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Abstract
Recent advances in nonlinear analytic methods for electroencephalography have clarified the reduced complexity of

spatiotemporal dynamics in brain activity observed in Alzheimer’s disease (AD). However, there are far fewer studies

exploring temporal scale dependent fractal properties in AD, despite the importance of studying the dynamics of brain

activity within physiologically relevant frequency ranges. Higuchi’s fractal dimension is a widely used index for evaluating

fractality in brain activity, but temporal-scale-specific characteristics are lost due to its requirement of averaging over the

entire range of temporal scales. In this study, we adapted Higuchi’s fractal algorithm into a method for investigating

temporal-scale-specific fractal properties. We then compared the values of the temporal-scale-specific fractal dimension

between healthy control (HC) and AD patient groups. Our data indicate that relative to the HC group, the AD group

demonstrated reduced fractality at both slow and fast temporal scales. Moreover, we confirmed that the fractality at fast

temporal scales correlates with cognitive decline. These properties might serve as a basis for a useful approach to

characterizing temporal neural dynamics in AD or other neurodegenerative disorders.
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Introduction

Recent advances in nonlinear analytic methods, applied to

various neuroimaging modalities, have clarified the spa-

tiotemporal dynamics of complex brain activity. Cortical

synaptic weights have a log-normal distribution that can

lead to spontaneous activity (Teramae et al. 2012). This

activity constitutes the brain’s noisy internal state, with

irregular neuronal spiking and a low average firing rate

(� 1 Hz) even in the absence of sensory stimulation

(Buzsáki and Mizuseki 2014). Feedback loops connecting

neural populations at multiple hierarchical levels of cortical

processing can produce corresponding recurrent patterns of

brain activity (Fell et al. 1999). Therefore, brain activity is

best modeled as a nonlinear dynamic process, which

includes multiple coupling strengths following various

distributions with heavy tails and feedback loops within

and across multiple neural populations (Stam 2005; Tera-

mae et al. 2012; Yamanishi et al. 2012; Strack et al. 2014;

Fletcher and Wennekers 2016; Geminiani et al. 2017).

Moreover, it has been demonstrated that the fluctuations

and variability generated by this nonlinear dynamic process

play an important role in the neural bases of cognitive

function, aging, and psychiatric disorders. For example,

Garrett et al. demonstrated that blood oxygen level-de-

pendent (BOLD) signal variability was negatively
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correlated with age and positively correlated with cognitive

function (Garrett et al. 2010, 2011). Mcintosh et al. also

showed that a larger variability of response times in single-

trial evoked electrical activity, as measured by electroen-

cephalography (EEG), was associated with increased

accuracy of recognition (McIntosh et al. 2008). Zhang

et al. suggested that the spatiotemporal variability of

BOLD signals reflects brain functions themselves, and is

disturbed in psychiatric disorders such as schizophrenia,

autism spectrum disorder, and attention-deficit hyperac-

tivity disorder (ADHD) (Zhang et al. 2016).

Alzheimer’s disease (AD) involves three main types of

changes: progressive central neuron death, neurofibrillary

tangles, and senile plaques in widespread brain regions.

The pathological progression leads to cortical disconnec-

tion, which reportedly alters the complex nonlinear

behavior of the brain (Stam 2005; Delbeuck et al. 2003;

Adeli et al. 2005b; Yang and Tsai 2013; Takahashi 2013;

Bhat et al. 2015; Mammone et al. 2017). A variety of

methods based on nonlinear dynamics have been applied to

EEG data to characterize this alteration, including entropy

analysis, correlation dimension, and omega-complexity

(Yang and Tsai 2013; Takahashi 2013). Adeli et al.

developed novel mixture markers and computational

methods that, when combined with neural computing,

chaos theory, and wavelet analysis, greatly increase the

accuracy of diagnosis and detection of AD based on EEG

signals (Adeli et al. 2005b, a).

A chaos/fractal-based approach (Kantz and Schreiber

2004) may be well-suited to analyzing nonlinearity in the

brain. This is especially true when the alteration in AD is

interpreted as a change in the deterministic properties of

the nonlinear system. A growing number of studies utiliz-

ing this approach have demonstrated reduced fractality/

chaoticity in AD. Using Haussdorff’s fractal dimension,

Woyshville and Calabrese showed reduced complexity in

occipital loci of subjects with AD in a resting condition

(Woyshville and Calabrese 1994). Besthorn et al. reported

a decreasing correlation dimension in EEG signals of

patients with AD in an eyes-closed resting state (Besthorn

et al. 1995). Jelles et al. also observed reductions of this

correlation dimension in three conditions: eyes closed, eyes

open, and during an arithmetic task (Jelles et al. 1999).

Other methods, including the use of fractal dimensions and

the maximum Lyapunov exponent, have replicated these

reductions (Jeong 2004; Abásolo et al. 2008; Zappasodi

et al. 2014; Smits et al. 2016; Al-nuaimi et al. 2017).

EEG dynamics reflect different functions for each

physiologically relevant temporal scale. For example,

perception is associated with gamma band dynamics,

cognition with the beta band, and memory with the theta

band (Klimesch et al. 2007). Also, because of complex

activity generated by nonlinear dynamics, the power

spectrum does not always conform to a simple power law

distribution over the entire frequency range (Ferree and

Hwa 2003; Miller et al. 2009). Thus, it is important to

measure complexity for specific temporal scales.

In fact, the temporal-scale dependence of complexity in

EEG signals has previously been studied in AD. In our

earlier review (Takahashi 2013), we introduced work based

on multiscale entropy, in which it was found that EEG

signals in AD demonstrated lower complexity at smaller

temporal scales and higher complexity at larger temporal

scales (Escudero et al. 2006; Park et al. 2007; Mizuno

et al. 2010). Adeli et al. demonstrated that alterations in

EEG signals in AD are localized to certain frequency bands

(delta and theta bands in an eyes-open condition; delta,

theta, and alpha bands in an eyes-closed condition) by

using the maximum Lyapunov exponent and correlation

dimension in band-specific EEG signals analyzed by

wavelet transformation (Adeli et al. 2008).

Higuchi’s fractal dimension, which is defined by the

power law for the length of a time series as a function of

the temporal scale (Higuchi 1988), has been widely used to

evaluate fractality in brain activity (Smits et al. 2016;

Accardo et al. 1997; Jeong et al. 2001; Gómez et al. 2009;

Nishimura et al. 2008; Zappasodi et al. 2014). Higuchi

reported that different power laws, i.e., different fractal

dimensions, often appear for different temporal scales

when his fractal algorithm is applied to an experimental

time series (Higuchi 1988). However, these temporal scale

specific characteristics are ignored in the final result,

because the algorithm averages over the entire temporal

scale range. For example, Smits et al. showed that Higu-

chi’s fractal dimension converges with increasing maxi-

mum value of temporal-scale (Smits et al. 2016). To detect

the temporal-scale specific characteristics, Higuchi pro-

posed a method for calculating the dimension at a specific

temporal scale (herein described as the temporal-scale-

specific fractal dimension) (Higuchi 1988). However, the

temporal-scale-specific fractal dimensions in band-specific

ranges of temporal scale have not been investigated in EEG

signals. An alternative approach by Adeli et al. introduced

a novel method for calculating fractal dimensions, includ-

ing Higuchi’s fractal dimension, by using wavelet trans-

formation to divide EEG signals into frequency bands

(Adeli et al. 2007). Their approach has produced insights

into neuropsychiatric disorders such as autism spectrum

disorder, seizure activity and epilepsy (Ahmadlou et al.

2010; Adeli et al. 2007). Ahmadlou et al. investigated

band-specific fractal dimensionality, and found decreased

fractality in the beta band of the AD EEG using this

approach (Ahmadlou et al. 2011).

To identify the temporal scale characteristics of the

complex time-series of the AD EEG, we previously

attempted to calculate the temporal-scale-specific fractal
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dimension of AD (Nobukawa et al. 2017). However, the

parameter settings needed to estimate temporal-scale-

specific fractal dimension and the relationship between

temporal-scale-specific fractal dimension and cognitive

function have not been clarified. In this study, following up

on the results of our previous work (Nobukawa et al.

2017), we first derived a parameter set that can be used to

estimate the temporal-scale-specific fractal dimension.

Second, we evaluated the temporal scale and regional

characteristics of this dimension in healthy control (HC)

subjects and AD patients. Third, we investigated the cor-

relation between the temporal-scale-specific fractal

dimension and cognitive function, as estimated by the Mini

Mental State Examination (MMSE) score, (Folstein et al.

1975) in the AD group.

Materials and methods

Participants

In this study, we used the same participants who were

examined in our earlier study (Mizuno et al. 2010). The

patient group consisted of 16 subjects diagnosed with AD

(mean age 57.5 years, age range 43–64 years, SD of age:

4.7 years, 11 female), and 18 age-matched and sex-mat-

ched healthy controls (HC) (mean age 59.3 years, age

range 55–66 years, SD of age: 5.3 years, 11 female), as

shown in Table 1. All subjects provided written informed

consent before the research. Each AD subject was assessed

with the Functional Assessment Stages Test (FAST)

(Reisberg et al. 1986) and a Japanese version of the MMSE

(Folstein et al. 1975). According to the FAST assessments,

3 patients had mild (FAST 3), 7 moderate (FAST 4), and 6

slightly severe dementia (FAST 5). Their MMSE scores

were distributed in the ranges from 10 to 26 (mean score:

15.5, SD of score: 5.3).

EEG recordings

Recording and pre-processing of the EEG data were

accomplished as reported in our previous study (Mizuno

et al. 2010). Briefly, the subjects were studied while seated

in an electrically shielded, soundproofed, and light-con-

trolled recording room. Standard scalp electrodes were

placed according to the International 10–20 System. EEG

was recorded with an 18-channel electroencephalogram

(EEG–4518, Nihon–Koden, Tokyo, Japan) at 16 electrode

sites: Fp1, Fp2, F3, Fz, F4, F7, F8, C3, C4, P3, Pz, P4, T5,

T6, O1 and O2, referenced to physically linked ear lobe

electrodes. Eye movements were monitored by means of

bipolar electro-oculography (EOG). EEG signals were

recorded with 200 Hz sampling frequency with a time

constant of 0.3 s, and a 1.5–60 Hz bandpass filter. Line

noise was eliminated by a 60 Hz notch filter. The impe-

dance of electrode/skin conductance was maintained at less

than 5 kX for each electrode. EEG signals were recorded

for 10–15 min for each subject with the eyes closed. The

subjects were observed via a video monitoring system. The

state of vigilance of the subject was visually inspected

during recording using the EEG traces to ensure that only

epochs of eyes-closed wakefulness (and not light sleep)

were analyzed. When the subjects appeared to be drowsy,

they were asked to open their eyes and verbally reminded

to avoid drowsiness. Selection of segments recorded during

eyes-closed wakefulness was performed by visual inspec-

tion of EEG and EOG recordings. A subject was consid-

ered to be fully awake when alpha activity appeared

predominantly over the posterior regions, with concurrent

fast eye movements in the EOG channel (Wada et al.

1996).

The data were stored on an optical disk for off-line

analysis. Other pre-processing steps (e.g., filtering, artifact

removal or data reconstruction) were avoided, because they

might have disrupted the intrinsic dynamics of the data.

Epochs without artifacts were selected by visual inspection.

To provide adequate information for analysis of long-range

temporal dynamics, we initially prepared a single contin-

uous artifact-free 60-s (12,000 data points) epoch during

the eyes-closed resting condition. From this dataset, 1000

data points at the beginning and end were removed to avoid

interference by the 1.5–60 Hz bandpass filter. Finally,

Higuchi’s fractal dimension was calculated on the contin-

uous 50-s (10,000 data points) epoch.

Fractal analysis

For the fractal analysis of EEG data, we used Higuchi’s

fractal algorithm (Higuchi 1988). If the EEG signal at a site

has fractal characteristics, similar patterns arise at different

temporal scales. To quantify this similarity, first, using

scale k, the EEG data X(t)(0; 1; . . .; T) is down-sampled to

fXðmÞ;Xðmþ kÞ;Xðmþ 2kÞ; . . .;Xðmþ ½ðT � mÞ=k�kÞg
where [ ] indicates the Gauss symbol and m is the first

sample. The length of X at each scale k is defined by

Table 1 Physical characteristics of subjects (values represent mean

(SD, range))

HC subjects AD subjects p values

Male/female 7/11 5/11 0.72

Age (years, range) 59.3 (5.3, 55–66) 57.5 (4.7, 43–64) 0.31

MMSE score NA 15.5 (4.7, 10–26)
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Here, if the time series of X(t) has the fractal dimension D,

hLðkÞi (h�i: average over m) obeys

hLðkÞi / k�D: ð2Þ

In this study, we estimated the D value in the range of

kmin� k� kmax. Concretely, D can be derived as the

slope of fðlogðLðkminÞÞ; logð1=kminÞÞ; ðlogðLðkminþ1ÞÞ;
logð1=kminþ1ÞÞ; . . .; ðlogðLðkmaxÞÞ ; logð1=kmaxÞÞg, using

the linear least-squares method.

Power analysis

Along with the analysis for temporal-scale-specific fractal

dimension, we also performed power spectral analysis as in

conventional EEG analyses. The power spectrum density

(PSD) (dB/Hz) was estimated using a fast Fourier trans-

form. A Hanning window was applied to the 60 s time-

series for the calculation.

Statistical analysis

Group differences were analyzed using independent two-

tailed t tests. Because the temporal-scale-specific fractal

dimension values were found to have a skewed distribu-

tion, we log-transformed them to obtain an approximately

normal distribution. Associations between temporal-scale-

specific fractal dimensions and cognitive function esti-

mated by MMSE score were evaluated using Pearson’s

correlation coefficient. The Benjamini–Hochberg false

discovery rate (FDR) correction was applied for multiple

comparisons. For sensor-wise group comparisons, q\0:05

was used for fractal dimensions calculated over the entire

range of temporal scales (Dentire; 16 p values), for tem-

poral-scale-specific fractal dimensions (Dslow, Dalpha,

and Dfast; 48 p values), and for PSD (896 p values: 56

frequency points (5��60 Hz, width of bin is 1.0 Hz) � 16

electrodes).

Additionally, repeated measures analysis of variance

(ANOVA), with group (HC vs. AD) as between-subjects

factor and node (16 nodes of Fp1-O2) as within-subjects

factor, was performed to test for group differences at each

frequency band. The Greenhouse-Geisser adjustment was

applied to the degrees of freedom, and a two-tailed a level

of 0.05 was considered statistically significant.

Results

Power analysis

To observe the differences in power spectrum between

EEG signals of HC and AD, as shown in Fig. 1, the average

PSD of the HC group and AD group were calculated for

each electrode. Significant enhancement of PSD in the

delta–theta bands (2–8 Hz) (q\0:05) were identified in the

AD group across all electrodes, which is consistent with

previous findings of slowing wave of AD (Ishii et al.

2017).

Temporal-scale-specific fractal dimension

Parameter setting for temporal-scale-specific fractal
dimension

We evaluated the range of k to derive temporal-scale-

specific fractal dimension. Figure 2 shows the typical

example of dependence of hLðkÞi on k for 1� k� 200 in

the case of Fz node from subjects in the HC and AD

groups. Figure 3 shows the slopes of hLðkÞi between kmin

and kmax given by the hLðkÞi values appearing in Fig. 2 as

a function of kmin in the cases of kmax� kmin ¼
2; 5; 10; 20 cases. For kmax� kmin	 10, a smoothed

dependency of D on kmin is obtained. Therefore, using the

ranges kmax� kmin	 10, we calculated temporal-scale-

specific fractal dimensions for the slow, alpha, and fast

bands in the HC and AD groups (see Table 2). Here, the

kmin;max are derived from ½1=f max;min� (f max;min Hz

are upper/lower limits of frequency band). In the case of

division into 5 bands (delta, theta, alpha, beta, and gamma

band), kmin–kmax becomes less than 10 scales. Therefore,

we used 3 bands instead (slow, alpha, and fast). Figure 4

shows the resulting temporal-scale-specific fractal dimen-

sions Dslow; alpha; fast at Fz in the HC and AD groups.

From this result, the temporal-scale-specific nature can be

confirmed in both groups.

Comparison between HC and AD by temporal-scale-specific
fractal dimension

We calculated the fractal dimension within the entire

temporal scale range and for specific temporal ranges in the

HC and AD groups, as shown in Fig. 5a, b. Table 3 sum-

marizes the results of the ANOVAs on Dentire and

Dslow;Dalpha;Dfast. Testing for group differences

between HC and AD revealed an effect of group for the

entire, slow and fast ranges. In post-hoc t tests, the Dentire

values for the AD group were lower than the values for the

4 Cognitive Neurodynamics (2019) 13:1–11
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HC group. Although group � node interactions were not

confirmed in ANOVAs, the t values for nine nodes (F3, F4,

Fz, C3, C4, P4, Pz, T6, O2) met the FDR criterion

(q\0:05), as shown in Fig. 5b, bottom panels. The

Fig. 1 Power spectrum of EEG data for HC subjects and AD subjects

(HC healthy controls, upper, AD Alzheimer’s disease). Solid lines and

shaded area represent mean and standard deviation in each group. The

red 
 indicate differences that are significant after adjustment for false

discovery rate (FDR) q\0:05, respectively. (Color figure online)

Fig. 2 Dependence of hLðkÞi on temporal scale k at Fz in the HC and

AD groups

Fig. 3 Dependence of the temporal-scale-specific fractal dimension D

on kmin at Fz in the HC and AD groups. a kmax� kmin ¼ 2. b
kmax� kmin ¼ 5. c kmax� kmin ¼ 10. d kmax� kmin ¼ 20

Cognitive Neurodynamics (2019) 13:1–11 5
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temporal-scale-specific fractal dimensions for the AD

group were low in the slow and fast bands. In particular,

although group � node interactions were not confirmed in

ANOVAs, the t values at F3, Fz, C3, C4, T5, T6, P3, P4, Pz

and O2 in the slow range, subjected to the FDR criteria

(q\0:05), were significantly lower. Those at all nodes

were also significantly lower in the fast range (q\0:05).

Correlations of temporal-scale-specific fractal dimension
with MMSE score in AD

The upper parts of Fig. 6 show the correlations between the

fractal dimension and MMSE scores in the AD group

across the range of recording sites. The Dentire correlation

values were all greater than or equal to 0.4. For the specific

band case, Dfast showed higher correlations (J0:6) than

the entire range and the other temporal-scale-specific

fractal dimensions. The lower part of Fig. 6 shows a

scatterplot of Dfast at Fz node and MMSE score for the AD

subjects. High correlations were also observed from this

result.

Validity of the epoch length of EEG signals

To check the validity of the epoch length of EEG signals

for temporal-scale-specific fractal dimension, Fig. 7a

shows the variation of fractality against the changing epoch

length at Fz in the HC and AD groups. Here, the temporal-

scale-specific fractal dimensions in segmented epochs were

averaged over the full 50 s. All temporal-scale-specific

fractal dimensions converged in the range J30 s. There-

fore, the epoch length of 50 s that was used in the analyses

above is valid for all temporal-scale-specific fractal

dimensions.

We also evaluated the fractality using shorter evaluation

time-series. In Fig. 7b, the variation of fractality resulting

from shortening the evaluation time-series length is rep-

resented. The first epoch in a 50 s time-series was used for

each length case. It is noteworthy that the values Dfast

maintained significant differences between AD and HC,

even when the length of the time-series was short, i.e.,

t ¼ �3:4 (p ¼ 2:5� 10�3) at 5 s.

Discussion and conclusion

In this study, we introduced a new approach that captures

the temporal-scale-specific EEG fractal properties of AD

patients. The results indicate that when fractality was

integrated across the full range of temporal scales, the AD

group exhibited reduced fractality. When temporal-scale-

specific fractal properties were analyzed, reduced fractality

were again observed. Specifically, in the AD group,

reduced fractality was observed for faster frequency ranges

(the beta and gamma range). Moreover, by evaluating the

relationship between cognitive function measured by

MMSE and the temporal-scale-specific fractal dimensions,

we confirmed that the fractality at faster temporal scales

correlates with cognitive decline. This reduced fractality

can be detected even when the length of the time-series is

small.

Reduced fractality is associated with reduced complex-

ity, which is consistent with the well-established hypoth-

esis (Stam 2005; Jeong 2004) that EEG signals in AD

exhibit less complexity. EEG oscillations on the slow

temporal scale are mainly determined by global regional

coupling (Tononi et al. 1994; Friston et al. 1995). We have

previously reported the value of multiscale entropy, which

captures EEG complexity on multiple temporal scales

(Mizuno et al. 2010). In this study, we found reduced EEG

complexity in a scale-dependent manner that agrees well

with our recent findings.

Stam et al. used a graph-theoretical analysis to argue

that the decreasing functional connectivity in beta bands is

related to cognitive function (Stam et al. 2009). Our result

Table 2 Ranges of k and fractal

dimension corresponding to

each frequency range

Frequency range kmin� kmax Temporal-scale-specific fractal dimension

Entire range (1.5–60 Hz) 3–133 Dentire

Slow range (2–8 Hz) 25–100 Dslow

Alpha range (8–13 Hz) 15–25 Dalpha

Fast range (13–60 Hz) 3–25 Dfast

slow alpha fast
frequency

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

D
ba

nd t=-2.8 (p=0.01)

t=0.7 (p=0.45)

t=-3.8 (p=9.8 10-4)

HC
AD

Fig. 4 Temporal-scale-specific fractal dimension Dslow; alpha; fast
in the k ranges given by Table 2 at Fz in the HC and AD groups
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shown in Fig. 6, that is, high correlation between Dfast and

the MMSE score, is consistent with their finding. Also,

studies of neurotransmitter changes in AD reported that

dysfunction of the gamma- aminobutyric acid (GABA)

signaling system leads to reduced oscillatory gamma band

activity (Nava-Mesa et al. 2014; Govindpani et al. 2017;

Calvo-Flores Guzmán et al. 2018). Thus, the temporal-

scale-specific fractal characteristics of AD in the fast bands

might reflect these changes in fast band activity. Ahmadlou

et al. also investigated band-specific fractal dimensionality

(Ahmadlou et al. 2011). They divided EEG signals into

frequency bands by wavelet analysis before calculating

(a)

(b)

Fig. 5 a Mean value of temporal-scale-specific fractal dimension in

Alzheimer’s disease patients (AD) and healthy controls (HC). b t

values for group comparison of fractal dimension between AD and

HC. Cold colors indicate that fractal dimensions are lower in the AD

group than in the HC group, while warm colors indicate the opposite.

Upper panels indicate t values at all nodes. Lower panels are cases

meeting the FDR criterion q\0:05

Table 3 Repeated measures ANOVA results for temporal-scale-

specific fractal dimensions comparing the AD and HC groups for each

temporal ranges

Frequency band Group effect Group � node

Entire band F ¼ 5:3;p ¼ 0:02 F ¼ 0:56; p ¼ 0:59

Slow band F ¼ 8:0;p ¼ 8:0� 10�3 F ¼ 0:97; p ¼ 0:39

Alpha band F ¼ 0:8; p ¼ 0:35 F ¼ 0:7; p ¼ 0:047

Fast band F ¼ 14:7;p ¼ 5:5� 10�4 F ¼ 1:0; p ¼ 0:38

For clarity, comparisons with p\0:05 are shown in bold

Cognitive Neurodynamics (2019) 13:1–11 7
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Higuchi’s fractal dimension. Interestingly, despite

methodological difference, they reported decreased beta

band fractality across widespread brain regions, which is

similar to our finding. However, this subdivision approach

restricts frequency components, which may lead to per-

turbation of fractal properties determined by Eq. (2). If this

type of band-pass filter is applied to EEG signals in our

proposed method, due to the disturbance of the hLðkÞi
distribution, the significant difference in fractality is abol-

ished (see appendix). In our proposed method, this distur-

bance can be avoided by using EEG signals composed of

the entire set of frequency components.

More interestingly, the fast temporal-scale-specific

fractal dimension converges and shows significant differ-

ences between HC and AD even with a short evaluation

time-length of 5 s. However, the measure for the slow scale

range does not show a significant difference, because it

requires a longer time-series for evaluation. Therefore, the

fast temporal-scale-specific fractal dimension might be a

useful biomarker of AD that can be utilized even with a

short time-series of EEG.

Several limitations of this study must be considered.

Higuchi’s fractal dimension characterizes variation as a

function of the k range. To characterize temporal-scale-

specific properties, in this study we utilized k ranges cor-

responding to the conventional functional frequency bands:

slow (delta/theta), alpha band, and fast band (beta/gamma).

However, these ranges might need to be optimized for

specific brain functions and diseases. This type of opti-

mization should be considered in future work. Regarding

cognitive functions, we evaluated the relationship between

the temporal-scale-specific dimension and MMSE score in

AD. However, due to the ceiling effect for the MMSE, a

wide range of cognitive functions cannot be dealt with.

Therefore, in future work, we should consider the rela-

tionship with other cognitive tests, while expanding the

pool of healthy subjects. It is also important to evaluate the

temporal-scale-specific fractal dimension in subjects per-

forming cognitive tasks (rather than resting).

In conclusion, the AD group showed temporal-scale-

specific reduced fractality and this reduced fractality was

associated with cognitive decline. These findings highlight

the potential utility of examining temporal-scale-specic

fractality of EEG signals in diagnosing AD and evaluating

disease severity. Additionally, the possible diagnostic

utility of our method was confirmed even with short data

sets, which is advantageous in a clinical setting. Although

several limitations need to be clarified, characterizing

temporal-scale specific fractal properties in neurophysio-

logical data may serve as a powerful complementary

approach for diagnosing neurodegenerative diseases.
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Appendix

To estimate the temporal-scale-specific fractal dimensions,

we used the hLðkÞi distribution for EEG signals composed

of the entire frequency range (1.5–60 Hz) in this study.

Here, we investigated the influence on the hLðkÞi distri-

bution of adopting band-pass filters for the slow, alpha, and

fast bands. Figure 8a shows the dependence of the mean

value hLðkÞi of the HC and AD group on k at Fz in the

entire (1.5–60 Hz), slow (2–8 Hz), alpha (8–13 Hz), and

fast (13–60) band cases. The value for hLðkÞi in entire band
follows a power law in k. 200. However, the value of

hLðkÞi for both groups in the slow, alpha, and fast bands

does not obey the power law in the range kJ50.

In our proposed method, the temporal-scale-specific

fractal properties were derived using scale-specific k ran-

ges. Instead of the scale-specific ranges, by the above

distribution of hLðkÞi for band-specific time-series, the

temporal-scale-specific fractal properties were estimated as

shown in Fig. 8b. Here, the Higuchi fractal dimension was

estimated with the common kmin;max ¼ 1; 35. kmax was

used as the minimum right edge of the distribution of

hLðkÞi in all subjects. As a result, the significant group

differences observed with our method (see Fig. 5) disap-

peared. Therefore, the temporal-scale-specific fractal

properties cannot be extracted by the band-pass filtering

process, due to the disruption of the power law of hLðkÞi.
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