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Esophageal adenocarcinoma (EAC) represents an exemplar of obesity-associated

carcinogenesis, with a progressive increase in EAC risk with increased body mass

index. In this context, there is increased focus on visceral adipose tissue and associated

metabolic dysfunction, including hypertension, diabetes mellitus and hyperlipidemia, or

combinations of these in the metabolic syndrome. Visceral obesity (VO) may promote

EAC via both directly impacting on gastro-esophageal reflux disease and Barrett’s

esophagus, as well as via reflux-independent effects, involving adipokines, growth

factors, insulin resistance, and the microbiome. In this review these pathways are

explored, including the impact of VO on the tumor microenvironment, and on cancer

outcomes. The current evidence-based literature regarding the role of dietary, lifestyle,

pharmacologic and surgical interventions to modulate the risk of EAC is explored.

Keywords: esophageal cancer, adenocarcinoma, obesity, visceral obesity, metabolic syndrome, Barrett’s

esophagus, gastroesophageal reflux, tumor microenvironment

INTRODUCTION AND BACKGROUND

The past four decades have seen a marked rise in the incidence of esophageal adenocarcinoma
(EAC), with data from the United States demonstrating a continued rise in the overall incidence
from ∼0.4 per 100,000 in 1975 to 3.5 per 100,000 in 2015—an over 8-fold increase (1). These
reports occur against a background increase in the worldwide prevalence of obesity between 1975
and 2014 of 3.6-fold for males and 2.3-fold for females, with some 640 million adults, and 110
million children, exhibiting obesity globally (2). If these trends continue, it is predicted by the year
2025, the worldwide prevalence of obesity will rise to ∼18% for males and over 21% for females,
with Class 3 obesity in 6% for males and 9% for females (2).

EAC is an aggressive cancer and has traditionally been associated with poor oncologic outcomes.
However, prognosis for patients treated with curative intent have improved, with a combination
of treatments, including preoperative chemotherapy and radiation therapy followed by surgery
resulting in the landmark CROSS trial in a 47% 5-year overall (3). Encouragingly, for all patients,
the recent SURVMARK data indicate that 5-year survival from esophageal cancer almost doubled
in high income countries when the period 1995–99 is compared with 2010–14, with a survival
increase from 11 to ∼22% (4–7). A further major advance in esophageal cancer is an increased
identification of patients with early mucosal cancer, and its management by minimally invasive
endotherapy approaches. A major current focus consequently is both on an understanding of the
pathophysiology of carcinogenesis, and on further improvements in therapies to continue recent
improved trends.
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In this context, the link between obesity and EAC is of
major interest. The incidence rates have parallels, and moreover
epidemiologic studies have established a clear association
between obesity and the risk of EAC (8–14). For instance, the
International Agency for Research on Cancer (IARC) recently
reported a progressive increase in relative risk for EAC per
5 kg/m2 increase in BMI, suggesting a dose-response effect
(15). Two pathways may be relevant. First, visceral obesity
(VO) may promote GERD which if severe or protracted
is a risk factor for EAC (16, 17). Second, intriguingly,
via GERD-independent effects, common to obesity-associated
cancers such as pancreatic, uterine, colorectal, renal, liver,
and postmenopausal breast, including altered glucose and lipid
metabolism, and the elaboration by VAT of cytokines and
growth factors, and the promotion of systemic inflammation.
VO moreover is associated with metabolic dysregulation and
inflammation which links to predisposition to type 2 diabetes
mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD),
and cardiovascular disease (18). An emerging research focus is
how obesity-associated inflammation may impact on the key
hallmarks of cancer within the tumor microenvironment (TME)
(19, 20).

Metabolic syndrome (MetS) defines a distinct clinical
phenotype that is associated with VO, with added features
of T2DM, hypertension and hyperlipidemia, and commonly
NAFLD (21, 22). Patients with MetS may also exhibit micro-
albuminuria, endothelial dysfunction and a pro-inflammatory
and pro-thrombotic state, with increased circulating C-reactive
protein (CRP), tumor necrosis factor-α (TNF-α) and interleukin-
6 (IL-6). MetS is associated with increased risk of several cancer
types, in particular hepatocellular cancer (HCC), however it is
also associated with EAC possibly via the pathologic precursor
of Barrett’s esophagus (BE) (23).

Notwithstanding a clear epidemiologic association, the impact
of VO and MetS on oncologic outcomes of EAC remains
uncertain, with various data suggesting improved, worsened or
an unchanged survival and treatment outcomes (24–27). With
respect to esophageal cancer surgery, although VO may impact
operative outcomes through increased technical difficulty, and
associated comorbidities may increase perioperative risk, the
current literature are highly inconsistent in this regard (26),
possibly due to the differential impact of various stages of obesity
and comorbidity on perioperative risk, and the confounding
effect of malnutrition and loss of lean body mass, known as
sarcopenia, which is present in many patients with esophageal
cancer (28, 29). Across oncology a greater understanding of
obesity and tumor biology is sought, and a 2014 statement from
the American Society of Clinical Oncology (ASCO) commits
to addressing this issue through increased education, and the
delivery resources for healthcare professionals to tackle obesity
in partnership with patients, in addition to increasing provisions
for public health policy supporting the prevention and treatment
of obesity (30).

The present review aims to summarize key data outlining
the roles of obesity, VO, and the MetS in the pathophysiology
of EAC, with a focus on potential targets for prevention
and treatment.

EPIDEMIOLOGIC LINKS

Obesity and EAC
A strong and consistent relationship between EAC risk and
obesity has been reported in a number of large, prospective,
population-based studies. At present the largest pooled study
assessing the relationship between EAC risk and obesity includes
individual patient data from 12 population-based studies
including almost 4,000 patients with EAC and adenocarcinoma
of the esophagogastric junction (AEG), and over 10,000 control
subjects. This reported a dose-response effect of BMI with the
greatest risk among individuals with the most severe obesity (OR
= 4.76 [95%CI: 2.96–7.66] for class III obesity [BMI≥ 40 kg/m2];
OR = 2.79 [95% CI: 1.89–4.12] for class II obesity [BMI: 35–
39.9 kg/m2]; OR = 2.39 [95% CI: 1.86–3.06] for class I obesity
[BMI: 30–34.9 kg/m2]; and OR = 1.54 [95% CI: 1.26–1.88] for
overweight [BMI: 25–29.9 kg/m2], vs. BMI < 25 kg/m2) (8).

In the National Institutes of Health American Association
of Retired Persons cohort, BMI and waist-hip ratio (WHR, a
measure of central obesity) were associated with increased EAC
risk on multivariable analysis (31). Notably, even for normal
weight individuals, WHR was associated with an increased risk.
The most current systematic review and meta-analysis of VO
as a risk factor for esophageal cancer included seven studies up
to August 2016 including 913,182 patients (32). Higher waist
circumference (WC) and WHR were associated with greater risk
of esophageal cancer (WC: RR = 2.06, 95% CI: 1.30–3.24; WHR:
RR= 1.99, 95% CI: 1.05–3.75).

Metabolic Syndrome and EAC
MetS defines VO in association with metabolic consequences
such as T2DM and hyperlipidemia, and typically is associated
with a pro-inflammatory systemic and local response, and end-
organ consequences such as NAFLD. Studies have identified
an association between MetS and both BE and EAC. A
systematic review and meta-analysis of MetS and BE identified
12 publications including 355,311 subjects and reported a
significant association (OR = 1.23; 95% CI: 1.03–1.47). For
EAC, with MetS defined using a standardized metabolic risk
score, a significant association between the metabolic risk
score and EAC was observed exclusively in male patients (33).
Analysis of the SEER dataset also demonstrated that EAC
was significantly associated with MetS (OR = 1.16; 95% CI:
1.06–1.26) vs. control subjects. Interestingly, among males, the
association between EAC and MetS appeared independent of
prior GERD (34).

GERD, Obesity, and EAC
A key relevant pathway linking obesity with EAC is via
GERD, as long duration or severe GERD is associated with
an up to 40-fold increase risk of EAC (35). There is an
approximate 3-fold risk of GERD among patients with obesity
compared with normal weight individuals (36), and a doubling
of the risk of erosive esophagitis (37). VO in particular
is associated with increased distal esophageal acid exposure
and increased prevalence of hiatus hernia (38). Despite the
clear association between obesity and GERD, a large pooled
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TABLE 1 | Key adipose-related mediators.

Hormone Major secretion

site

Cell type Stimulus Receptor Site of action Main effects Impact in BE/EAC

Leptin White adipose

Stomach

Adipocytes

P-cells

Insulin Insulin, gastrin,

secretin via gastric

vagal fibers

Ob-R Hypothalamus

Immune cells

Vagal afferents

I-cells

Adipostasis, possible

post-prandial satiety hormone

↓ Energy intake

↑ Energy expenditure

↑ Sympathetic tone

↓ Glucagon

↑ Central sensitivity to

post-prandial satiety hormones

Adipokine effect

Adipokine

↑ Systemic inflammation

↑ T-helper 1

↑ TNF-α IL-2 IL-6 Direct effect

on esophageal mucosa

↑ Proliferation

↑ Invasiveness

↑ Migration

↓ Apoptosis

Insulin Pancreas β-cells Circulating nutrients

Glucose Amino acids

(e.g., l-arginine

via GPRC6A) Fatty

acids (e.g.,

ethanolamides via

GPR119, MCFA/LCFA

via FFAR1)

Insulin receptor Adipose Skeletal

muscle

Hepatocyte

Hypothalamus

Esophagus

Anabolism

↑ Glucose uptake in skeletal

muscle and liver

↑ Glycolysis

↑ Glycogen synthesis

↓ Glycogenolysis

↓ Gluconeogenesis

↑ Fatty acid synthesis

↑ Triglyceride synthesis

↓ Lipolysis

↓ Proteolysis

↓ Energy intake

↑ Leptin

↓ Adiponectin

↓ IGF binding protein 1 and 2

↑ IGF-1

↑ Mitosis

↓ Apoptosis

↑ Angiogenesis

Adiponectin White adipose

Placenta

Adipocytes Genetic and lifestyle

factors, reduced in

obesity

AdipoR1

AdipoR2

T-cadherin -

CDH13

Skeletal muscle

Liver Adipose

Central

nervous system

↑ Insulin sensitivity

↓ Gluconeogenesis

↑ Glucose uptake in skeletal

muscle and liver

↑ Lipolysis

↓ Inflammation

↑ Energy expenditure ↓ Energy

intake

Reduced systemic inflammation

↓ TNF-α

Opposes leptin

induced carcinogenesis

↓ JAK2 activation

↓ STAT3 activity

FFAR, free fatty acid receptor; GPR, G protein-coupled receptor; IL, interleukin; LCFA, long chain fatty acids; MCFA, medium change fatty acids; TNF-α, tumor necrosis factor alpha.
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study which examined the relationship between obesity, GERD
and risk of EAC, found that the size and direction of the
association between BMI and EAC was not significantly different
among patients with and without GERD, highlighting the
role of reflux-independent mechanisms in obesity-associated
esophageal carcinogenesis (39). There did appear however to
be a synergy between obesity and GERD with respect to risk
of EAC, as the risk of cancer among persons with GERD
was significantly greater than predicted using an additive
statistical model.

BE is a recognized precursor to EAC, and the current
consensus is that chronic acid and bile refluxate in the distal
esophagus leads to esophagitis, and triggers a metaplasia to
dysplasia to EAC sequence (40). Individuals with obesity are at
increased risk for the development of BE, with increased visceral
adiposity a key driver via greater GERD severity (35, 41). VO and
MetS are more commonly seen among patients with BE, with the
strongest relationship observed among those with long segment
BE, suggesting a possible role for VO in the pathogenesis of BE
(42). At meta-analysis, patients with VO were at increased risk
of developing BE (aOR = 1.98, 95%CI: 1.52–2.57) (39), and in
five studies this persisted even after adjustment for BMI (43–
46). In addition, among eleven studies wherein patients with
GERD served as controls, or adjustment for symptomatic GERD
was undertaken, a reflux-independent association was observed
between BE and VO (aOR= 2.04, 95%CI: 1.44–2.90) (41, 43, 47–
55). These data strongly indicate that the increased incidence
of BE among patients with VO occurs through both GERD-
dependent and -independent mechanisms, with the presence of
MetS an added risk factor.

KEY PATHWAYS AND MEDIATORS
LINKING OBESITY, METABOLIC
SYNDROME AND EAC

Acid and Bile, Local Inflammation, and
Carcinogenesis
At a cellular level, it appears that chronic exposure to gastric
refluxate initiates an inflammatory process within the esophageal
squamous epithelium, eventually leading to metaplasia and
dysplasia. Gastric acid, a principal component of gastric refluxate,
may directly influence the development and progression of
BE (56, 57). However, similar distal esophageal acid exposure
has been demonstrated among patients erosive esophagitis as
compared with BE, suggesting that additional factors may impact
the mutational burden seen in BE and EAC (57).

The impact of bile on esophageal carcinogenesis is of interest,
in particular in view of the association of BE with bile reflux, and
the epidemiologic link with VO. In rodent models, surgically-
induced bile reflux or gavage of bile into the esophagus produces
severe esophagitis, BE and EAC (58–60). This produces increases
in key local inflammatorymediators such as IL-6, IL-8, and COX-
2 (61, 62), resulting in oxidative stress and DNA damage, leading
to genomic instability and carcinogenesis (58, 62, 63). In vitro
studies demonstrate that esophageal squamous epithelial cells
exposed to bile acids exhibit altered gene expression profiles,

leading to intestinal metaplasia. The effects of bile acids on
esophageal squamous epithelium appear to be pH dependent
suggesting a synergistic effect between gastric acid and bile
with respect to the development and progression of BE to
EAC (58, 64, 65).

Esophageal injury by acid and bile may result in mutational
changes in BE, irrespective of grade of dysplasia (66–68).
Aneuploidy and driver gene mutations develop early in the
pathogenesis of EAC and are evident even among patients
with non-dysplastic BE. Killcoyne et al. (69) demonstrated that
using whole-genome sequencing from patients in BE surveillance
over up to 15 years, genomic signals could distinguish between
progressive and stable disease long before the development of
dysplasia, highlighting the importance of accumulated DNA
damage and genomic instability in the progression of BE to EAC
(Figure 1).

Systemic Inflammation
Adipose tissue comprises two main depots—subcutaneous
and visceral (70). Visceral adipose tissue (VAT), including
the omentum, mesentery, epiploic, epicardial, gonadal,
and retroperitoneal fat deposits, contains increased pro-
inflammatory macrophages and T cells, and growth factors,
relative to subcutaneous fat, and is a key driver of inflammation
and altered metabolism in obesity (71). The “portal hypothesis”
proposes that the relatively increased contribution of VAT to
metabolic dysfunction and end-organ damage may relate to
its drainage via the portal vein to the liver, with consequent
increased hepatic exposure to free fatty acids (FFA) and
pro-inflammatory mediators, with potential consequences
including NAFLD and insulin resistance (72). Notwithstanding,
the mechanisms involved in initiation of adipose tissue
inflammation are not completely understood.

Other proposed pathways include lipotoxicity and consequent
endoplasmic reticulum stress, toll-like receptor activation and
impaired oxygenation (73). Inflamed VAT may also contribute
pro-inflammatory cytokines. IL-6 excess may activate STAT3,
while increased TNF-α is associated with induction of c-myc
oncogene expression (74–76). In a study of patients with BE,
increased IL-6 and C-reactive protein (CRP) was associated
with progression to HGD/EAC (77). While in vitro studies have
demonstrated that culture of EAC cells with VAT or in adipose
conditioned medium results in up-regulation of markers of
proliferation, invasion and metastasis such as MMP-2 and−9,
and attenuates tumor suppressor p53 (78, 79), obesity is also
associated with increased markers of epithelial to mesenchymal
transition in EAC, highlighting the role of adipose-secreted
factors in the pathogenesis of EAC in obesity (80).

Adipokines
In addition to its central role as an energy store, VAT also
serves as an endocrine organ, producing adipokines, bioactive
molecules which have both metabolic and immune-regulatory
functions (Table 1). Leptin was first identified in 1994 as the
obese (ob) gene product in mice, and we now understand that
leptin serves an important role as an adipostasis hormone. Leptin
is secreted by white adipocytes, and exists in the circulation
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FIGURE 1 | Mechanisms linking visceral obesity and esophageal adenocarcinoma.

at levels proportionate to body fat mass (81–83). In rodent
models, exogenous leptin acts on the hypothalamus to reduce
calorie intake and increase energy expenditure (84). The key
functional importance of leptin in body weight homeostasis is
highlighted by the obese and hyperphagic ob/ob mouse which
lacks leptin, and the fa/fa Zucker diabetic fatty rat which exhibits
a leptin receptor mutation (85). Leptin deficiency and mutations
in the leptin receptor are recognized rare causes of monogenic
early onset, severe obesity (86, 87), and recombinant leptin
replacement therapy produces significant clinical benefit in these
patients (88).

Overall, leptin is a proinflammatory mediator, activating
proinflammatory cells, stimulating the T-helper 1 cell response
and production of IL-2, IL-6, and TNF-α, contributing to the
systemic inflammatory milieu in obesity (89). In addition to
its function as a proinflammatory cytokine, leptin appears to
act directly on the esophageal epithelium. BE and EAC cells
express the leptin receptor at high levels (90, 91), while in vitro
studies demonstrate increased proliferation, invasiveness and
migration, and reduced programmed cell death among EAC cells
treated with leptin (92). Upregulated leptin receptor expression
is associated with anthropometric and radiological measures of
obesity among patients with EAC, and with advanced tumor
and nodal stage (93). GERD-independent associations between
circulating leptin concentrations and the incidence of BE have
been observed in a number of studies (94, 95), highlighting the
role of adipose inflammation in the development of BE in obesity.

Adiponectin is a complement-like protein secreted by
adipocytes which exists in the circulation at levels inversely
proportionate to total body fat, and functions to increase insulin
sensitivity, and well as exerting anti-inflammatory effects, acting

in counterbalance to leptin (91, 92, 96, 97). Adiponectin appears
to inhibit leptin-induced carcinogenesis (92), reducing JAK2
activation and STAT3 activity (75, 92). In addition, adiponectin
receptors are expressed in BE and EAC (90, 91), with increased
expression associated with less advanced disease stage and
improved overall survival (91).

Insulin and Insulin-Like Growth Factor 1
Insulin circulates at concentrations proportionate to total body
fat, as a result of increasing peripheral insulin resistance with
increased fat mass (98). Insulin resistance in obesity occurs due to
excess circulating FFAs which produce a shift in hepatic glucose
metabolism, with reduced gluconeogenesis and glycolysis, and
increased lipid oxidation and storage. In obesity, high circulating
levels of insulin result in upregulation of insulin receptor
expression and associated changes in intracellular signaling
pathways which together produce impaired insulin sensitivity in
adipose, liver, and muscle (99, 100). Adipokines and circulating
reactive oxygen species (ROS) also increase insulin resistance,
reducing utilization of ingested nutrients and resulting in high
circulating levels of glucose and FFAs. This further increases
hepatic insulin resistance, increasing systemic inflammation via
activation of ROS and increases in IL-6, MCP-1, and TNF-α, and
reductions in adiponectin, in a self-perpetuating disease cycle
(100, 101).

Hyperinsulinemia and insulin resistance increase the risk
of BE among individuals without diabetes, an effect which
is mediated at least in part by leptin, and hence due to
increased adiposity (95). The association between type T2DM
and EAC and BE is inconsistent however (102), as BE risk
does not correlate with serum insulin levels among patients
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with established T2DM (95, 103). This may reflect uncoupling
of peripheral insulin resistance and insulin secretion among
patients with advanced metabolic disease, reflective of β-cell
dysfunction among patients with severe or longstanding T2DM,
and suggests that insulin itself may not be direct driver of the
inflammation-metaplasia-dysplasia sequence in EAC. However,
insulin may exert a pro-tumorigenic effect through a number of
downstream pathways. First, insulin promotes leptin secretion
and reduces adiponectin expression. Second, hyperinsulinemia
reduces insulin-like growth factor (IGF) binding protein 1 and
2, which usually binds and inactivates IGF-1, thereby increasing
free IGF-1 which is increased in VO. IGF-1 is increased in
EAC compared with BE and healthy control subjects (104, 105).
Activation of the IGF-1 receptor results in downstream signaling
that increases mitogenic, anti-apoptotic and proangiogenic
factors, which may result in tumorigenesis in EAC (96, 105,
106). In ex vivo models, patients with VO exhibit increased
tumor IGF-1 receptor expression, and this has been linked
to reductions in disease-specific survival (104). Together these
findings suggest that insulin resistance may increase the risk
of EAC through increased systemic inflammation, establishing
a self-perpetuating cycle of worsening metabolic dysregulation,
and through IGF-1 signaling, which may directly influence
carcinogenesis through mitogenic and anti-apoptotic effects
and promotion of angiogenesis. Interestingly, recent data from
genome-wide association studies (GWAS) indicate that genetic
variation in the IGF pathway, specifically cell surface receptors
GHR and IGF1R, may influence the risk of BE (107).

Sex Steroids
EAC is markedly more common in males, with a male: female
ratio of 9:1. Sex steroids exhibit an established direct role in
the pathogenesis of breast and endometrial cancer, however the
impact of sex steroids in EAC has been less well-characterized
to date (108, 109). One previous population study demonstrated
an association between circulating testosterone and DHT and
BE risk among male subjects, while estrone sulfate levels were
shown to be protective (110). However, a large study showed no
association between plasma hormone concentrations and BE or
EAC, but did observe increased risk of BE in association with
estrogens in younger men, and with free androgens among men
with higher waist-to-hip ratios (111). The latter findings may be
more consistent with the role of sex-steroid associated changes in
body composition as a risk factor for EAC.

The distribution of adipose tissue differs markedly between
males and females, and is regulated by sex steroids, particularly
estrogens, which may account in part for the difference in
incidence of esophageal cancer between males and females
(112, 113). Estrogens have been shown to impact adipocyte
differentiation, and also have key roles in the regulation of insulin
resistance and lipid metabolism. In males, adipose deposition
occurs preferentially in visceral compartment, while females
exhibit greater subcutaneous adipose tissue stores (114), however
we now know that the VAT in males also exhibits a markedly
different immunological landscape as compared with females.
Male VAT exhibits increased inflammation, and sex hormones
have been shown to regulate VAT inflammation, and T-cell

differentiation within the VAT, with potential implications for
obesity associated carcinogenesis (115). As such, the increased
incidence of EAC inmales may be related to increased risk factors
among males, including sex-steroid associated increases in VO
and adipose inflammation.

NOVEL VISTAS

Tumor Microenvironment
A current focus of much research in EAC is the impact of
obesity on the tumor microenvironment (TME), the cellular
environment in which a tumor exists. The TME includes
the extracellular matrix, fibroblasts, immune and inflammatory
cells, signaling molecules, and tumor-related blood vessels. A
number of processes are dysregulated both in VAT and within
the TME, highlighting potential links between obesity and
cancer, including hypoxia, inflammation, angiogenesis, energy
metabolism, and epithelial to mesenchymal transition (EMT)
(20). Obesity may impact the TME both locally, and systemically
via circulating adipokines, growth factors, and endocrine signals
associated with VAT inflammation. The abundance of adipocyte
stem cells is increased among individuals with obesity. In murine
models, cellular migration to tumor sites has been observed,
with differentiation into key cell types know to affect the
TME. Adipocyte stem cells may represent a source of cancer-
associated fibroblasts (CAFs), with interstitial fibrosis within the
TME altering cytokine signaling, and epithelial morphology and
differentiation (19, 20, 73). In the TME, obesity and inflammation
promote metabolic reprogramming and angiogenesis. Obesity
may also disrupt the cancer immunity cycle (116). This
model describes the fundamental antitumor immune response,
beginning with antigen presentation by maturing dendritic cells
on MHC Class I or II molecules to naïve T cells in tumor
associated lymph nodes, leading to T cell activation and clonal
expansion. CD8+ cytotoxic T cells will then recognize and
kill their target cells, resulting in release of tumor antigens
propagating the dendritic cell response. Obesity may enable
tumors to circumvent immunosurveillance, through hypoxia,
acidosis, and nutrient deprivation. Further understanding of how
obesity impacts the immune landscape within the TME to impair
antitumor immunity may offer novel treatment approaches for
EAC (117).

The Microbiome
There is compelling evidence that the gut microbiome plays a
central role in the regulation of inflammation and metabolism,
with recent data implicating dysbiosis in the pathophysiology
of a number of inflammatory and metabolic conditions, such
as inflammatory bowel disease, obesity and MetS. Interestingly,
the impact of dietary factors with respect to the development
of obesity and MetS may be mediated by host-microbiota
interactions, as germ-free mice do not develop metabolic
dysregulation in response to a high fat diet (HFD), however
fecal transplant to HFD-fed germ-free mice from obese mice
increases recipient adiposity (118). Further evidence for the role
of microbiota with respect to metabolic status derives from fecal
transplant studies, wherein transplant of enteric content from
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rodents with weight loss post gastric bypass surgery to sham
operated controls produced significant weight loss (119). Thus, it
appears the gut microbiome plays a key role in the regulation of
metabolism, and therefore its impact on carcinogenesis in obesity
is the focus of increasing research.

Obesity, HFD, and GERD may alter the composition of
the esophageal microenvironment, resulting in changes in the
resident microbiota. Early data indicate that individuals with
GERD and BE exhibit distinct patterns of microbiota (120,
121), with Gram-positive bacteria from the Firmicutes phylum
most abundant in the healthy esophagus, whereas increasing
proportions of Gram-negative anaerobes and microaerophiles of
the phyla Bacteroides, Proteobacteria and Fusobacteria (termed
a “type II” microbiome) are seen among patients with GERD
and BE (122). Fusobacteria have been shown to contribute to
the pathophysiology of colorectal cancer, through promotion
of the local inflammatory response. Rodent models examining
the impact of dietary modification now indicate that metabolic
parameters are strongly correlated with esophageal microbiota
signatures, and host esophageal gene expression. A number
of phyla including Fusobacterium, Rothia, and Granulicatella
showed consistent relationships across a range of metabolic and
gene markers, indicating that HFD can significantly alter the
esophageal microbiota, enriching bacterial species previously
shown to be associated with gastrointestinal carcinogenesis (123).
Further research is urgently required to better understand the
impact of shifts in the complex microbial ecology of the upper
gastrointestinal tract on metabolic health and carcinogenesis.

Common Genetic Risk
A considerable body of literature now supports the overall link
between obesity and several cancers, and a number of studies
have assessed whether this association may be explained in
part by common genetic variants (124–129). A prototypical
example is rs294364. This single nucleotide polymorphism (SNP)
is associated with the insulin receptor substrate 1 (IRS1) gene
and confers improved insulin sensitivity, fat distribution and
metabolism. Variants in IRS1 were recently assessed among
participants in the Swedish Obese Subjects (SOS) study (130),
a large case-control study which has yielded major insights
regarding long-term outcomes following bariatric surgery (131–
134). Variants in IRS1 were associated with improved insulin
resistance, and a lower incidence of cancer among patients
treated with usual care, but not those who underwent bariatric
surgery. The incidence of specific cancer types was not
specifically reported, and therefore generalizability to EAC
remains uncertain.

GWAS demonstrate that ∼35% of the risk of BE may be
explained by genetic variants, with a high genetic correlation
and polygenic overlap between BE and EAC, indicating that
common genetic pathways underlie the development of BE and
EAC (135). Early GWAS also demonstrated that variants in
genes involved in esophageal development, such as FOXF1, are
associated with increased risk of BE, in addition to variants within
the major histocompatibility complex locus on the short arm of
chromosome 6. Furthermore, for 29 of 40 SNPs associated with
obesity, the same allele increased risk of BE (136). These findings

have since been validated, with the association with variants
in FOXF1 now shown to be associated with EAC (137, 138).
Additional genes involved in esophageal development such as
BARX1, TBX5, and FOXP1 (137, 139, 140), and genes implicated
in inflammatory and oncogenic pathways such as CRTC1 and
GDF7 have also been identified as associated with increased risk
of BE and/or EAC (137, 139–141).

An SNP near the EIF2C3 has recently been reported to interact
with BMI to increase risk of BE (142). This gene encodes a protein
required for RNA-mediated gene silencing which modulates
short RNAs, such as microRNAs (miRNAs) or short interfering
RNAs and represses the translation of mRNAs complementary
to them. Similarly, several SNPs associated with miRNAs, non-
coding RNAs implicated in post-transcriptional gene regulation
whichmay be dysregulated in EAC, have been linked to increased
risk of BE and/or EAC. These included miRNA biogenesis genes,
gene loci, and miRNA targeted mRNAs, however no interaction
with genes implicated in obesity was identified (143). These
data provide evidence that multiple SNPs with small effect size
additively impact BE risk, and that common genetic variants may
underlie the observed epidemiologic association between obesity,
BE and EAC.

IMPACT OF OBESITY ON CANCER
TREATMENT OUTCOMES

Chemotherapy
Obesity may be associated with increased risk of chemotherapy
toxicity among patients with EAC. This is particularly
pronounced among patients with sarcopenic obesity, a
condition characterized by elevated BMI but reduced lean
body mass or skeletal muscle index on body composition
assessment (144, 145). For example, one study demonstrated
a 5.5-fold increased risk for dose-limiting chemotoxicity
among patients with sarcopenic obesity, with no increased
risk among normal-weight patients with sarcopenia (145).
Increased risk of dose-limiting toxicity may be due to reduced
volume of distribution in lean body mass relative to calculated
body surface area, with significant variation in the effective
volume of distribution in obesity (145, 146). In addition,
patients with obesity often exhibit a greater number of baseline
comorbidities, which may impact treatment tolerance (147, 148).
In some studies, patients with obesity were less likely to receive
neoadjuvant therapy despite a similar stage at presentation (149).
Future research may assess the role of lean body mass-based,
vs. conventional body surface area (weight) based, calculations
for chemotherapy dosing (for example NCT01624051), to
reduce treatment toxicity, particularly among patients with
sarcopenic obesity.

Surgery
Intuitively, obesity may increase the technical complexity
of major oncologic surgery, and metabolic dysfunction may
introduce added perioperative risk factors. Esophageal cancer
surgery is associated with significant morbidity, and anastomotic
leak, pneumonia, and atrial fibrillation are the most common
major complications. Patients with VO and/or MetS may
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have greater respiratory and cardiac comorbidity, and T2DM,
and reduced functional capacity, in particular with respect
to pulmonary physiology (147, 148). Baseline lung function
testing predicts postoperative pulmonary complications among
patients undergoing esophagectomy.Meta-analysis shows that all
measures of lung function are decreased among subjects with
obesity (150). A reported obesity paradox exists in pneumonia
unrelated to surgery, with an increased risk yet reduced or
unchanged mortality, and whether a similar effect may be
observed among patients with obesity undergoing surgery for
EAC requires further study (151).

While overall postoperative morbidity rates appear to be
similar among patients with obesity compared with normal
weight and underweight individuals, specific complications may
be increased among patients with obesity. A recent meta-analysis
reported a markedly increased risk of anastomotic leak, up to
35%, among patients with BMI-defined obesity, but otherwise
similar postoperative outcomes (26). A clear technical difficulty
may be the preparation of an optimal gastric conduit, without
tension. In addition, factors such as atherosclerosis and diabetes
may increase the risk of ischemia, particularly when compounded
by impaired pulmonary oxygen exchange (150). It remains to
be determined whether severe obesity, or obesity associated
with MetS, is associated with greater postoperative morbidity,
as compared with normal weight or mild obesity. Of note, VO
and MetS have been shown to be associated with an exaggerated
postoperative inflammatory response (152, 153).

Survival
Despite differences in tolerance to preoperative (neoadjuvant)
chemotherapy or chemoradiotherapy in esophageal cancer,
limited data suggest that obesity is associated with similar
response rates following neoadjuvant therapy (147, 154). In
comparative research using BMI as the measure of obesity,
several studies demonstrate that increased BMI is associated with
improved survival outcomes (148, 154, 155), with meta-analysis
showing significantly (RR = 1.17 [95% CI: 1.03–1.32]) better
survival among patients with obesity (26). Sarcopenic obesity
however be associated with adverse survival outcomes among
patients with esophageal cancer (156). For VA specifically, a
solitary study of 126 patients assessed its impact on survival
among patients with EAC and reported no impact of visceral
obesity above a median, but worsened outcomes with increasing
visceral obesity presented in quartiles, principally due to more
advanced clinical stage (157).

Insulin resistance, IGF-1, leptin, and IL-6 may be increased
among patients with MetS, and may negatively impact outcomes
for cancer as for cardiovascular diseases (158, 159). Meta-
analysis of survival outcomes according to the presence of MetS
among patients with gastrointestinal cancers demonstrated a
significant increase in mortality risk among patients with MetS
in prospective studies (HR = 1.64 [95% CI: 1.18–2.28]), studies
involving postsurgical patients (HR = 1.42 [95% CI: 1.06–1.92])
and those assessing cancer-specific survival (HR= 1.91 [95% CI:
1.45–2.52]) (160). However, no previous studies have assessed the
impact of MetS on survival outcomes among patients with EAC.

RISK MODIFICATION

Diet and Weight Loss
Mouse studies demonstrate that HFD is associated with the
development of esophageal dysplasia and adenocarcinoma,
associated with increased IL-8 and a shift in gut microbiota
(161). Despite this, few studies have examined the role of
dietary intervention for prevention of EAC or progression of
BE to EAC (162, 163). Observational data from the Netherlands
Cohort Study demonstrated that a Mediterranean diet was not
associated with reduced risk of EAC (164). The Look AHEAD
randomized controlled trial assessed the role of intensive lifestyle
intervention vs. conventional care with a primary outcome
measure of cardiovascular events. This study did not show a
reduction in cardiovascular events and was closed early after 10
years, despite weight loss of 8.6% compared with 0.7% at 1 year
and 6% compared with 3.5%, in the intervention and control
groups, respectively. However, follow-up of cancer incidence
between intervention and control groups is eagerly anticipated
(165). Future studies may advance our knowledge by utilizing
prospective diaries and validated dietary questionnaires and
recording of key confounders such as GERD and obesity.

Bariatric/Metabolic surgery is a highly effective intervention
for the treatment of obesity, resulting in sustained weight loss
and improvements in aspects of the MetS such as insulin
resistance and altered lipid metabolism (166). Approximately
70% of patients with T2DM experience remission after Roux-
en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), with
reductions in cardiovascular, all cause and cancer mortality
among patients with obesity who undergo bariatric surgery,
compared with best medical therapy (166–168). Patients who
underwent bariatric surgery in the Swedish Obese Subjects study
demonstrated reduced incidence of cancer (HR = 0.67 [95% CI:
0.53–0.85]) in long-term follow-up (169). Although this effect
appeared to be driven by reduced cancer incidence in women, the
young age of patients in the study and the relatively higher overall
incidence of obesity associated cancers in women (namely breast
and endometrial cancer) may have reduced the sensitivity of the
study to detect an effect for EAC. However, the significant weight
loss and improvements in glycaemia, reductions in circulating
insulin and improved systemic inflammatory milieu observed
after bariatric surgery may result in reduced EAC risk (170,
171). Additional factors such as reduced acid and bile reflux,
particularly after Roux-en-Y gastric bypass, may be associated
with reduced BE and EAC risk (172–174). Future studies may
delineate the interplay of factors impact BE and EAC risk among
patients following bariatric surgery, to aid procedure selection
among patients with baseline GERD.

Physical Activity
Reduced physical activity has been found to be associated
with increased risk of EAC in multiple studies (175, 176). A
large meta-analysis has demonstrated reduced EAC risk among
patients with greater physical activity, with evidence of a dose
response effect (177). As such, lifestyle interventions comprising
increases in physical activity may be useful as part of the primary
prevention of EAC among at-risk individuals. In this regard,
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the ongoing Exercise and the Prevention of Esophageal Cancer
(EPOC) study represents a randomized controlled trial including
a mixed aerobic and resistance exercise intervention among
men with BE who have obesity and live a sedentary lifestyle
at baseline. The primary outcome measure will be progression
of BE, with secondary outcome measures encompassing a
comprehensive metabolic assessment, GERD severity and indices
of cardiovascular fitness and strength (178). This trial will provide
empiric evidence to support exercise advice for individuals with
BE and will clarify whether the observed link between reduced
physical activity and EAC represents a causal relationship.

Proton Pump Inhibitors
A previous multicenter prospective cohort study demonstrated
reduced risk of BE progression among patients treated with
proton pump inhibitors (PPIs) over a median 5.2 year follow-
up period (179). A systematic review and Delphi consensus
found no strong evidence to support the use of PPIs or low-
dose aspirin for chemoprophylaxis in BE (180). Subsequent to
this the recent ASPECT trial was conducted at 84 centers across
the United Kingdom and Canada, and utilized a 2 × 2 factorial
design to assess the impact of high dose vs. low dose PPIs, with
or without aspirin, to assess a composite endpoint of all-cause
mortality, EAC or HGD among patients with BE. High dose PPI
was superior to low dose PPI (139 events in 1,270 patients vs.
174 events in 1,265 patients), with a number needed to treat
(NNT) of 34 for high dose PPI and a low rate of adverse events
(181). These data suggest that high dose PPIs are effective in the
prevention of EAC, HGD, and mortality among patients with BE
providing high level evidence to support their routine use. The
impact of obesity, in particular VO on this response, requires
further study.

Aspirin
Given the role of systemic inflammation in the pathogenesis
of BE and EAC, a key question is whether modulation of the
inflammatory response may prevent BE or its progression
(182). Observational data indicate a reduced incidence of EAC
among patients prescribed non-steroidal anti-inflammatory
drugs for another indication (183). This has prompted the
study of cyclooxyengase-2 (COX-2), a membrane-bound
glycoprotein involved in prostanoid synthesis, in BE-associated
carcinogenesis (184–186). Exposure to bile acids, acid and greater
adiposity are associated with increased COX-2 expression in
esophageal squamous mucosa. Similarly, expression of COX-
2 is significantly increased in BE and EAC compared with
normal mucosa (187, 188). Increased COX-2 signaling is
thought to predispose to carcinogenesis though resistance
to apoptosis, angiogenesis and proliferation, and increased
invasiveness. Importantly, elevated COX-2 expression has been
associated with adverse oncologic outcomes among patients
with EAC (189). However, a multicenter phase IIb randomized
controlled trial of the COX-2 inhibitor celecoxib demonstrated
no difference in the proportion of biopsy samples showing
dysplasia or cancer among patients with dysplastic BE at
enrolment (190).

Epidemiologic data indicates that aspirin may confer a
protective effect with respect to BE/EAC risk (184–186). Aspirin
is known to irreversibly inactivate COX-2, resulting in reduced
downstream production of prostaglandins and thromboxane A2.
The aforementioned ASPECT trial compared the addition of
aspirin to high dose or low dose PPI among patients with BE
and found that aspirin was not significantly better than no
aspirin (127 events in 1,138 patients vs. 154 events in 1,142
patients), however when participants using non-steroidal anti-
inflammatory drugs excluded, a significant beneficial effect was
observed with aspirin. Combined treatment with high dose PPI
and aspirin had the strongest effect, and the NNT for aspirin was
43 to prevent one event (all-cause mortality, EAC or HGD) (181).
As for PPIs, the impact of VO and MetS on response requires
further study.

Other Medical Approaches
Metformin has also been suggested as a possible therapeutic
to prevent obesity-associated cancers, by attenuating
hyperinsulinemia. A randomized controlled study of patients
with BE assessed the impact of metformin on levels of
phosphorylated S6 kinase (pS6K1), a marker of insulin pathway
activation. The study found no significant change in pS6K1,
and a trend toward reduced insulin levels and improved
insulin resistance, and there was no significant difference in
epithelial proliferation or apoptosis in esophageal biopsies.
As such current data do not support the use of metformin as
chemoprevention among patients with BE (191). Observational
population level data have suggested that exposure to statins
may be associated with reduced EAC risk (192). A previous
meta-analysis including 13 studies demonstrated a significant
28% reduction in EAC among individuals in receipt of statins,
with a 41% reduction in EAC risk among patients with
an established diagnosis of BE (193). However, the NNT
to prevent one case of EAC among patients with BE was
389, and therefore economic analysis concluded that statins
would only be appropriate for patients at high risk for BE
progression (194).

CONCLUSION

EAC is an exemplar of an obesity associated cancer, with the
International Agency for Research on Cancer (IARC) recently
reporting a progressive increase in relative risk for EAC for
each 5 kg/m2 increase in BMI, suggesting a dose-response effect
(15). Visceral fat is the key adipose compartment linking obesity
to carcinogenesis, through increased systemic inflammation,
insulin resistance, IGF-1, and immune cell alterations, as well as
promoting inflammation in the TME. In addition, obesity and
HFD modulate the gut microbiota, enriching bacterial species
known to be associated with gastrointestinal carcinogenesis.
Obesity, in particular sarcopenic obesity, is associated with
increased chemotoxicity among patients with EAC, likely due
to reduced effective volume of distribution relative to weight-
based dosing calculations. Postoperatively, obesity is associated
with increased risk of anastomotic leak, but other complications
appear to occur with similar frequency. The postoperative
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systemic inflammatory response is increased among patients
with VO; however, few studies have assessed the impact of
VO and MetS on postoperative outcomes. Among patients
with EAC, meta-analysis supports the presence of an obesity
paradox, whereby obesity is associated with increased risk for
development of EAC overall, but is also linked to favorable
survival outcomes. Mechanisms underlying this effect are
uncertain, and future work may delineate whether this represents
confounding by weight loss at diagnosis, or altered tumor
biology among patients with obesity-associated esophageal
carcinogenesis. Despite a significant body of evidence supporting
the link between VO, MetS, and BE and EAC risk, the role
of dietary, lifestyle and bariatric surgical interventions, and of
pharmacologic and pharmabiotic therapies, to modulate the
risk of EAC remains unclear and requires further clinical and
translational study.
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