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Chemotherapy response prediction 
with diffuser elapser network
Batuhan Koyuncu1,4,6, Ahmet Melek2,4,6, Defne Yilmaz3,4,6, Mert Tuzer3,4,6 & 
Mehmet Burcin Unlu3,4,5*

In solid tumors, elevated fluid pressure and inadequate blood perfusion resulting from unbalanced 
angiogenesis are the prominent reasons for the ineffective drug delivery inside tumors. To normalize 
the heterogeneous and tortuous tumor vessel structure, antiangiogenic treatment is an effective 
approach. Additionally, the combined therapy of antiangiogenic agents and chemotherapy drugs 
has shown promising effects on enhanced drug delivery. However, the need to find the appropriate 
scheduling and dosages of the combination therapy is one of the main problems in anticancer therapy. 
Our study aims to generate a realistic response to the treatment schedule, making it possible for 
future works to use these patient-specific responses to decide on the optimal starting time and 
dosages of cytotoxic drug treatment. Our dataset is based on our previous in-silico model with a 
framework for the tumor microenvironment, consisting of a tumor layer, vasculature network, 
interstitial fluid pressure, and drug diffusion maps. In this regard, the chemotherapy response 
prediction problem is discussed in the study, putting forth a proof of concept for deep learning models 
to capture the tumor growth and drug response behaviors simultaneously. The proposed model 
utilizes multiple convolutional neural network submodels to predict future tumor microenvironment 
maps considering the effects of ongoing treatment. Since the model has the task of predicting future 
tumor microenvironment maps, we use two image quality evaluation metrics, which are structural 
similarity and peak signal-to-noise ratio, to evaluate model performance. We track tumor cell 
density values of ground truth and predicted tumor microenvironments. The model predicts tumor 
microenvironment maps seven days ahead with the average structural similarity score of 0.973 and 
the average peak signal ratio of 35.41 in the test set. It also predicts tumor cell density at the end day 
of 7 with the mean absolute percentage error of 2.292± 1.820.

Tumors need their blood supplies to grow beyond the size of 1–2 mm3 in diameter and meet the needs of oxygen 
and other nutrients. For this reason, tumors stimulate angiogenesis, a process in which tumors form the new 
blood vessels from pre-existing ones by secreting the various growth factors and, most importantly vascular 
endothelial growth factor (VEGF). The angiogenic switch between proangiogenic and antiangiogenic factors is 
activated for tumor progression and metastases1. Due to tumor-induced angiogenesis, the newly developed ves-
sels have a leaky and disorganized structure accompanying a microenvironment identified by hypoxia, acidosis, 
and increased fluid pressure2. As a result, this structurally and functionally abnormal tumor vascular network 
leads to heterogeneous and inadequate drug distribution inside tumors.

The chaotic architecture, high vascular permeability of tumor vessels, and lack of functional lymphatics 
lead to elevated interstitial fluid pressure (IFP), creating a barrier for the transport of therapeutic agents and 
nanoparticles3,4. IFP is uniform across the tumor almost equal to microvascular pressure (MVP), but it drops 
precipitously at the tumor boundary. Therefore, the absence of a pressure gradient along the vessels hampers the 
penetration of cytotoxic drugs to the interior parts of tumors transported by convection3.

Antiangiogenic agents are mainly utilized to prevent tumor growth in size or metastases to another organ 
by depriving the tumor of the blood supplies it needs. Normalization of tumor vasculature by using antiangio-
genic agents is a widely used treatment modality in cancer therapy. Antiangiogenic agents maintain the balance 
between proangiogenic and antiangiogenic factors, similar to healthy tissues. Furthermore, these agents normal-
ize the structure and function of the tumor vascular network transiently by inducing reduced vessel diameter 
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and decreased vessel wall permeability. This process triggers tumor vessels to be more useful for the delivery of 
drugs as well as oxygen and nutrients to the targeted cancer cells2,5. Vascular normalization improves convec-
tive transport of drug particles with a decrease in IFP, thereby inducing pressure gradients across vessel walls1,6.

Antiangiogenic agents can act directly on the tumor vasculature7; also, several preclinical and clinical studies 
show that the application of antiangiogenic agents together with chemotherapy drugs provides beneficial results 
with increased therapeutic outcomes8–10. The combination therapy can enhance the delivery of therapeutic 
agents to the interior parts of tumors6. Normalization is a transient process meaning there is a time window for 
vessel normalization to occur. For this reason, chemotherapy drugs should be administered carefully within 
this window to benefit from improved vascular conditions11. Moreover, the excessive application of antiangio-
genic agents for more extended periods brings about vessel pruning, which decreases the outcome of combined 
therapies12,13. Therefore, the appropriate timing and dosing of the agents should be carefully adjusted to improve 
the functionality of blood vessels, as well as the delivery of anticancer drugs to tumor cells.

In cancer therapies, mathematical models are commonly studied to simulate the delivery of cytotoxic drugs 
and to understand the relations between tumor microenvironment and drug delivery. Different approaches to the 
modeling of tumor vasculature and angiogenesis have been suggested to study the applications of antiangiogenic 
agents combined with chemotherapy drugs. By using discrete vasculature models, the delivery of chemotherapy 
drugs to tumors and treatment response have been extensively investigated14–17. In addition, in 2D and 3D blood 
flow models, the use of antiangiogenic agents and their effects on tumor response has been studied by Stephanou 
et al.18. Normalization is also simulated to investigate its effects on blood flow and the combination of antian-
giogenic agents with cytotoxic drugs13,19–21. In addition to mathematical models, angiogenesis imaging is largely 
studied to examine tumor growth, characterization of tumor vasculature, and the response of the therapies. 
Employing various imaging modalities such as computer tomography (CT) and magnetic resonance imaging 
(MRI) gives an insight into the progression of tumors and vascular structures22,23. Additionally, photoacoustic 
imaging is exploited to monitor tumor angiogenesis due to its higher contrast and spatial resolution24–26. Besides, 
it is feasible to detect early tumor growth and vascularization and to monitor the progress of antiangiogenic 
treatments27,28.

Early tumor response prediction, a measure of the effectiveness of treatment, is crucial in anticancer therapies 
to determine appropriate treatment schedules, apply the optimal drug dosages to patients, and increase patient 
survival. In this regard, to develop successful models for tumor response prediction, it is vital to monitor the 
distribution of cytotoxic drugs and to evaluate the tumor response to therapies in advance. Response predic-
tion problems are often formulated by developing mathematical models benefiting from reaction–diffusion 
frameworks29–31. These models are capable of modeling the tumor response to an extent, but they are generally 
deterministic models driven by a limited number of parameters that might constrain the model to comprise the 
inherent tumor growth patterns. However, several studies in deep learning outperform the traditional approaches 
in various tasks such as tissue classification, tumor segmentation, and tumor growth prediction32–35. A convo-
lutional neural network (CNN) is developed by Urban et al. to classify the images of vascular networks taken 
before and after various antiangiogenic drug applications in vitro36. In another study led by Ha et al., a CNN 
algorithm is used to determine the chemotherapy response prediction in patients with breast cancer. The breast 
MRI dataset is utilized as a baseline, and the treatment response before the application of chemotherapy drugs 
is predicted37. Positron emission tomography (PET) and CT images from different types of cancer are benefited 
in recent studies to develop CNN models that have the potential to predict the response of chemotherapy with 
high sensitivity38,39.

Deep learning allows us to build computational models to learn representations of data with multiple levels 
of abstraction for the given task40. For instance, a feed-forward neural network is a function approximation that 
maps input data to output data. The function is formed by composing simpler non-linear functions where each 
function provides a new representation of input data41. After extracting the information out of the input data, 
the model amplifies the essential features for a given task such as classification, segmentation, and regression. 
Convolutional neural networks, a neural network type, perform convolutions over the input by using the given 
number of filters, which can learn the spatial and temporal dynamics in the image data40. They are robust to 
overfitting due to the convolution operation properties, which reduces the full connection of the network. These 
models have applications in image42 and video recognition43, medical image analysis, and image processing44. By 
employing CNNs, models can be built for spatial and temporal forecasting problems in an end-to-end manner 
in the presence of sufficient data.

Tumor response prediction can be formulated as a spatio-temporal forecasting problem under the effects of 
interventions. Interventions can be described as drug injections. Therefore, the forecasting problem is equiva-
lent to modeling the tumor microenvironment during the ongoing treatment. The tumor microenvironment 
can be described with tumor density, vasculature, interstitial fluid pressure (IFP), antiangiogenic treatment, 
chemotherapy maps, and drug dosages from the ongoing treatment. The model, denoted by F, takes tumor 
microenvironment maps Xt and drug scalars St as inputs at time t and predicts future tumor microenvironment 
maps Xt+1 at time t + 1 . The predicted future tumor microenvironment maps allow us to investigate tumor 
growth and shrinkage patterns as well as drug diffusion maps, which are the key indicators of treatment efficiency.

In this study, we develop a deep learning model, which aims to capture the tumor response behavior con-
ditioned by the ongoing treatment schedule. Our study suggests that deep learning models can be helpful in 
assessing tumor growth and drug response in the scheduling of cytotoxic drugs. Since the required input data 
such as tumor density, IFP, vasculature, and drug maps is hard to collect from clinical patients for various reasons, 
we use the synthetic data from the mathematical model built in our previous paper21. Therefore, the proposed 
deep learning model F encapsulates the non-linear partial differential equations (PDEs) that govern the spatio-
temporal dynamics of the tumor microenvironment. The model consists of multiple CNNs. Our motivation to 
use CNNs is based upon two key reasons; CNNs can extract coupled spatial features from multichannel inputs 
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and utilize the spatial features to predict future microenvironment maps. In the end, our model uses tumor 
microenvironment channels and drug scalars as inputs and predicts future tumor microenvironment maps that 
may assist to find appropriate scheduling and dosages of the combination therapy for patients.

Results
Our deep learning model aims to predict chemotherapy response by outputting future tumor microenvironment 
maps. The proposed model, Diffuser-Elapser Network (DENT), consists of seven submodels where each of which 
is a CNN. Model specifications and training procedures can be found in the Methods section.

The DENT model takes input tensors describing the current tumor microenvironment state, consisting of five 
channels, namely tumor density, vasculature, IFP, antiangiogenic drug, and chemotherapy drug maps accom-
panied by chemotherapy and antiangiogenic drug dosages, and predicts future tumor microenvironment maps. 
The model can use its predictions as its next inputs. Since the model predicts future tumor microenvironment 
maps, we use two image quality evaluation metrics, which are peak signal-to-noise ratio (PSNR) and structural 
similarity (SSIM)45. PSNR represents a measure of the quality of prediction by calculating the ratio between the 
square of maximum fluctuation among pixels in the ground truth image and MSE between ground truth and 
predicted images. SSIM measures the perceptual difference between two images in terms of structural informa-
tion in the images. In this method, ground truth images are considered as references that have reference quality, 
and the quality of another image is measured by comparing it with the initial one. SSIM is mostly applied to 
improve or track the perceptual metrics based on the structural information; on the other hand, PSNR relies 
on estimating the pixel-wise error. Both metrics are unitless quantities. The PSNR score approaches infinity as 
the MSE approaches zero. The range for an SSIM score is the interval of [−1, 1] . A higher score denotes better 
prediction quality on both metrics.

In the study, we first investigate the performance of the model on predicting future tumor microenvironment 
maps. To give an insight, we pick a synthetically generated case that contains a patient’s tumor microenviron-
ment maps during treatment. The tumor microenvironment maps consist of five channels correspond to tumor 
cell density, vasculature, IFP, antiangiogenic drug diffusion, and chemotherapy drug diffusion maps. The input, 
ground truth, and predicted tumor microenvironment maps during the treatment are presented in Fig. 1. We 
prefer eight days-long cases so that we can compare our predictions with the previous simulation findings21, 
which were limited to simulating 8 days starting from the initiation of therapy. The patient receives treatment 
between day 21 and day 28. The application of the antiangiogenic drug is at the end of days 21, 23, 25, and 27, and 
the chemotherapy drug is at the end of days 23, 25, and 27. Our model takes the tumor microenvironment maps 
just before the initiation of therapy as input and predicts the future tumor microenvironment maps by taking its 
outputs as new inputs. The predicted tumor microenvironment maps show the effects of ongoing treatment on 
the tumor microenvironment. A qualitative assessment of Fig. 1 shows that our model successfully predicts future 
tumor density, vasculature, IFP, antiangiogenic drug, and chemotherapy drug maps during ongoing treatment.

In the experiments, we use 135 test cases from three different patients. The cases included five different therapy 
initiation days and nine different dosage combinations of antiangiogenic and chemotherapy drugs. Therefore, 
the cases differ according to the days of initiation of treatment, applied drug dosages and patient characteristics. 
A case corresponds to a tensor of 8 days-long tumor microenvironment maps accompanied by synthetically 
generated drug scalars using a mathematical model21. The consecutive frames correspond to time steps from 0 
to 7 and are separated by a day. The five channels represent tumor cell density, vasculature, IFP, antiangiogenic 
drug diffusion, and chemotherapy drug diffusion maps. Drug scalars indicate the dosage for drug insertion in 
each time step if there is. The insertion schedule is the same for all cases; the antiangiogenic drug is inserted at 
the end of time steps 0, 2, 4, and 6, and the chemotherapy drug is inserted at the end of time steps 2, 4, and 6.

By using completely new cases to test our model, we assure that the model has not see the test data before. 
Each forward step of the DENT model is trained to predict tumor maps in the next time step, which is a day 
ahead. The average PSNR and SSIM scores are shown in Fig. 2 over the test set. We see that our model manages 
to predict future tumor microenvironment maps up to seven days ahead with the average structural similarity 
score of 0.973 and the average peak signal ratio score of 35.41. The decreasing trends in SSIM and PSNR scores 
over time are expected as the prediction error is accumulated in each forward step in time. We also observe 
decreases in average SSIM and PSNR scores at time steps 3, 5, and 7 which correspond to the one-day ahead 
predictions following drug injections. Therefore, a possible reason behind these fluctuations may be the chal-
lenges in the drug insertion processes.

We next examine if the model encapsulates the tumor growth and shrink patterns during the treatment by 
calculating a dimensionless metric called tumor cell density, C. Tumor cell density over the whole tumor shows 
the effectiveness of ongoing treatment. It is calculated by averaging the pixel values after thresholding the pixels 
of the tumor density map as performed in the previous study21. We compare the tumor cell density of ground 
truths, Cgt , and predictions, Cpred , over the time steps. For the selected patient case in Fig. 1, ground truth and 
predicted tumor cell density values during treatment are presented in Fig. 3. We calculate the absolute percentage 
error between Cgt and Cpred for 135 test cases which are shown in Table 1. The mean absolute percentage error at 
the end of day 7 is 2.292± 1.820 , indicating that our model encapsulates the tumor growth and shrink patterns 
under the effects of ongoing treatment. It can be seen that the standard deviation of error increases over time 
since the error accumulates in each prediction.

Discussion
In this study, we build a deep learning model designed to solve the chemotherapy response prediction prob-
lem in a proof of concept setting. The model is trained with simulation data that reflects the biological aspects 
of the tumor microenvironment, including tumor growth and angiogenesis20,21. The parameters used in this 
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Figure 1.   The synthetically generated tumor microenvironment maps of the example patient. The patient 
receives treatment between days 21 and 28. The application of the antiangiogenic drug is at the end of days 21, 
23, 25, and 27 while the chemotherapy drug is applied at the end of days 23, 25, and 27. Drug scalars A and d 
have the values of 0.6 and 0.8 respectively. The model takes initial tumor density, vasculature, IFP, antiangiogenic 
drug, and chemotherapy drug maps as an input (on the top). Ground truth maps that show the ongoing 
treatment from day 22 to day 28 (on the left). Predicted maps that are iteratively generated from day 22 to day 
28 (on the right). (In the figure, we present zoomed version of the center of the vasculature maps on the bottom 
right corner and the scalebar represents the scale of the pixel values of the tumor microenvironment maps.)

Figure 2.   Frame wise average SSIM scores (on the left) and PSNR scores (on the right) over the 135 test cases.
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mathematical model are calibrated and the simulation results are validated by experimental studies in the lit-
erature. In order to adjust the parameters related to the kinetics of tumor cell growth and vascularization, the 
experiments of Winkler et al.8 studying glioblastoma xenografts that grow in the mouse brain are utilized. The 
model has a dynamic vascular structure that shows the properties of tumor vessels and inherent vessels in the 
tissue. The resulting vessel density is compatible with the study of46, with decreasing vascular density towards 
the tumor center due to increased tumor cell density in that region. Moreover, it is found that IFP increases 
up to the MVP levels throughout the tumor and it drops sharply around the tumor rim very similar to various 
experimental studies (3,4,47). In the model, antiangiogenic agents are administered in various treatment regimens 
in combination with large-sized chemotherapy drugs, the distribution of which is mainly dependent on convec-
tion. Drug accumulation is mostly observed in the tumor periphery in the simulations, as there are low IFP levels 
in this region. The results are validated by various experimental studies examining the drug distribution of large 
drugs, showing that large drug accumulation is mainly observed in peripheral areas46,48–51. Here, the proposed 
deep learning model can predict chemotherapy response to tumor structure over a flexible period via iterating 
for a chosen number of times. Our model operates on a total of five channels: the maps of tumor cell density, 
vasculature, interstitial fluid pressure, and antiangiogenic and chemotherapy drug diffusions. The predicted 
maps show the spatial and temporal effects of ongoing treatment on tumor microenvironment maps. The model 
can take its outputs as inputs, go further in time, and predict the following state of the tumor by iterating this 
process as many times as required. In these iterations, there is an option of drug injection fed into the model as 
an input, if it is in the treatment schedule. To include the injection step in the model, the drug diffusion maps on 
the tumor structure are predicted, then these maps are used for the next tumor state prediction in combination 
with the other inputs such as tumor cell density, vasculature, and interstitial fluid pressure maps. To evaluate the 
predictive capabilities of our model, we track PSNR and SSIM scores calculated between the ground truth and 
predicted tumor microenvironment maps during the treatment. In a study by Teuwen et al.52, a deep learning 
model is utilized to synthesize digital breast tomosynthesis, which can be used to detect early breast cancers. 
When the model uses breast CT images, it has an SSIM score of 0.93. Chaudhari et al.53 use 3D convolutional 
neural networks to perform the resolution-enhancement of MRI scans. The outputs of the proposed model 
are compared with the other models using SSIM and PSNR metrics. A study by Zeng et al.54 utilizes CNNs to 
reconstruct super-resolution single and multi-contrast brain MRI scans. Their proposed model for multi-contrast 
super-resolution cases has the highest average PSNR and SSIM scores relative to the other methods. Uzunova 
et al.55 use patch-based generative adversarial networks to generate high-resolution 2D and 3D medical images. 
Their model achieves SSIM scores of 0.733 and 0.711 for thorax CT and X-ray datasets, respectively. Our model 
can predict future tumor microenvironment maps up to 7 days with the average SSIM score of 0.973 and the 
average PSNR score of 35.41 at the end of day 7. We have assessed the tumor cell density among the entire pre-
dicted tumor density Cpred and compared it with the ground truth cell density Cgt . To obtain the values of cell 
density for both the predicted tumor and the ground truth tumor, we have used the same method as21, merely 
averaging the pixel values that are above a threshold value. We use the percentage error between Cpred and Cgt 
to evaluate the performance. The model predicts tumor cell density at the end of day 7, with the mean absolute 
percentage error of 2.292± 1.820.

Figure 3.   The comparison of tumor cell density values for ground truths and predictions through time steps 0 
to 7 for the example case. The tumor cell density at time step 0 corresponds to the tumor cell density of input. 
(The application of the antiangiogenic drug is at the end of time steps 0, 2, 4, 6 and chemotherapy drug is at the 
end of time steps 2, 4, 6.)

Table 1.   Mean absolute percentage error (MAPE) between ground truth and predicted tumor cell densities 
over days for the test cases.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

MAPE 0.152± 0.117 0.198± 0.151 0.681± 0.584 1.084± 0.782 1.402± 1.210 2.048± 1.425 2.292± 1.820



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1628  | https://doi.org/10.1038/s41598-022-05460-z

www.nature.com/scientificreports/

Chemotherapy response prediction aims to successfully predict whether the patient will respond to treat-
ment, depending on the tumor characteristics of the patient. Current approaches to chemotherapy response 
prediction are mainly based on classification models. A recent study56 focuses on the prediction of lung cancer 
treatment response for patients treated with chemoradiation. By analyzing time-series CT images of patients, 
the survival probability and cancer-specific outcomes have been predicted. In another study by Ha et al.37, it is 
aimed to predict the effectiveness of neoadjuvant chemotherapy (NAC) response by using a breast MRI tumor 
dataset. Patients are classified into three groups as complete, partial, and no response, based on their response 
to NAC treatment. Although these classification-based models predict chemotherapy response to some extent, 
their predictions lack the spatial and temporal information that provides the necessary explanations behind the 
predictions. For instance, providing maps of future tumor microenvironment states after the treatment can give 
clinicians an insight to reschedule the treatment planning process. Thus, there is a challenge in building models 
that provide detailed information in the chemotherapy response prediction task, which leads us to the modeling 
of the tumor microenvironment.

On the other hand, mathematical models rely on nonlinear PDEs that simulate the dynamics of the tumor 
microenvironment while considering the effects of treatments. These models enable us to observe the diffusion 
of the chemotherapy drug to tumor cells via the normalized vasculature network, and the effectiveness of the 
applied treatment by producing maps of the future tumor microenvironment states. This approach may eliminate 
the main drawback of the class-based chemotherapy response prediction models, which is the lack of insight 
behind the predictions. A recent study21 presents a mathematical model to simulate the tumor state according to 
the previous tumor state and the drug diffusion inside the tumor. In each iteration of the model, a predetermined 
theoretically thirty-minute gap period proceeds and the subsequent tumor state is calculated. This allows the 
model to output the tumor states with a time resolution of thirty minutes, which is suitable for comprehensively 
studying tumor shrinkage or growth under the effects of ongoing treatment. The model is deterministic, which 
means differential equations, predetermined biophysical factors, and constraints are utilized. In potential clini-
cal use, this may prevent the model from making correct interpolations since these factors and constraints may 
vary from patient to patient as opposed to the fixed values used in the simulation. Capturing these factors and 
constraints from patient data is essential to predict patient-specific chemotherapy responses. The calculations in 
the simulation are at the pixel level, and the model cannot capture the detailed physical structure of the tumor 
and recognize any special conditions, such as detecting the tumor type or distinguishing smaller parts of the 
tumor. Since the coefficients used in the differential equations are constant and non-learnable, a deterministic 
model cannot learn from clinical data and be precise enough for clinical use, making it impossible to generalize 
over thousands of patients.

In the wake of these limitations in the literature, we propose a deep convolutional model. The model simu-
lates tumor microenvironment maps that encapsulate spatio-temporal effects of the ongoing treatment such 
as, tumor growth and shrinkage patterns, along with drug diffusion maps. The model outputs future tumor 
microenvironment maps that fill the descriptive information gap in classification-based response prediction 
models. The sequence of the predicted maps indicates the response to the therapy in the daily regimen. The model 
predictions reveal insights about the effectiveness of the therapy schedule and drug dosages on patients before 
the application of the therapy. This might allow for better adjustment of schedules, use of the potent schedules, 
and elimination of the ineffective ones. Although mathematical models can simulate tumor microenvironment, 
they tend to neglect patient-specific tumor response patterns due to a limited number of parameters, constant 
coefficients, and deterministic rules governing the model. Since the proposed model is built with end-to-end 
learning, it can learn patient-specific tumor response patterns in the presence of sufficient data. The model may 
improve the personalization of treatment by extracting specific clinical features of a patient and making predic-
tions based on them.

Our model for the chemotherapy response prediction can provide insights into the treatment outcomes in 
clinical settings; however, some limitations should be eliminated with further study when it comes to clinical 
use. A limitation of the proposed model is to use 2D tumor microenvironment maps rather than 3D maps, 
which can better exploit spatial information of the tumor microenvironment. When the tumor microenviron-
ment maps miss the third spatial dimension, the true nature of the tumor cannot be reflected in detail, leading 
to an incomplete representation of the tumor microenvironment within the model. Therefore, 3D mathematical 
models of tumors57 or 3D scanning methods such as CT are the primary candidates of data sources to solve the 
incomplete environment representation problem. In addition to the third spatial dimension, tumors also have a 
continuous structure over the time dimension, that is, a continuous course of growth and shrinkage. It may be 
necessary to model the time dependencies between the sequential states of the tumor, assuming that the pattern 
of future tumor growth or shrinkage follows its past trend under constant conditions. The input should consist 
of temporal information of the tumor microenvironment maps to encapsulate the effects of time dependencies 
on a tumor microenvironment. The model can utilize the input sequence to reveal the features of patient-specific 
tumor dynamics. These features can be critical to include patient-specific tumor growth patterns and tumor 
aggressiveness in model predictions. Although our CNN-based model captures spatio-temporal dependencies to 
some extent, it is preferable to use long short-term memory (LSTM)58 networks with sequential inputs combined 
with CNNs. Convolutional LSTMs59 can be utilized to extract both spatial and temporal dynamic changes in a 
single network as they are already exploited in the tumor growth prediction problem60. The main challenge of 
this approach would be to acquire regularly timed and spatially aligned scans to generate sequential data.

The simulated cases used in our study differ by therapy initiation day, drug combinations used in the therapy, 
and unique patients imposed by the randomly initialized vasculature maps. However, all simulated cases share 
the same insertion schedule in which antiangiogenic drug therapy is initiated at the beginning of the therapy, and 
chemotherapy is started with a two-day delay. Both drugs are inserted every other day. Since our cases lack the 
variations in the insertion schedules, the model may be limited in encapsulating the effects of longer or shorter 
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time intervals between the initiation of antiangiogenic and chemotherapy treatments, or non-overlapping inser-
tion days of the two types of drugs. A possible solution is incorporating various realistic insertion scheduling 
scenarios in the cases.

Obtaining the training data from simulations is beneficial in a proof of concept study; however, the use 
of clinical training data is inevitable for a distinguished and genuinely working model. To ensure that a deep 
learning model can simulate and generalize the chemotherapy response in a real scenario, it is necessary to 
train a model with a reasonably large amount of clinical data with sufficient variations of treatment schedules. 
A crucial feature of a clinically applicable response prediction model is that it can make predictions in the same 
domain with clinical data such as MRI, CT, and PET scans. Each scanning technique captures a unique kind of 
information about the tumor microenvironment, highlighting a particular aspect of the biological structure. By 
using these scanning techniques, it is possible to obtain the maps of tumor cells, tumor vasculature61, IFP62 and 
cytotoxic drug distributions63,64. Various scanning techniques should be combined to feed the model’s input to 
accurately represent the tumor, thus introducing as many aspects of the tumor as possible. This variety of scan 
types would provide a complete representation of the tumor within the model, boosting prediction and simula-
tion capabilities.

Methods
The mathematical model for acquiring synthetic data.  In this study, a mathematical model of tumor 
built in our previous study21 is used to obtain the training and testing data sets. Non-linear PDEs are written in 
dimensionless form and utilized in the model to mimic the tumor and its microenvironment biologically.

The model incorporates tumor cell density and vasculature as well as their interplay, and consists of tumor 
cell density, vasculature, IFP, antiangiogenic agent and chemotherapy drug. The reaction–diffusion equations 
are used to describe the spatio-temporal distribution of tumor cell density and vasculature (see Eqs. 1 and 2). 
Tumor cell density and vasculature are denoted by n(x,t) and m(x,t), respectively. In Eq. (1), the first term on the 
right-hand side defines the diffusion of tumor cell density, where Dn is the diffusion coefficient, the second term 
models the tumor growth rate, where r is the growth rate and nlim is the maximum carrying capacity. When only 
these two terms are present, the Eq. (1) has two fixed points such that an unstable point at n = 0 where there is not 
any cell population and a stable point at n = nlim , the cell population approaches its maximal density. The third 
term couples the tumor cell density and vasculature in which αmn indicates the proliferation rate of tumor cells 
when tumor vessels are present, and the fourth term describes the relationship between the tumor cell density 
and the chemotherapy drug, here dr is the rate at which tumor cells are eliminated when chemotherapy drug is 
applied. Initially, tumor cells are assumed to be distributed by Gaussian.

Distinct to healthy vessels, tumor vasculature is a heterogeneous structure, having vessels with tortuous and larger 
pores. In the model, the Eq. (2) is used to represent the heterogeneous tumor vascular network and it includes 
the terms for the diffusion of vessels, the production of islands of vessels, the directed motion of vasculature to 
tumor cells, the production of tumor vessels due to tumor-induced angiogenesis, and the elimination of vessels 
by application of antiangiogenic agent, respectively.

To create vessel islands, a course-grained model is utilized in the model. The term m(x, t)(α + βm(x, t) in 
Eq. (2) has two stable fixed points at m = 0 and m = 1 indicating the presence and absence of vessels, respectively. 
Starting from a random and positively distributed initial configuration, vessels are evolved according to Eq. (2) 
to randomly distributed islands. Tumor-induced angiogenesis is represented by using the term βnm∇(m.∇n) 
implying that the vessels move to the interior regions of the tumor.

To describe IFP in the solid tumor, the Eq. (3) is used:

where the term �bm(x, t)[Pv − P(x, t)− σv(πc − πi)] is the fluid source from blood vessels to the interstitial 
space and �ℓP(x, t) is the drainage of fluid from interstitial space to lymph vessels. In the equation, �b and �ℓ are 
the hydraulic conductivities of blood and lymp vessels, respectively. The parameter Pv is the vascular pressure, P 
is the interstitial fluid pressure, σv is the osmotic reflection coefficient. The terms πc and πi indicate the capillary 
and the interstitial oncotic pressures.

The transport of the antiangiogenic agents is represented by the following diffusion equation (4). Here, the first 
term on the right-hand side is the diffusion of the antiangiogenic agents, where DA is the diffusion coefficient of 
the agents in tissue. The second term is the diffusion of the agents through vessels where �A is the transvascular 
diffusion coefficient of antiangiogenic agents, and Av is the concentration of the agents in plasma. The third 
term is the drainage of the agents into the lymphatics, and the last term is the decay of antiangiogenic agents in 
tissue, where kA is the natural decay rate.

(1)
∂n(x, t)

∂t
= Dn∇

2n(x, t)+ rnn(x, t)(1−
n(x, t)

nlim
)+ αmnn(x, t)m(x, t)− drn(x, t)d(x, t).

(2)

∂m(x, t)

∂t
=Dm∇

2m(x, t)+m(x, t)(α + βm(x, t)+ γm(x, t)2)+ βnm∇ .(m∇n)

+ αnmn(1−
n(x, t)

nlim
)m(x, t)− Arm(x, t)A(x, t).

(3)−K∇2P(x, t) = �bm(x, t)[Pv − P(x, t)− σv(πc − πi)]− �ℓP(x, t),
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A convection–diffusion equation is used to present the delivery of chemotherapy drug molecules, which are larger 
particles (around 100 nm in size). In the Eq. (5), the first and second terms define the diffusion and convection 
of chemotherapy drugs in the tissue where Dd is the diffusion coefficient of drugs, and kE is the retardation coef-
ficient for convection in the interstitium. The third term is the convection of drugs through the vessels, where 
σd is the solvent drag reflection coefficient, the fourth and fifth terms are the drainage of chemotherapy drugs 
to the lymph vessels and the reaction of chemotherapy drugs with tumor cells, where dr is the reaction rate. The 
last term represents the decay of drugs in tissue, where kd is the natural decay rate.

Equations (4) and (5) are solved in steady-state since the time scale for the transport of antiangiogenic agent and 
chemotherapy drug is shorter than the time scale of the tumor growth. Antiangiogenic agent and chemotherapy 
drug are applied with bolus injection through an exponential decay function:

where A0 , d0 , tA1/2 and td1/2 stand for the initial plasma concentration and the plasma half-life of antiangiogenic 
agent and chemotherapy drug, respectively. No-flux boundary conditions are applied for antiangiogenic agent 
and chemotherapy drug.

Datasets.  The datasets used in this study are synthetically generated with a MATLAB simulation21 which 
mathematically models the tumor microenvironment, as described in the previous section. The simulation 
results are consistent with experimental studies, allowing them to be used for data generation46,48,50,51,65. Two 
datasets are used in the training of the proposed deep learning model DENT. In the training and validation sets, 
cases from five unique patients are used. A case corresponds to tumor microenvironment maps during eight 
days of combination therapy. The cases contain tumor microenvironment maps with a time resolution of 30 
minutes and have five different therapy initiation days in the range of day 14 to day 21. The combinations of three 
different antiangiogenic and chemotherapy drug dosages are used in treatments. The insertion schedule is the 
same in all treatments. The antiangiogenic drug is inserted at the end of time steps t0 , t2 , t4 , t6 and chemotherapy 
drug is inserted at the end of time steps t2 , t4 , t6 where t0 denotes the starting day of therapy. Considering the 
initiation days and drug dosage combinations, each patient has 45 cases. Training and validation datasets are 
formed by utilizing 225 synthetically generated cases with five unique patients.

The first dataset, employed by Diffuser, contains drug map changes in the presence of drug insertion, a com-
bination of antiangiogenic and chemotherapy drugs (Fig. 4). This dataset consists of 900 pairs. The first element 
is the tumor microenvironment tensors, accompanied by drug scalars that represent the dosage of the adminis-
tered drug. The second element is the drug diffusion maps tensor immediately after drugs are diffused. The size 
of tumor microenvironment maps in pairs is 151× 151 . It should be noted that we only consider the changes in 
drug diffusion maps between input and target tensors. Therefore, the time interval between the input and output 
tensors corresponds to an hour in which drugs are fully diffused in the tumor microenvironment. Using these 
pairs in the Diffuser dataset, we train our model to approximate another mapping function between input and 
target tensors, which is equivalent to the learning dynamics of drug diffusion given the tumor microenvironment 
maps and drug dosage scalars. Since there is not any considerable change in tumor density, vasculature, and IFP 
maps within an hour, we omit these channels in the target tensor.

The second dataset, used by Elapser, contains the changes in the tumor microenvironment in the absence of 
drug insertion between the input and target tensors (Fig. 5). The dataset consists of 1575 well-separated pairs 
of tumor microenvironment maps. The first element of the pair is the input tensor, and the second element is 
the target tensor. Both tensors comprise five channels sized by 151× 151 , which are tumor density, vasculature, 
IFP, antiangiogenic drug, and chemotherapy drug maps. Elements in a pair are separated by a day apart. Using 
these pairs, we train our model to approximate a mapping function that maps the input tensors to the target 
tensors. Since the time interval between the input and target tensors corresponds to a day, the task is equivalent 
to learning the dynamics of tumor states in a daily regimen.

Data preprocessing.  We aim to eliminate any numerical instabilities between the pixel values of the input 
channels and the drug scalars. All input images and scalars in the dataset are scaled with min–max scaling using 
the following function:

In the case of image inputs such as tumor density, vasculature, IFP, antiangiogenic and chemotherapy drug 
maps, xi is the pixel value, max(x) is the maximum pixel value, and min(x) is the minimum pixel value in the 
interesting channel. In the case of scalar inputs such as antiangiogenic and chemotherapy drug dosages, xi is 

(4)
∂A(x, t)

∂t
= DA∇

2A(x, t)+ �Am(x, t)(Av − A(x, t))− ŴlA(x, t)− kAA(x, t).

(5)

∂d(x, t)

∂t
= Dd∇

2d(x, t)+∇ · (kEd(x, t)K∇P )+ Ŵb(1− σd)dv − Ŵld(x, t)− drd(x, t)n(x, t)− kdd(x, t),

(6)Av(t) = A0e
−t/tA1/2 ,

(7)dv(t) = d0e
−t/td1/2 ,

(8)zi =
xi −min(x)

max(x)−min(x)
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drug dosage value, max(x) is the maximum value, and min(x) is the minimum value from the corresponding 
drug. The normalized value of xi corresponds to zi . After scaling, each pixel and scalar input is within the range 
of [0, 1]. It should be noted that each max(x) and min(x) value is derived from the training set to ensure that we 
do not use any information obtained from the test set.

The deep learning model.  Functionality of simulating for flexible period of time.  The proposed model 
takes the tumor microenvironment maps Xt and drug scalars St and predicts the future microenvironment maps 
Xt+1 at each forward pass. The time difference between t and t + 1 corresponds to one day. Since Xt and Xt+1 are 
both tumor microenvironment maps, we can feed the model with its prediction Xt+1 and St+1 to generate Xt+2 . 
This process can flexibly go on to obtain the tumor state at any time point Xt+x , where x is arbitrary and indicates 
the number of prediction steps.

DENT model as the composition of Diffuser and Elapser models.  The DENT model has the task of predict-
ing future tumor microenvironment maps considering the effects of ongoing treatment. The model consists of 

Figure 4.   An example pair from the Diffuser dataset is shown. The input and target tensors are presented 
in first and second rows respectively. The input tensor consists of five channels which are tumor density, 
vasculature, IFP, antiangiogenic drug, and chemotherapy drug maps accompanied by antiangiogenic drug 
dosage (A) and chemotherapy drug dosage (d). The target tensor consists of two channels, the antiangiogenic 
drug and chemotherapy drug maps. The time interval between input and target tensor is one hour.

Figure 5.   An example pair from the Elapser dataset is shown. The input and target tensors are presented in 
the first and second rows, respectively. Each tensor consists of five channels: tumor density, vasculature, IFP, 
antiangiogenic drug, and chemotherapy drug maps. The time interval between the input and the target tensor 
corresponds to one day.
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multiple CNN submodels to extract spatial features from multichannel tumor microenvironment inputs. The 
model utilizes these features to predict future tumor microenvironment maps, which is equivalent to learning 
the spatio-temporal dynamics of the tumor microenvironment. The model has two main tasks; the first task is to 
insert and diffuse the administered drug dosages in the given tumor microenvironment, and the second task is 
to predict future tumor microenvironment maps. Since these tasks are not overlapping, we build two submodels 
called Diffuser and Elapser networks that work independently of each other. These two models are integrated to 
obtain the DENT network which can iterate by taking its outputs as inputs. It can check if there is any injection 
and interfere with the iteration process in case of necessity.

The first part of the proposed model, the Diffuser network, contains two independent CNN submodels that 
insert and diffuse the scalar drug dosages given together with the input tumor microenvironment maps, generat-
ing new drug diffusion maps. It is a conditional network that is initiated if scalars are different from zero. In the 
case of zero drug dosage, the Diffuser network outputs the relevant drug map without any changes. The second 
part, the Elapser model, includes five independent CNN submodels that take tumor microenvironment maps as 
input tensor and predict future tumor microenvironment maps in a channel-wise manner. The Elapser model 
encapsulates the changes in each channel so that it can extrapolate to the future.

By creating a pipeline with the Diffuser and Elapser networks as shown in Fig. 6, we build a deep learning 
model that iterates for a given number of time steps. It takes its outputs as the inputs of the next step while iterat-
ing, which is suitable for performing intervention due to the drug insertion schedule.

Model specifications and training procedures.  As previously mentioned, the proposed pipeline con-
sists of two submodels. The first submodel, Diffuser network, injects and diffuses the scalar drug dosage given 
the input tensor, generating new antiangiogenic and chemotherapy drug diffusions maps. An input tensor for 
the Diffuser network contains tumor microenvironment maps accompanied by two dosage scalars, as shown in 
Fig. 4. We first tile these scalars to our input tensor so that the input has the shape of 7× 151× 151 . The Diffuser 
network includes two CNNs that are trained separately with the same input tensors. The first CNN approxi-
mates a new antiangiogenic drug diffusion map, and the second CNN approximates a new chemotherapy drug 
diffusion map. The second submodel, Elapser network, forecasts the future tumor microenvironment maps by 
extrapolating from the input tensor shaped 5× 151× 151 shown in Fig. 5. It outputs future tumor microen-
vironment maps as a five-channel image tensor. There is a separate CNN block to predict each channel of the 
future image tensor.

All CNN submodels are trained separately as their tasks differ from each other. In the training, we use 225 
synthetically generated cases from five unique patients. We perform a 5-fold cross-validation among the five 
patients. Therefore, there is not any spatial or temporal dependency between the training and validation sets. 

Figure 6.   The model diagram. The model takes the five-channel tumor microenvironment maps with 
antiangiogenic drug dosage (A) and chemotherapy drug dosage (d). The Diffuser submodel predicts new 
antiangiogenic and chemotherapy drug diffusion maps, then tumor density, vasculature, and IFP maps 
are concatenated with new drug diffusion maps. The Elapser submodel takes the concatenated tumor 
microenvironment maps and predicts tumor microenvironment maps of the next day. The model can predict 
tumor microenvironment maps over time, as it has the capacity to use the final prediction as an input.
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The submodels are trained with MSE loss for 200 epochs with early-stopping to avoid over-fitting. The activation 
function is ReLu and kernel size fixed as 5× 5 , whereas stride length is 1. After each layer, 2D batch normalization 
is performed except the final layer. We use ADAM66 optimizer with a batch size of 10 and initial learning rate 
of 10−4 . The number of layers and filters is selected based on the best performance, and increasing the depth of 
the network or the number of filters does not affect model performance. The model specifications are shown in 
Table 2. All models are built with Pytorch67 backend and trained on a single NVIDIA Tesla K80 GPU.
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