1-, 3-, and 5-year DCA plots were utilized to
measure the net benefits of the nomogram and TNM stage, as
well as tumor burden. Moreover, Kaplan-Meier analysis was
further used for OS, DFS, PFS, and DSS on the TCGA-LIHC set
to validate the prognostic value of the nomogram.
April 2022 | Volume 13 | Article 862527
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Genomic Variation Analysis
To explore the somatic mutations regarding TIPRGPI, the
“maftools” R package was used to depict the waterfall plots
manifesting the mutation landscape for the high- and low-risk
groups of HCC patients. TMB values reflecting total mutation
numbers for each HCC patient were calculated with non-
synonymous mutations using 38MB as the estimate of the
exome size (44, 45). Somatic copy number alterations between
the two different risk groups were investigated via the GISTIC2.0
algorithm. The correlations of expression values and CNV types
for two oncogenic hub genes (NDC80 and RFC4) (32, 33) in
HCC were accomplished by the Kruskal-Wallis test.

Gene Set Variation Analysis (GSVA) and
Gene Set Enrichment Analysis (GSEA)
To determine the underlying hallmark pathways related to
TIPRGPI, the R package “GSVA” was utilized to obtain the
GSVA enrichment scores (46) of the 50 hallmark pathways
(h.all.v7.1.symbols) deposited in the molecular signature
database (47, 48) for each patient in the high- and low-risk
groups of the TCGA-LIHC dataset, followed by the contrast of
GSVA scores using a linear model as previously reported (49).
Significant gene sets were defined by an adj.P.Val of < 0.01.
GSEA for the same 50 hallmark gene sets was operated in the two
risk groups with the recommended criteria of FDR<0.25 and
NES>1. Venn diagram analysis was performed to identify the
overlapping hallmark pathways by GSVA and GSEA, and
Kaplan-Meier analysis was further used to verify the
prognostic value of oncogenic hallmark pathways.

Exploration of Immune Infiltration
To investigate the relative infiltration of TME cells in the high-
and low-risk groups of HCC, the ssGSEA algorithm was utilized
for immune deconvolution analyses with the gene sets of 28
reported immune cell types (50) and two stromal components
(fibroblasts and endothelial cells) (51) of TME. Differential
infiltration analysis was conducted and visualized by a violin
plot and the relationship of the TIPRGPI score and each type of
the 30 TME cells was determined by the Spearman correlation
analysis. Kaplan-Meier survival analysis was also performed to
assess the prognostic values of these TME cells.

Estimation of Immunotherapeutic
Response Prediction
According to previous publications, the correlations between
TIPRGPI and potential immunotherapeutic markers including 50
ICB-related genes (52–54), IFN-gamma pathway markers (55), and
m6A regulators (56, 57) were explored by Wilcoxon test. The
Tumor Immune Dysfunction and Exclusion (TIDE) algorithm
(58) (http://tide.dfci.harvard.edu/), was utilized to infer the clinical
response to immunotherapy with the gene expression profile of
TCGA-LIHC. Additionally, Immunophenoscore (IPS), which was
designed to determine immunogenicity using the machine learning
approach, was further obtained from The Cancer Immunome Atlas
(TCIA) (https://tcia.at/home) (50). Higher IPS indicates a better
response to immunotherapy.
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Identification of the Core Target of
TIPRGPI
To identify the core target of the TIPRGPI signature, all genes
were uploaded to the online database of the Search Tool for the
Retrieval of Interacting Genes (STRING) (version 11.0; http://
string-db.org/) for the construction of the protein-protein
interaction (PPI) network with default settings (Interaction
score ≥0.4). Cytoscape (version 3.2.1; http://www.cytoscape.
org) was used for visualization. Next, we calculated the
topological parameters with the Network Analyzer plugin and
obtained the degrees of all nodes in the network. The core target
was recognized as the node with the highest degree.

Molecular Docking
For the screening of the putative small molecules stably binding
to the core target, molecular docking was performed with Glide
of Schrodinger. Firstly, we collected the 3D protein structures of
totally 9800 small molecules as well as the core target from
zinc15 database and PDB database (www.rcsb.org), respectively.
Next, the protein preparation wizard tool was utilized to process
the crystal structure. Subsequently, the ligand-binding pocket
was predicted with the deepsite module (59) of Play Molecule
(www.playmolecule.org), which was a knowledge-based
approach using convolutional neural networks. Finally, the
binding mode and interaction force of the core target and
small molecules were evaluated to identify potential compounds.

Statistical Analysis
The correlations of TIP score and immune signatures were
conducted using Spearman correlation by the “ggplot2”
package. Kaplan-Meier analysis was performed using the
“survival” package with a log-rank test. The correlations of the
TIPRGPI group and other clinicopathological features were
determined by the Pearson Chi-square test. Univariate and
multivariate analyses were applied by the “survival” package to
identify independent prognostic indicators. The optimal cutoff
for survival analysis was generated by the R package “survminer”.
All statistical analyses were completed by the R software (version
3.6.1). Unless specified otherwise, P < 0.05 was considered
statistically significant.
RESULTS

TIP Score Was Associated With the
Prognosis and the Immune State of HCC
To determine whether TIP score was effective in HCC, we carried
out a series of survival analyses, applying Kaplan-Meier (K-M)
survival curves and log-rank tests to investigate the discrepancy
between low- and high- TIP score groups. As expected, patients
with HCC in the high TIP score group had a better prognosis
(Figure 2A). Next, we confirmed the correlations between TIP
score and the immune score, stromal score, estimate score, and
tumor purity respectively. As shown in Figure 2B, TIP score was
positively associated with immune score, stromal score, and
estimate score, but negatively associated with tumor purity.
April 2022 | Volume 13 | Article 862527
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Moreover, given that effective T cells such as activated CD4 and
CD8 T cells play a pivotal role in the tumor microenvironment
(60), we also calculated their correlations with TIP score, and we
found they were both correlated with TIP score positively
(Figure 2C). Besides, considering that PD-1 or CTLA-4 is the
key immune checkpoint, we also verified they were positively
correlated with TIP score (Figure 2C).

Construction of TIPRGPI
In order to identify the gene module associated with TIP score,
WGCNA was applied to the TCGA-LIHC RNA-seq dataset. The
MAD top 5000 genes were extracted to construct a co-expression
network. Four outlier samples were removed prior to network
construction (Supplementary Figure 1A). The optimal soft-
thresholding power of 10 (scale-free R2 = 0.86) was picked to
ensure the scale-free topology (Supplementary Figure 1B). The
Frontiers in Immunology | www.frontiersin.org 6
established co-expression network showed that these 5000 genes
were clustered into seven modules (Figure 3A) and the network
heatmap plot of the clustering dendrogram among modules was
shown (Supplementary Figure 1C). Then, we calculated the
correlations of module eigengenes (ME) with multiple indicated
variables by computing the Pearson correlation coefficient
(PCC), and among which, we focused on the black module
showing highly positive correlation with TIP score (PCC = 0.78,
P = 3E-70) (Figure 3B). Also, we plotted a scatterplot of gene
significance vs. module membership of the black module
containing 432 genes (Figure 3C). GO enrichment analysis
revealed that the most significant terms enriched by the black
module were the biological process (BP) of T cell activation,
cellular component (CC) of side of membrane, and molecular
function (MF) of peptide antigen binding (Figure 3D). KEGG
analysis suggested that they mostly participated in the pathway
A

B

C

FIGURE 2 | TIP score correlates with the prognosis and the immune state of HCC. (A) Kaplan–Meier survival plots of TIP score for OS, DFS, PFS, and DSS in
TCGA-HCC cohort. (B) Correlations between TIP score and immune score, stromal score, estimate score, and tumor purity in HCC. (C) Correlations between TIP
score and biomarkers of cancer immunotherapy including activated CD4/CD8 and PD-1/CTLA-4. TIP, tumor immunological phenotype. OS, overall survival; DFS,
disease-free survival; PFS, progression-free survival; DSS, disease-specific survival.
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A CB

D E

F G

FIGURE 3 | WGCNA analysis and the construction of TIPRGPI for HCC. (A) Cluster dendrogram of MAD top 5000 genes. (B) Table cells showing Pearson’s
correlation coefficients and corresponding P-value between module eigengenes (ME) and the variables. (C) Scatter plot showing the relationship between gene
significance (GS) for TIP score and module membership (MM) in the black module. (D, E) GO enrichment analysis (D) and KEGG (E) enrichment analysis for the
black module genes. (F, G) Hazard ratio with 95%CI of each gene in the TIPRGPI signature computed by UniCox and MultiCox, respectively. GO, gene oncology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; WGCNA, weighted gene co-expression network analysis; MAD, median absolute deviation; TIPRGPI, TIP-
related gene prognostic index.
Frontiers in Immunology | www.frontiersin.org April 2022 | Volume 13 | Article 8625277

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Tang et al. Tumor Immunological Phenotype-Related Gene Signature
of cytokine-cytokine receptor interaction (Figure 3E).
Subsequently, we inputted the genes of the black module into
UniCox regression analysis and found 128 significant genes with
P value lower than 0.05 (Supplementary Table 2). Next, we
conducted LASSO Cox regression with the 128 genes and
obtained 11 robust genes (KLRB1, GZMH, SLC16A3,
IMPDH1, IL15RA, MSC, S100A9, ST6GALNAC4, DAB2,
ADA, SLC1A5) that were significantly correlated with the OS
of HCC patients from TCGA-HCC dataset. MultiCox was
applied to analyze the 11 genes, which were subsequently
incorporated into a TIPRGPI model for predicting the
prognosis of HCC. Figures 3F, G showed the UniCox and
MultiCox results of the selected 11 genes with the
corresponding hazard ratio (HR) and statistical significance.

Evaluation and Validation of the TIPRGPI
Signature
After the construction of TIPRGPI, we proceeded with
evaluation and validation analysis. First, we computed the risk
score for individual patients using the expression and the risk
coefficients of the 11 TIPRGPI genes in HCC datasets, and based
on the median value derived from the training set, HCC patients
from TCGA-LIHC (training dataset), GSE14520 (validation
dataset 1) and ICGC-LIRI-JP (validation dataset 2) were
separated into low- and high-risk groups, respectively
(Figure 4A). As shown in Figure 4B, the low-risk group had a
lower death rate than the high-risk group. Afterward, by Kaplan-
Meier analysis, significant differences in the OS possibility were
observed between the low- and high-risk groups in the training
and validation datasets (Figure 4C). Further, the time-dependent
receiver operating characteristic curve analysis was applied to
evaluate the accuracy of the TIPRGPI signature. For the TCGA-
HCC training dataset, the area under the ROC curve (AUC) was
0.836, 0.775, and 0.741 in 1-year, 3-year, and 5-year survival,
respectively. Moreover, ROC curve analysis of GSE14520 and
ICGC validation dataset exhibited that TIPRGPI had excellent
predictive performance (GSE14520: AUC = 0.664 for 1-year,
0.708 for 3-years and 0.666 for 5-year survival; ICGC: AUC =
0.769 for 1-year, 0.637 for 3-years and 0.656 for 4-year survival)
(Figure 4D). Compared with several other published signatures
and popular biomarkers, TIPRGPI had the highest AUC for
either 3-year or 5-year survival (Figure 4E). Besides, stratified
analysis revealed an additional predictive value of TIPRGPI in
subgroups divided by age, gender, BMI, race, stage, grade, and
tumor burden (Supplementary Figure 2). Correlation analysis
between TIPRGPI and multiple clinical traits revealed that the
tumor grade and stage of HCC were significantly correlated with
risk score (Figure 4F). These results indicated that TIPRGPI was
a highly reliable signature.

Establishment of the Prognostic
Nomogram
To figure out whether the TIPRGPI predicting model was an
independent prognostic indicator in HCC, univariate and
multivariate analyses were performed. The HR of the TIPRGPI
risk level was 3.049 (95%CI: 2.083-4.465) and 3.056 (95%CI:
Frontiers in Immunology | www.frontiersin.org 8
1.976-4.725) in the univariate and multivariate analysis,
respectively, and an elevated HR was observed compared with
the pathologic stage (Figure 5A). Importantly, multivariate
analysis demonstrated TIPRGPI was an independent
prognostic factor in HCC.

To provide a quantitative instrument for the clinician, a
nomogram was built by tumor burden, stage, and TIPRGPI
(Figure 5B). The calibration plot showing the observed versus
predicted rates of the 3- and 5-year OS indicates the ideal
consistency of the nomogram (Figure 5C). As Figures 5D–F
showed, the TIPRGPI-integrated nomogram achieved a better
net benefit than clinical traits in predicting 1-year, 3-year, and 5-
year OS in HCC patients from the TCGA-LIIHC dataset. In
addition, we confirmed the prognostic value of the nomogram,
which was found to be significantly associated with OS, DFS,
PFS, and DSS, respectively (Figure 5G).

The Underlying Molecular Mechanisms of
TIPRGPI
To investigate the potential mechanisms of the risk level defined
by TIPRGPI in HCC, we downloaded the available somatic
mutation profiles and analyzed the mutation landscape of the
high- and low-risk patients from the TCGA-LIHC dataset
(Figures 6A, B). We exhibited the top 20 mutated genes in
two groups respectively. The gene with the most mutation
frequency is TP53 (43%) in the high-risk group and that in the
low-risk group is CTNNB1 (29%). The summary of the
mutation information with statistical calculation was shown in
Supplementary Figure 3. Further, the significant differentially
mutated genes between the TIPRGPI high- and low-risk groups
were detected by Fisher’s exact test. As shown in Figure 6C,
TP53 was found with a much higher mutation rate in the high-
risk group compared with the low-risk group (P < 0.001), and a
lollipop plot was depicted to indicate the different mutation spots
of TP53 for the two risk groups (Figure 6D). Meanwhile, the
coincident and exclusive associations across the top 25 mutated
genes from the high- and low-risk groups were also analyzed, in
which blue represents the co-occurrence while red represents
mutual exclusion (Figure 6E). Additionally, the CNV alteration
landscapes of the high- and low-risk groups were generated after
removing the germline features (Figure 6F). Interestingly, the
hub genes of HCC (32, 33) were widely amplified in the high-risk
group in comparison with the low-risk group (Figure 6G).
NDC80 and RFC4 were two examples demonstrating the
positive correlations of gene expression and copy number in
the TIPRGPI high-risk group (Figure 6H).

To explore the associated cancer hallmark pathways regarding
TIPRGPI, we performed GSVA in high- and low-risk groups.
According to the predefined cutoff, 16 hallmark pathways
significantly increased in the high-risk group compared with the
low-risk group (Figure 7A). GSEA confirmed that 12 of them
were upregulated in the high-risk group, most of which were
related to well-known oncogenic pathways (61) (Figure 7B and
Supplementary Table 3). Kaplan-Meier survival analysis was
applied to evaluate the prognostic values of the upregulated
hallmark pathways and different OS probabilities were observed
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FIGURE 4 | Validation of the TIPRGPI predicting model and performance analysis in HCC. (A) Risk score distribution, survival status, and the expression of 11
TIPRGPI genes for patients in low- and high-risk groups from TCGA training dataset and two validation datasets (GSE14520 and ICGC-LIRI-JP). (B) Risk score and
mortality rate of patients in low- and high-risk groups from three datasets. (C) Kaplan-Meier survival curves showing the comparison of overall survival (OS) between
the low- and high-risk groups from three datasets. (D) Time-dependent receiver operating characteristic (tROC) curves of three datasets. (E) The area under the
ROC curve (AUC) in 3-year and 5-year survival for TIPRGPI and other published signatures and common immunotherapeutic biomarkers. (F) Correlation analysis
between the TIPRGPI low-/high-risk groups and clinical traits ****P < 0.0001.
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between the high- and low-score groups for these oncogenic
hallmark pathways, such as PI3K_AKT_MTOR_SIGNALING, G2M_
CHECKPOINT, WNT_BETA_CATENIN_SIGNALING, and
MYC_TARGETS_V1 (Figure 7C). Taken together, TIPRGPI was
tightly associated with oncogenic pathways.
Frontiers in Immunology | www.frontiersin.org 10
TIPRGPI Was Associated With HCC
Immune Status
Given that TIPRGPI was constructed on the basis of TIP score,
which was significantly related to other immune signatures, we
explored the potential relationship between TIPRGPI and the
A
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G

F

FIGURE 5 | Construction and evaluation of the TIPRGPI-integrated nomogram. (A) Univariate and multivariate analyses of the clinical traits and TIPRGPI for the OS.
(B) Nomogram for predicting the probability of 1-, 3-, and 5-year overall survival in HCC. (C) The calibration plots of the nomogram predicting the probability of the
3- and 5-year OS. (D–F) Decision curves showing the comparison of net benefits of the nomogram, TNM stage, tumor burden for 1-year (D), 3-year (E), and 5-year
(F) OS. (G) Kaplan-Meier survival analysis of the integrated nomogram for OS, DFS, PFS, and DSS of HCC. ***P < 0.001.
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FIGURE 6 | Genetic alterations of the TIPRGPI low- and high-risk groups. (A, B) Waterfall plots displaying the mutation landscapes of the high- (A) and low-risk
groups (B). (C) Forest plot showing the significantly different mutated genes between the TIPRGPI risk groups. (D) Lollipop plot indicating the distribution of mutation
spots in the high- and low-risk groups. (E) The coincident and exclusive associations across the top mutated genes in high- and low-risk groups. (F) The distribution
of CNV features across all chromosomes for the high- (upper) and low- (bottom) risk groups. (G) HCC hub genes were widely amplified in the high-risk group. (H)
Violin plots indicating the positive correlation of gene expression and copy number of two represented hub genes (NDC80 and RFC4) in the high-risk group. *P <
0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns, not significant.
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infiltration of TME cells. The boxplots showed the differential
distribution of infiltrating TME cells inferred by ssGSEA
algorithm between low- and high-risk groups and revealed that
the infiltration of most TME cell types including activated B cell,
activated CD4 T cell, gamma delta T cell, memory B cell,
activated CD8 T cell, immature B cell, effector memory CD8 T
cell, type 1 T helper cell, natural killer T cell, eosinophil, activated
dendritic cell, immature dendritic cell, plasmacytoid dendritic
cell, endothelial cell and fibroblast cell (P < 0.05) were
significantly associated with risk group (Figure 8A). In
addition, correlation analysis was used to pick out the TME
cell types significantly correlated with the risk score and the
result showed that four types were positively correlated with risk
score while seven types were negatively correlated with it
(Figure 8B). We also analyzed the relationships between OS
and the infiltration of TME cells, whose expression levels were
classed into low- and high-infiltration groups from the TCGA-
HCC dataset, and the results showed 13 TME cell types were
Frontiers in Immunology | www.frontiersin.org 12
involved in the significant differences between the high- and low-
infiltration groups (Supplementary Figure 4). Finally,
overlapping Venn plot revealed 10 intersected TME cell types
including four adaptive immune cell types (red), five innate
immune cell types (green), and one stromal cell type (blue)
among differential analysis, correlation analysis, and survival
analysis (Figure 8C). These findings strongly suggested that the
infiltration of TME cells plays a vital role in the postoperative risk
stratification of HCC.

TIPRGPI May be a Potential Indicator to
Predict Immunotherapeutic Sensitivity in
HCC Patients
ICB-related gene expression levels have been reported to be
correlated with therapeutic responses of immune checkpoint
inhibitors (62) and ICB targeting promising checkpoints has
emerged as a promising strategy in treating cancers (63). To
evaluate the potential of TIPRGPI for predicting the response of
A B

C

FIGURE 7 | Determination of the distinct hallmark pathways of the TIPRGPI low- and high-risk groups. (A) Differences in cancer hallmark pathway activities between
the high- and low-risk groups scored by GSVA. (B) The GSEA results for the 12 overlapping upregulated hallmark pathways in terms of the TIPRGPI risk groups. (C)
Kaplan-Meier survival plots showing the significant correlations between the OS and GSVA scores of typical oncogenic hallmark pathways. GSVA, gene set variation
analysis. GSEA, gene set enrichment analysis.
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HCC patients to immunotherapy, we first determined the
expression of 50 immunomodulators in low- and high-risk
groups. As shown in Figure 9A, the expressions of more than
half of the presented immunomodulators were significantly
associated with the risk score. Considering the significant
correlation between the risk score and CD8 T cell and the
important role of m6A methylation in impairing the anti-
tumor ability of CD8 T cell, we next analyzed the expression of
the CD8 T cell-related IFN-gamma pathway markers and m6A
regulators in low- and high-risk groups and found most of them
were significantly associated with the risk score (Figures 9B, C).
Frontiers in Immunology | www.frontiersin.org 13
These findings demonstrated the TIPRGPI had great potential in
evaluating the response of immunotherapy for HCC.
Subsequently, we explored the correlation between the
TIPRGPI risk group and immunophenoscore (IPS), which is a
recognized model based on machine learning to predict patients’
responses to immune checkpoints blockade by estimating the
immunogenicity. We found that the low-risk group has a higher
IPS score, indicating patients in the low-risk group might
respond better to immunotherapy (Figure 9D). We also used
the TIDE algorithm to predict the immunotherapeutic efficacy
for immune checkpoint blockade in TCGA-LIHC, GSE14520,
A

B C

FIGURE 8 | The associations of TIPRGPI and infiltration of TME cells estimated by ssGSEA. (A) The differences of TME cell infiltration between low- and high-risk
groups. (B) Correlations between the risk score and TME cells. (C) Venn diagram revealing 10 types of most relevant TME cells contributing to the risk stratification
of HCC patients by TIPRGPI. TME, tumor microenvironment.
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and ICGC datasets and the high-risk group had a higher TIDE
score, indicating that high-risk patients might have a worse
response to immunotherapy (Figure 9E).

Core Target Identification and Candidate
Molecules Prediction
To identify the core target concerning TIPRGPI, a PPI network
was built using the STRING database (confidence score > 0.4)
Frontiers in Immunology | www.frontiersin.org 14
and visualized by the Cytoscape software (Supplementary
Figure 5). The highly interactive network contains 58 nodes
and 182 edges with the clustering coefficient of 0.595. As shown
in Supplementary Figure 5, CD44 lies at the hub of the network
and has the highest degree among all the nodes. Thus, CD44 was
considered as the core target.

Molecular docking is a structure-based computational algorithm
for compound screening. In this study, the structures for a total of
A

B

D

E

C

FIGURE 9 | Application of the TIPRGPI model for immunotherapy prediction. (A–C) Expression of immune checkpoint molecules (A), IFN-gamma pathway-related
markers (B), and m6A regulators (C) in low- and high-risk groups. (D) The relationship between TIPRGPI and IPS. (E) Distribution of TIDE scores in the TCGA-LIHC,
GSE14520, and ICGC-LIRI-JP datasets. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns, not significant.
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9800 purchasable small molecules from the libraries of zinc15
database were obtained and subjected to molecular docking.
Supplementary Table 4 showed the top six molecules
(Pentostatin, Allantoin, Mizoribine, Xylose, Deoxynojirimycin,
and 6-Hydroxyetodolac) that had the highest affinity with
the predicted binding pocket of CD44. The 3D diagrams for
the six docking models presenting the detailed binding
energy were displayed in Figure 10. For instance, Mizoribine
(ZINC000003812887) forms hydrogen bonds with amino acid
residues ILE-96, CYS-77, ARG-78, TYR-42, and ILE-91. Besides,
the probable formation of salt bridge interaction between ARG-78
and the side-chain hydroxyl group of the ligand also helped the
compound connect to the active site of CD44.
DISCUSSIONS

It is well established that the tumor immune microenvironment is
closely related to tumorigenesis and cancer progression (64–66).
Here, using the “TIP genes”-guided strategy with multiple statistical
approaches, we developed a novel immune-relevant and
independent predictive model - TIPRGPI - for prognosis and
immunotherapy in HCC. Based on the training (TCGA-LIHC)
and two external validation (ICGC-LIRI-JP and GSE14520)
datasets, the TIPRGPI signature was applied to divide HCC
patients into low-risk and high-risk groups. As expected, high-risk
patients had a worse prognosis and response to immunotherapy.
Univariate and multivariate analysis verified it was an independent
predictor for the prognosis of HCC. Moreover, a TIPRGPI-
integrated nomogram model was established, which showed a
better net benefit than the clinical traits in predicting 1-year, 3-
year, and 5-year OS for HCC patients, thus demonstrating
enhanced accuracy and potential implication in clinical practice.
Besides, potential drugs targeting the signature could be predicted
via molecular docking. Therefore, the TIPRGPI signature was a
reliable model to predict prognosis and immunotherapeutic
response in HCC and might provide valuable insight for seeking
the treatment for HCC.

A growing body of gene signatures has been established to shed
light on the prognosis classification of HCC. For example, Long
et al. established a four-gene prognostic model that showed a good
performance for HCC prognosis prediction (40). Gao et al. reported
a six-gene signature for predicting OS of HCC (67). However, few
studies focused on gene signatures on the basis of key genes in the
tumor immune microenvironment. Tumor immunological
phenotype has been emerging to be significantly related to
prognosis and therapeutic responses in various types of cancer by
mounting evidence (26, 68–71). TIP score, representing the
expression level of fifteen TIP genes that were obtained from a
previously study (26), was significantly associated with the
prognosis and other immune signatures in HCC. Thus, we, for
the first time, conducted WGCNA to uncover the specific gene
expression pattern related to TIP score in HCC, identifying the
black module that contained 432 genes, which generated an 11-gene
signature called “TIPRGPI” for prognosis prediction of HCC.
Another advantage of this study is the larger sample size and
Frontiers in Immunology | www.frontiersin.org 15
higher AUCs than that of most previous studies trying to
building an effective risk classifier for HCC. Besides, unlike
previous studies only describing a prognostic gene signature, we
engaged an integrative analysis to get a deeper and comprehensive
understanding of the risk model, and putative drugs were even
predicted based on the model, which was rarely reported by other
similar studies.

All genes involved are either related to the immune system or
tumorigenesis. For example, adenosine deaminase (ADA) is
produced in all cells but highest in lymphocytes and loss of ADA
causes the immune system to collapse (72). IL-15RA is expressed in
multiple types of immune cells including dendritic cells (DC),
macrophages, and natural killer cells (NK), and it plays a
prominent role in TME (73). Disabled-2 (DAB2) is considered to
be an immune-regulatory factor (74), and has recently been found
to be involved in the regulation of tumor-related signaling pathways
(75, 76). To sum up, TIPRGPI is likely to be a prognostic indicator
strongly related to the immune status in HCC.

Systematically exploring the hallmark gene sets between the low-
and high-risk groups provided us more insights into the
transcriptomic regulatory mechanisms of TIPRGPI in HCC. Those
hallmark pathways with an increased level in the high-risk group
were found to be relevant to well-recognized oncogenic signaling
pathways, includingPI3Kpathway,Wntpathway,Mycpathway, and
Cell cycle pathway (61). The similarities and disparities of mutation
status or CNV profiles gave a hint of oncogenes that linked to the
TIPRGPI model. These preliminary data strongly implied the
inherent associations between immune-derived signature and
oncogenic pathways and could provide more clues or new
strategies for candidate drug discovery in future studies.

In consideration of the importance of immune infiltration in
the tumor ecosystem, ssGSEA algorithm was used to estimate the
activities of TME cells in low- and high-risk groups. 11 types of
immune cells were significantly associated with the risk score. In
line with the survival analysis, a higher abundance of activated B
cell, effector memory CD8+ T cell, and activated CD8+ T cell in
the low-risk group might contribute to a better prognosis. These
results suggest that the poor survival outcomes of high-risk
group patients are probably due to the low infiltration of these
protective immune cells, which is also the main cause for the low
objective response rates to immunotherapy, agreeing with
previous observations (43, 77).

In the past decade, anti-cancer immunotherapies targeting PD-1/
PD-L1 and CTLA-4, have achieved positive response in HCC
patients (78, 79). However, as mentioned above, only a small
proportion of HCC patients can respond to immunotherapies, and
the main reason might be the limitations in their tumor immunity
status (80). To determine whether TIPRGPI was capable of
predicting the efficiency of anti-cancer immunotherapies in HCC
patients, we measured the expression levels of 50 common immune
checkpoints in low-andhigh-riskgroupsand foundmore thanhalfof
them were significantly associated with the risk level. It is widely
known that cancer immunotherapy restores or enhances the anti-
tumor functionofCD8+Tcells in the tumormicroenvironment (81).
Thus, we estimated the expression levels of the key molecules in two
CD8+ T cells anti-tumor related pathways (IFN-gamma (82) and
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m6A pathway (83)) in low- and high-risk groups, and the results
indicated that the majority of these molecules were expressed
differently between two groups of HCC patients. IPS, developed
from a panel of immune-related genes belonging to the four classes-
effector cells, immunosuppressive cells,MHCmolecules, and selected
immunomodulators,was a superiorpredictor of response to immune
checkpoint inhibitors (50).Our study showed that the low-risk group
had higher IPS, IPS-PD-11/PD-L1/PD-L2, and IPS-CTLA4 scores,
suggesting that HCC patients in the low-risk group might have a
better response to anti-CTLA-4 and anti-PD-1 antibodies. Also,
TIDE analysis showed that the low-risk group had a lower TIDE
score than the high-risk group in three different datasets. Taken
Frontiers in Immunology | www.frontiersin.org 16
together, these results suggested that patients in the low-risk group
might have a better response to immunotherapies andTIPGPI could
be a potential biomarker for predicting the efficiency of
immunotherapies in HCC.

As another application of the prognostic classifier, we
demonstrated the feasibility of searching candidate drugs by
combining the core target and structure-based approaches. A
PPI network was constructed for these signature genes, among
which CD44 was found to be the hub node. Interestingly, CD44
was a well-defined cancer stem cell (CSC) marker that was
involved in tumor initiation, epithelial-mesenchymal transition
(EMT), and therapy resistance in multiple types of cancer.
A B

C D

E F

FIGURE 10 | Putative docking models of the six candidate drugs and the core target using molecular docking analysis. 3D structures and binding modes showing
the formed hydrogen bonds between the predicted pocket of CD44 and Pentostatin (A), Allantoin (B), Mizoribine (C), Xylose (D), Deoxynojirimycin (E), and 6-
Hydroxyetodolac (F).
April 2022 | Volume 13 | Article 862527

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Tang et al. Tumor Immunological Phenotype-Related Gene Signature
Therefore, substantial efforts have been exerted to develop
effective anti-cancer drugs or antibodies by targeting CD44
(84–87). Preclinical and clinical trials of CD44 monoclonal
antibodies have also been performed to evaluate the
pharmacokinetics, efficacy, and drug-related toxicity in cancer
(88). In the present study, we identified six drugs with high
affinity to CD44 from a total of 9800 small molecules. Among
them, Pentostatin has been reported in clinical trials for chronic
lymphocytic leukemia (CLL) (89). Noticeably, Deoxynojirimycin
could exert anti-HCV activity through inhibiting alpha-
glucosidase (90). Although more in-depth investigations should
be conducted for the specific mechanisms of the small
compounds, our results indicated their potential in cancer
immunotherapy especially for the immunological high-risk
group of HCC patients.
CONCLUSION

In summary, we constructed an immune-related TIPRGPI model
to predict the prognosis and immunotherapy efficacy of HCC
patients using a novel “TIP genes”- guided strategy, and it was
well-validated from multiple aspects. Combining these results
and the linkage between TIPRGPI and oncogenic hallmark
pathways, our study provides new perspectives for the
identification of prognostic classifiers and even the discovery of
immunotherapeutic drugs. Notably, in the era, where
immunotherapy offers new hope for effective cancer treatment,
TIPRGPI provides certain guiding significance for clinical
judgment and personalized treatment.
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