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Abstract: We present an analysis of the electronic and plasmonic behavior of periodic planar distri-
butions of sufficiently wide graphene nanoribbons, for which a thorough ab initio investigation is
practically unfeasible. Our approach is based on a semi-analytical model whose only free parameter is
the charge carrier velocity, which we estimate by density-functional theory calculations on graphene.
By this approach, we show that the plasmon resonance energies of the scrutinized systems fall in
the lower THz band, relevant for optoelectronic and photonic applications. We further observe that
these energies critically depend on the charge carrier concentration, ribbon width, electron relaxation
rate, and in-plane transferred momentum angle, thus, suggesting a tunability of the associated
light-matter modes.

Keywords: graphene; graphene nanoribbons; plasmons; DFT; semi-analytical model

1. Introduction

Graphene, a sheet of carbon atoms packed in a honeycomb lattice, attracted huge
interest since it was first isolated in 2004 [1], because of its unique electronic, mechanical,
and thermal properties [2–5], not to mention the number of potential applications, ranging
from high-frequency electronics to smart coatings [6], along with envisaged environmental
benefits [7,8]. The most distinguished feature of graphene is the conic dispersion of its
electronic bands, or the so-called Dirac cones [9], which can be described by a massless
Dirac Hamiltonian [10]. Despite a tiny spin–orbit gap detected at a low temperature,
the Dirac cone model makes a reliable starting point for most photonic applications, based
on electron processes within ∼1.5 eV from the Fermi level. However, since graphene is
virtually gapless, a key interest for optoelectronic applications is on graphene-like objects
with an optical energy gap [11–13].

Nowadays, several top-down methods (e.g., oxidation–reduction [14,15] or liquid/
mechanical exfoliation [16–19]) and bottom-up methods (e.g., chemical vapor deposi-
tion [20] or epitaxial growth [21]) are available to prepare graphene and similar two-
dimensional (2D) materials. A widely used technique for bandgap engineering is cutting
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graphene along defined directions, thus, forming types of rectangular stripes with widths
of a few micrometers down to below the nanometer range [22–25]. These laterally con-
fined graphene objects, known as graphene nanoribbons (GNRs), keep a well-defined,
one-dimensional (1D) periodicity. On the atomic scale, they offer a variety of structural
configurations with precisely shaped edges, the most popular of which are the zigzag or
armchair types [12]. Earlier studies on GNRs larger than 10 nm established an inverse pro-
portional relationship between the bandgap and the GNR width [23]. This result boosted
further efforts in developing scalable processes to produce homogeneous and ultra-narrow
GNRs, e.g., by mechanically cutting exfoliated graphene [24], or patterning epitaxially
grown graphene [25].

From the theoretical standpoint, the tight-binding approach is sufficiently reliable to
model GNRs of widths larger than 10 nm, and related heterojunctions [26]. GNRs of smaller
widths, however, require more self-consistent methods. For example, the simplest nearest-
neighbor approximation predicts an armchair GNR to be a metal. On the other hand,
density-functional theory (DFT) shows that the same systems have a finite bandgap, which
decreases with increasing the GNR width [27,28]. The many-electron Green’s function
approach within the GW approximation [29] offers an even more accurate framework to
predict the band gaps of GNRs up to 2.4 nm wide.

One of the strategic interests in graphene and its derivatives is in photonic and opto-
electronic applications. In this respect, the dielectric properties of graphene were mainly
investigated by linear response theory in the random phase approximation (RPA). In par-
ticular, some strategies, based on time-dependent DFT (TDDFT), were sufficiently accurate
in characterizing its optical response and coupling with light [30,31]. This interaction is
mediated by collective oscillations quantized as plasmons, which in graphene have much
stronger confinement, larger tunability, and lower losses than more conventional plasmonic
nanoparticles [32]. Further theoretical and experimental studies proposed graphene as an
extraordinary platform to launch, control, manipulate, and detect plasmons [33–35].

In this work, we present a semi-analytical approach with the capability to elucidate the
bandgap and plasmonic responses of very wide GNRs (>100 nm), which cannot be handled
by ab initio atomistic strategies. Then, we discuss possible adaptations of the model to
narrower GNRs (<10 nm), as well as its useful application to explore the plasmon charac-
ter in recently synthesized GNRs. Our derivation is based on density-functional theory
computations embedded in the theoretical framework of Ref. [36]. The relevant parameter
is the Fermi velocity (vF), defined as the average group velocity of the charge carriers
around the Fermi energy, where the highest valence band (π) and the lowest conduction
band (π*) touch with conic dispersions [5]. We estimate vF by means of very accurate
DFT calculations. We first compute the plasmon dispersion relation using the two slight
asymmetric values of the group velocity obtained from the π and π∗, and compare it
to the reference value of vF = 106 m/s, thus, assessing the sensitivity of the approach.
Then, we complete our analysis by employing experimental results of vF. Finally, we study
the phenomenology of the computed plasmon dispersions and their dependence on charge
carrier concentration, electron relaxation time, and geometry.

The same approach may be adapted to study the electronic features and optical
responses of more sophisticated graphene-related or beyond-graphene materials [37–39].

2. Materials and Method
2.1. DFT Computations

The structural and ground-state properties of graphene were determined by plane-
wave (PW) DFT, within the Kohn–Sham (KS) formalism, as implemented in the Abinit
package [40].

The optimal geometry was obtained at the level of the local density approximation
(LDA [41]) and generalized gradient approximation (GGA [42]), combined with suitable
norm-conserving pseudopotentials to eliminate the core electrons [43]. In the procedure,
we fixed cut-off energy on the number of PWs to ∼680 eV, which ensured well-converged
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results of the group velocities of the charge carriers (Table S1). We replicated the graphene
planes over an out-of-plane distance L of 15 Å, which results in a negligible overlap of charge
density between the replicated planes. Additionally, we implemented the first Brillouin
zone (1st BZ) integrations on an unshifted Monkhorst–Pack (MP) grid of 60× 60× 1 wave
vectors k [44]. The structural relaxation tests indicate that the real-space unit-cell differs by
less than 0.17% (in the LDA) and 0.11% (in the GGA) from its ideal configuration. The latter
is sketched in Figure 1a, being characterized by hexagonal rings with C–C bond lengths
of 1.420 Å, equivalent to the lattice constant a = 2.460 Å. The marginal effect of structural
relaxation reflects the almost identical LDA and GGA band dispersions (Figure 1c) and
density of states (DOS) (Figure 1d), which we found across the whole occupied and empty
spectrum, up to a few eV above the Fermi level (EF).
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Figure 1. Structural and electronic properties of graphene obtained with PW DFT-LDA, as detailed in
Section 2.1. (a) Real-space honeycomb lattice, unit-cell (UC), and crystal basis, with the C–C bond set
to 1.420 Å. (b) Reciprocal space lattice, 1st BZ, and irreducible 1st BZ, delimited by the high-symmetry
path ΓKMΓ. (c) LDA band structure along ΓKMΓ, with the Fermi level EF set to zero. (d) LDA density
of states (DOS).

Accordingly, we relied on the PW DFT-LDA approach to ideal graphene, specified
by the real-space unit-cell of Figure 1a and the hexagonal 1st BZ of Figure 1b. In the
self-consistent calculations, we adopted the same parameters as the structural relaxation
tests. Subsequently, we used the converged electron density, in two non-self-consistent
runs, to refine the electronic structure. In particular, we used a moderately dense MP
grid of 90 × 90 × 1 k-points, including 20 bands, and an extremely dense MP grid of
720× 720× 1 MP grid, including 8 bands. The two datasets of refined input parameters
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provided a reliable sampling of the unoccupied states up to 10 eV and 5 eV, respectively,
relative to the Fermi energy (set to zero).

The KS one-electron band energies and related density of states from the computations
with (90× 90× 1) k-points and 20 bands are reported in Figure 1c,d. The more highly
resolved wave vector grid of (720× 720× 1) k-points allowed us to investigate the limits
of the Dirac cone approximations (Figure 2a) and, more importantly, to provide accurate
values of the average charge carrier velocity (vF) at the Dirac cone (Figure 2b,c), being the
relevant parameter of the approach detailed in the following subsection.
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Figure 2. (a) Valence (π) and conduction (π*) energies of graphene around the K point, extracted
from the 720× 720× 1 sampling of the 1st BZ, in our PW DFT-LDA approach. The Dirac cone
approximation is reasonably accurate within ±0.8 eV, relative to the Fermi level, set to zero.
(b) π and π* energies vs. the magnitude of the 2D crystal wave vector relative to the K point,
for |k− ΓK| < 0.04 Å−1. The group velocities of the massless π* electrons and π holes, estimated by
linear fitting, read vπ∗ = 0.8319× 106 m/s and vπ = 0.8268× 106 m/s, respectively. (c) π and π*
energies vs. for |k− ΓK| < 0.10 Å−1. The Fermi velocity value vF = 0.829× 106 m/s, given by the
arithmetic mean of vπ∗ and vπ , provides an excellent approximation of the Dirac cone features.

In particular, we estimated vF = 0.829× 106 m/s as the average group velocity of the
Kohn–Sham one-electron energies of the highest valence band (π) and lowest conduction
band (π∗) around the K point. The group velocities of the π∗ electrons and π holes were
calculated from a linear fitting of the corresponding energy dispersions vs. the magnitude
of the 2D crystal momentum, relative to the K point (Figure 2b,c).

2.2. Semi-Analytical Electromagnetic Framework

As mentioned in the introductory section, we considered a theoretical framework
based on the approach given in Ref. [36], which we implemented by introducing some
modifications. The starting point of the approach is the energy dispersion for the charge
carriers (electron and holes) in graphene, close to the Fermi level and at the corner of the
1stBZ (K point in Figure 2b). These dispersions are approximated as [45,46]:

E = ±vF|p| (1)

where the upper and lower signs refer to the lowest conduction band (π∗ band) and the
highest valence band (π band), respectively; p = }(k− ΓK) labels the crystal momentum
relative to a Dirac point (} the reduced Planck constant); and vF denotes the Fermi velocity,
estimated in the previous subsection.

When graphene is cut into narrow ribbons, the charge carriers are confined in a quasi-
one-dimensional wall [47], which results in a series of sub-bands En with a bandgap (∆).
The energy of the 1D sub-bands (n = 1, 2, 3, . . .) is given by [48]:

En = ±∆
2

√
n2 +

2p2
||

m∗∆
(2)
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in which p|| = } k is the electron (and hole) momentum along the GNR direction, and m∗

the effective mass of the charge carriers. The numerical values of ∆ and m∗ can be calculated
by the following expressions:

∆ =
2 π vF }

w
(3)

and
m∗ =

∆
2 v2

F
(4)

in which w is the GNR width. It should be noted that Equation (2) shows a parabolic band
dispersion for k→ 0 .

The parabolic portion of the band dispersion is wider for small-width GNRs (Figure 3a),
whereas the gapless linear band dispersion is almost recovered by increasing the GNR width
(Figure 3b), for example, as the 2D honeycomb-like structure of graphene is gradually recovered.
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Figure 3. Typical behavior of the highest valence band (blue) and the lowest conduction band (red) of
(a) narrow and (b) wide GNRs, for values of the 1D crystal momentum around the Γ point ( p‖ → 0 ,
cfr. Equation (3) with n = 1). (c) Schematics of a freestanding GNR array, in which each GNR is
characterized by the width w, and the lower edges of contiguous GNRs are separated by the distance
d. Accordingly, d− w represents the vacuum distance between contiguous GNRs.

Experimental pieces of evidence show that a 2D periodic arrangement of GNRs
(Figure 3c) with a short separation distance between them [12,32], could give rise to optical
properties similar to those of graphene, regardless of the GNR width [49]. With this in
mind, plasmons in GNRs could be observed in optical experiments because GNRs orga-
nized as a 2D periodic array enhance the coupling between plasmons and electromagnetic
fields [49,50]. Indeed, the plasmon wavelength is dictated by the sample length, which
is expected to be much larger than the separation between the GNRs and their widths
(Figure 3c). Consequently, and beyond the asymmetry of an isolated ribbon, the GNR
array can be seen as a homogeneous 2D plane where the estimated charge carrier velocity
of graphene (i.e., the corresponding Fermi velocity) can be applied to explore the related
plasmonic character in 2D GNR arrays.

Such an approach is shown in Ref. [36], with the following expression for the plasmon
dispersion relation:

ω̃ = Re

[√
2 π e2N2D

ε m∗
q cos2 θ − ν2

4
− i

ν

2

]
(5)

where ω is the frequency of the forcing electric field E(ω) = E0 exp(−iωt). The remaining
terms are described as follows: e is the electron charge, ε is the dielectric constant, N2D is
the 2D sheet electron density, q is the wave vector, θ is the angle between the plasmon wave
vector and GNR direction, and ν is the electron relaxation rate. We point out two important
facts: (i) for θ = 0 a similar expression, as observed for the plasmon dispersion in a
homogeneous 2D systems, is recovered, and (ii) while ω̃ is a complex number, only the real
part is taken to study the plasmon dispersion.
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3. Results and Discussion
3.1. Dirac-like Feature of Graphene

As detailed in the previous section, the key ingredient of the semi-analytical model
is the Fermi velocity of the charge carriers at the Dirac cone. The Dirac cone is generated
by the π and π∗ bands touching at the K point (Figure 2a). It is important to mention
that around the K point, for a sufficiently large value of the crystal momentum, the band
dispersions are not isotropic (Figure 2c). This fact is also reflected in the density of states
(DOS) (Figure 1d), which exhibits two sharp peaks (so-called Van Hove singularities) at
E− EF ∼ ±2 eV, associated with the flat dispersion of the π and π∗ bands (Figure 1c).
Furthermore, even when the crystal momentum gets closer and closer to the K point,
and the valence and conduction band energies approach the Fermi energy, the energy–
momentum dispersions of the π band (Figure 4a) and π∗ band (Figure 4b) deviate slightly
from linear (see rectangular dashed regions). This result allows us to fix the limit of
applicability of the semi-analytical approach in scrutinizing the plasmonic properties of
2D GNR arrays. In particular, the modeling in our work is justified in an energy range of
±0.2 eV (48.36 THz) (as observed in Figure 2b).
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momentum for the π band (a) and π∗ band (b) in the vicinity of K point.

3.2. Estimating the Bandgap in GNRs

We now move to the focus of our work. Figure 5a shows the bandgap (∆) calculated
(by Equation (3)) for GNRs with widths up to 100 nm. In this, we use the vF values
obtained from the π band (vπ = 0.827× 106 m/s), the π∗ band (vπ∗ = 0.832× 106 m/s),
and the average (0.829× 106 m/s) (see Figure 2). As expected, the bandgap decreases as
the ribbon width increases. A maximum 0.5% relative difference between the curves is
found. With this in mind, we can safely adopt the average group velocity value for vF.

Figure 5b shows the experimental values of the bandgap for GNRs, with widths
ranging from 15 to 90 nm, as taken from Ref. [48]. The data are compared to the bandgap
calculated by Equation (3) (red line). The predicted bandgap is consistent with the ex-
periments on GNRs with widths up to ∼20 nm. We point out that in widths from 20 to
30 nm, the experimental values of the GNR gap show a steep drop of ∼ 60 meV, which is
not captured by the smooth prediction of the proposed model. Finally, a slower variation
in the experimental band gap is observed for widths ranging from 40 to 90 nm, so that a
discrepancy exists between the model and the experiments. It is important to point out
that an ab initio treatment of the electronic properties of wide nanoribbons is unfeasible,
since the widths are in the range of tens of nanometers; this is where the semi-analytical
model has advantages over the ab initio models.
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Figure 5. Energy gap (∆) as a function of the ribbon width (w ). (a) The dotted green line is obtained
using the DFT group velocity of the π band (vπ = 0.827× 106 m/s); the dashed blue line using the
DFT group velocity of the π∗ band (vπ∗ = 0.832× 106 m/s); the red solid line using the average
group velocity (vF = 0.829× 106 m/s). (b) Bandgap variation is obtained using Equation (4) and
vF = 0.829× 106 m/s (red solid line), and compared to the band gaps measured on GNRs as taken
in Ref. [48] (P1–P4 refers to 4 different datasets). (c) Bandgap variation using Equation (4) and
vF = 0.829× 106 m/s (red solid line) compared to the band gaps predicted by the GW approximation
for different families of GNRs, as taken from Refs. [29,51].

On the other hand, the prediction given by Equation (3) is consistent with the pre-
diction obtained by advanced ab initio techniques, as shown in Figure 5c. In this Figure,
the predicted band gaps are compared to those obtained employing the GW method for
different “families” of GNRs, as calculated in Refs. [29,51]. It is important to stress that
the different edge shapes of the nanoribbons play an important role in determining the
bandgap for very narrow nanoribbons; such effects cannot be captured by the simplified
model leading to Equations (2) and (3). However, these edge effects are mitigated as the
ribbon width increases. Figure 5c suggests that Equation (3) tends to give reasonable
predictions for ribbon widths greater than ∼ 1.5 nm. Given these facts, the application of
the model is justified for ribbon widths in the 2–20 nm range, and very large values of the
ribbon width > 80 nm.

3.3. Bandgap of Selected GNRs

To explore the plasmonic character of GNR arrays, GNRs with four different widths
were tested (w = 2.7, 10, 100, 200 nm). The band structure, as calculated for the highest
occupied and lowest unoccupied bands (cfr. Equation (2), n = 1) for these GNRs, is shown
in Figure 6. In Tables S2–S4, we also report the values of the estimated band gaps (∆) and
the charge carrier effective masses (m∗), considering the different charge carrier velocities.
The effective masses are in good agreement with previously reported values [29,48].
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Figure 6. Band structure of GNRs (cfr. Equation (2), n = 1) as a function of parallel component
k (cm−1), considering different widths: w = 2.7, 10, 100, and 200 nm. The inset shows a magnification
to resolve the small bandgap of the wider ribbons.

It should be emphasized that the current semiconductor industry requires band gaps
of the order of 1 eV (silicon has a bandgap of ∼ 1.1 eV). Hence, GNRs with widths smaller
than 10 nm (e.g., w = 2.7 nm, ∆ ≈ 1.27 eV) could be excellent options in the design
of novel nanoelectronic devices. On the other hand, GNRs with widths greater than
100 nm (e.g., w = 200 nm, ∆ ≈ 0.017 eV), due to the reduced bandgap, could be excellent
platforms to support plasmons at THz frequencies (discussed below), giving the possibility
of manufacturing modern nanophotonic and nanoplasmonic devices.

3.4. The Effect of Fermi Velocity on the Plasmon Dispersion

Previous studies on graphene, bilayer graphene, and few-layer graphene focus on the
energy loss spectrum [10,31], exploring the high-energy part up to 30 eV, where two in-
terband plasmons are detected (the π and π − σ plasmons) [31], and the low-energy part,
below 2 eV, where an intraband plasmon (the 2D plasmon) and an acoustic plasmon are
also observed [10]. From a technological point of view, the low-energy plasmons are very
interesting because their energy can be controlled by doping and/or gating. Furthermore,
these plasmons are found close to the THz scale, where most of the plasmonic applications
of graphene are expected to occur [52]. The 2D plasmon is also observed in 2D GNR arrays,
together with a new edge plasmon [49]. In the reciprocal space, the existence of these
plasmons is corroborated by TDDFT working on ultra-narrow GNRs [4,23].

Both the 2D plasmon and the edge plasmon appear as an effect of the confined
geometry of GNRs, which are organized as a periodic array, leading to distinct mode
patterns and strong field enhancement [49]. The energy dispersion of the edge plasmon
is strictly connected to the bandgap transition, which, in turn, depends on geometrical
parameters, particularly the ribbon width. This fact suggests that precise engineering of
the GNR arrays could be used to fit specific technological demands. On the other hand,
for a fixed value of the GNR width, the 2D plasmon dispersion can be controlled by tuning
the charge carrier density, through doping or gating the nanoribbons.

With this in mind, we start analyzing the plasmon dispersion, subject to different charge
carrier velocities corresponding to the values calculated for the π band (vπ = 0.827× 106 m/s),
the π∗ band (vπ∗ = 0.832× 106 m/s), and the average (vF = 0.829× 106 m/s); in Figure 7a,b
these results are also compared to those obtained employing the commonly reported
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value of the group velocity in graphene vF ≈ 106 m/s [36]. To complete the analysis,
in Figure 7c,d, we report the plasmon dispersion for the same systems using the Fermi veloc-
ities measured in graphene synthesized on different substrates (vF(G/SiC) = 1.149× 106 m/s,
vF(G/BN) = 1.487× 106 m/s, vF(G/Quartz) = 2.482× 106 m/s, vF(SG) = 2.973× 106 m/s) [53].
The corresponding bandgap and effective masses are reported in Tables S5 and S6. In Figure 7,
we fix the 2D electron density to the common value of N2D = 1× 1012 cm−2, as reported in
Ref. [54], as well as the electron relaxation rate (ν = 1.0× 1013 s−1), and angle θ = 0.
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Figure 7. (a,b) Plasmon energy dispersion (ω/2π) vs. wave vector (q), as obtained using Equation (5)
(with ν = 1.32× 1013 s−1, N2D = 1× 1012 cm−2, and θ = 0), considering the group velocity of the
π band (vπ = 0.827× 106 m/s), the π∗ band (vF−π∗ = 0.832× 106 m/s), the π / π∗ averaged
value (vF = 0.829× 106 m/s), and the reference value vF = 106 m/s value, as reported in Ref. [36].
(c,d) The results obtained with the π / π∗ averaged value (vF = 0.829× 106 m/s) are compared
to those obtained employing the experimental Fermi velocities measured in graphene synthesized
on different substrates, as reported in Ref. [53]. For the analysis shown in this Figure, we selected
the narrowest (w = 2.7 nm, panels a,c) and the widest (w = 200 nm, panels b,d) ribbons included in
this study.

Although it is observed that the trend of the curves is not affected by the charge carrier
velocities (Figure 7a–d), these curves deviate from the curve calculated using the constant
value of vF ≈ 106 m/s (blue curve) [54] (Figure 7a,b), corroborating that the Fermi velocity
on graphene cannot be taken arbitrarily. Another important result is the fact that there is a
momentum range for which no plasmon is allowed to exist. In particular, considering the
charge carrier velocities estimated in the present work, in the case of the narrowest analyzed
GNR, no plasmon is found for q < 2000 cm−1 (Figure 7a). For the 200 nm wide GNR, on the
other hand, the plasmon is already allowed for q ∼ 0 (Figure 7b). Furthermore, Figure 7
shows that increasing the ribbon width increases the plasmon energy with values from
1.4 THz (Figure 7a) to 14 THz (Figure 7b). The plasmon energy also depends markedly on
the charge carrier velocity.
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Interestingly, as reported in Ref. [53], the charge carrier velocity in graphene may
depend on the supporting substrate. Looking at Figure 7c,d we find that both the width
of the forbidden region and the plasmon energy at a fixed momentum depend on the
charge carrier velocity. A direct consequence of this fact is that a careful choice of the
supporting substrate can be used as an additional parameter to tune the plasmon disper-
sion relation in GNR arrays. For the remainder of this work, we use the average value
(vF = 0.829× 106 m/s) to study the plasmon dispersion relation in GNR arrays, keeping
in mind that further versatility is achieved through the supporting substrate, as shown in
Figure 7c,d.

3.5. Plasmon Energy-Momentum Dispersion in GNR Arrays

Figure 8 shows the plasmon energy–momentum dispersion for 2D GNR arrays con-
sidering different ribbons widths (w = 2.7, 10, 100, 200 nm), and different directions
for the excitation wave vector (θ from 0◦ to 80◦) (see Figure 3c for the geometry). In this
Figure, for comparison, we fix the 2D electron density (N2D = 1× 1012 cm−2) and electron
relaxation rate (ν = 1.32× 1013 s−1) to “typical values”.
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Figure 8. Plasmon energy (ω/2π) vs. wave vector (q), as obtained using Equation (5) (with
vF = 0.829× 106 m/s, ν = 1.32× 1013 s−1, and N2D = 1× 1012 cm−2) for different orientations
of the plasmon momentum (θ), in GNRs array with different ribbon widths: w = 2.7 nm (a),
w = 10 nm (b), w = 100 nm (c), and w = 200 nm (d). The corresponding effective masses (m∗) are
reported in Table S4.

Once more, the important result is the fact that there is a momentum range for which
no plasmon is allowed. In particular, in the case of the narrowest GNR and for θ = 0,
no plasmon is found for q < 4000 cm−1. As the width of the ribbon increases, the momen-
tum region for which the plasmon does not exist shrinks. Virtually, for w→ ∞ , we recover
the results of the ideal 2D gas, with the energy–momentum dispersion starting at E = 0,
q = 0 (Figure 8d). Interestingly, given a ribbon width, a clear dependence on the angle
is observed, as the “forbidden region” widens as the angle θ increases. We also find that
increasing the ribbon width increases the plasmon energy. Indeed, for the investigated
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momentum range, the entire energy–momentum dispersion for the w = 2.7 nm case (cfr.
Figure 8a) is below 1.5 THz, whereas, for the widest ribbon (w = 200 nm case, Figure 8d)
the energy of the plasmon, in the momentum range, is one order of magnitude higher.

An important quantity in conductivity-related phenomena is the charge carrier mo-
bility. High-charge carrier mobility is usually attained in defect-free samples, whereas a
high concentration of defects results in reduced values of the charge carrier mobility. In the
proposed model, we investigate different charge carrier mobility conditions by changing
the electron relaxation rate ν. A high value of ν is reflected in a low value of the carrier
mobility and, hence, in a higher defect density.

Then, in Figure 9, we investigate the sensitivity of the plasmon dispersion relation in
2D GNR arrays to the ν parameter for three typical values, namely, 0.5× 1013, 1.0× 1013,
and 2.0× 1013 s−1, fixing the 2D electron density and choosing θ = 0. In all cases, decreasing
ν “shifts” the plasmon energy–momentum dispersion towards lower momenta. Hence,
a low density of defects results in a smaller “forbidden” momentum region. Furthermore,
for a given momentum, decreasing ν also induces an increased value for the plasmon
energy. Finally, we point out that modifying the carrier mobility has the most dramatic
effect on the narrowest GNR (Figure 9a).
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Figure 9. Plasmon energy (ω/2π) as a function of plasmon wave vector (q), as obtained using
Equation (5) (with vF = 0.829× 106 m/s, N2D = 1× 1012 cm−2, and θ = 0) for different values
of electron mobility (ν), considering four different ribbon widths: w = 2.7 nm (a), w = 10 nm (b),
w = 100 nm (c), and w = 200 nm (d). The corresponding effective masses (m∗) are reported in
Table S4. We point out that the increment in the horizontal axis of the graphics in the bottom row is
10 times smaller than in the graphics of the top row.

While the electron relaxation rate is determined by the number of defects in the
nanoribbons, hence, hardly controlled once the synthesis step is finished, a much handier
parameter is the charge carrier concentration, which is determined by the 2D charge carrier
density. This quantity can be usually controlled by either doping the nanoribbons, or by
a gating voltage. The latter technique is particularly interesting, because it can be varied
easily in a reasonable range.
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In Figure 10, we analyze the effect of the charge carrier density on the plasmon
energy–momentum dispersion by choosing three reference values (N2D = 0.5 × 1012,
1.0× 1012, 2.0× 1012 cm−2), and fixing the electron relaxation rate and the angle θ. In-
creasing the charge carrier density shrinks the forbidden region for the plasmon (i.e.,
the energy–momentum curve shifts towards lower q). This effect is very dramatic for
the narrowest nanoribbon, but it is present in all the analyzed cases. More interestingly,
increasing the value of the 2D charge carrier density results in an increase in the plasmon
energy, for a given wave vector, as also found by TDDFT [4,12,23], in periodic arrangements
of very narrow graphene nanoribbons. This last result is very relevant because it suggests
that precise direct control of the optical and plasmonic response in graphene nanoribbons
arrays is also possible in the case of wide nanoribbons with high widths.
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Figure 10. Plasmon energy dispersion relation, as obtained using Equation (5) (with vF = 0.829× 106 m/s,
ν = 1.32 × 1013 s−1, and θ = 0) for different values of 2D charge density (N2D), considering
four different ribbon widths: w = 2.7 nm (a), w = 10 nm (b), w = 100 nm (c), and w = 200 nm (d).
The corresponding effective masses (m∗) are reported in Table S4.

4. Conclusions

In summary, we presented a study of the electronic and plasmonic properties of peri-
odic planar arrays of graphene nanoribbons, using a semi-analytical model. The only input
parameter of the model is the charge carrier velocity of graphene, which we estimated
using DFT calculations. The application of the model to nanoribbons of different widths
was used to extract the bandgap, the effective mass, and the band dispersion of the highest
occupied and lowest unoccupied band in the nanoribbon. Hence, these quantities were
used to determine the plasmon dispersion relation for arrays of graphene nanoribbons.
Even though limited, this approach allowed us to analyze critical trends of the plasmon
properties of these systems, for which an ab initio approach is unfeasible with the computa-
tional power of current calculators. In particular, we analyzed how the energy–momentum
dispersion of the 2D plasmon is affected by changing the charge carrier mobility, the charge
carrier density, and the direction of the forcing field for nanoribbon arrays characterized by
medium (tens of nm) to large (100–200 nm) width. Thus, our work gives a set of qualitative
rules that can be used as a guide for future experiments. In particular, we found that,
regardless of the nanoribbon width, the plasmon energy depends on the charge carrier
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density; a quantity that can be controlled by a gating potential, paving the way to the
design of GNR-based tunable optic and plasmonic devices in the THz range.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12122028/s1, Table S1: The Fermi velocity (vF) of the π

band, π∗ band, and average value as a function of the cut-off energy; Table S2: Band gap and charge
carrier effective mass of GNRs with different widths: w = 2.7, 10, 100, and 200 nm. m0 is the
free-electron mass. The values are calculated using the vπ = 0.827× 106 m/s; Table S3: Band gap
and charge carrier effective mass of GNRs with different widths: w = 2.7, 10, 100, and 200 nm. m0 is
the free-electron mass. The values are calculated using the vπ∗ = 0.832× 106 m/s; Table S4: Band
gap and charge carrier effective mass of GNRs with different widths: w = 2.7, 10, 100, and 200 nm.
m0 is the free-electron mass. The values are calculated using the vF = 0.829× 106 m/s; Table S5:
Band gap and charge carrier effective mass in GNR 2.7 nm wide using the Fermi velocity calculated
in the present work (vF = 0.829× 106 m/s) and the experimental values measured in graphene
synthesized on different substrates Ref. [53]. m0 is the free-electron mass; Table S6: Band gap and
charge carrier effective mass in GNR 200 nm wide using the Fermi velocity calculated in the present
work (vF = 0.829× 106 m/s) and the experimental values measured in graphene synthesized on
different substrates Ref. [53]. m0 is the free-electron mass.
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