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Abstract 1 

Accurately identifying phenotype-relevant cell subsets from heterogeneous cell populations 2 
is crucial for delineating the underlying mechanisms driving biological or clinical phenotypes. 3 
Here, by deploying a learning with rejection strategy, we developed a novel supervised 4 
learning framework called PENCIL to identify subpopulations associated with categorical or 5 
continuous phenotypes from single-cell data. By embedding a feature selection function into 6 
this flexible framework, for the first time, we were able to select informative features and 7 
identify cell subpopulations simultaneously, which enables the accurate identification of 8 
phenotypic subpopulations otherwise missed by methods incapable of concurrent gene 9 
selection. Furthermore, the regression mode of PENCIL presents a novel ability for 10 
supervised phenotypic trajectory learning of subpopulations from single-cell data. We 11 
conducted comprehensive simulations to evaluate PENCIL's versatility in simultaneous gene 12 
selection, subpopulation identification and phenotypic trajectory prediction. PENCIL is fast 13 
and scalable to analyze 1 million cells within 1 hour. Using the classification mode, PENCIL 14 
detected T-cell subpopulations associated with melanoma immunotherapy outcomes. 15 
Moreover, when applied to scRNA-seq of a mantle cell lymphoma patient with drug 16 
treatment across multiple time points, the regression mode of PENCIL revealed a 17 
transcriptional treatment response trajectory. Collectively, our work introduces a scalable 18 
and flexible infrastructure to accurately identify phenotype-associated subpopulations from 19 
single-cell data.  20 
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Introduction 21 

Heterogeneous cellular systems alter cell states and compositions in response to 22 
development, perturbations, pathological change, and clinical intervention, resulting in 23 
phenotypically distinct cell subpopulations1-4. Rapidly accumulating single-cell studies are 24 
profiling samples from different experimental or pathological conditions, such as wild-type vs. 25 
knockout conditions5, treatment resistance vs. responder groups6, disease progression 26 
graded with scores7, and treatment across multiple time points8. Distinguishing 27 
subpopulations associated with phenotypes of interest from heterogeneous cell populations 28 
will improve phenotype-specific gene signal detection and enables reliable downstream 29 
interrogation of phenotypic cell types and states, which is a key step in delivering knowledge 30 
from the designed single-cell experiments. Therefore, it is essential to develop analytical 31 
tools to identify phenotypic subpopulations from single-cell data. 32 
      For categorical phenotypes, the phenotype-associated subpopulations can be identified 33 
through differential abundance analysis. A straightforward method is to cluster cells first and 34 
then compare the ratios of conditions in each cluster9. Such clustering-based methods, 35 
however, depend on the subjective clustering step and are often suboptimal because the 36 
phenotype-specific subpopulations are usually not detected by standard clustering methods. 37 
Therefore, recent developments have proposed clustering-free strategies like DAseq10, 38 
Milo11, and MELD12 by examining phenotype labels of cells connected through the k-nearest 39 
neighbor (KNN) graph. Nevertheless, KNN graphs require gene selection beforehand, which 40 
are determined separately in an unsupervised manner, e.g., the top most variable genes. 41 
Such unsupervised gene selection approaches13, 14 may not capture phenotype-associated 42 
cell subpopulations hidden in a latent gene space. As a result, to accurately detect the cells 43 
of interest, gene selection must be embedded into the subpopulation identification process. 44 
However, given the cell-cell similarity matrix as input, the KNN-based tools cannot 45 
incorporate gene selection into subpopulation identification, leaving the two integral steps 46 
separated.  47 
      Moreover, beyond detecting static categorical cell subsets, we need to order the selected 48 
cells along the continuous phenotypic trajectory to reveal transitions and relationships during 49 
dynamic biological processes, such as tissue development and disease progression15-20, a 50 
critical task for single-cell analysis21. However, although Milo11 can input continuous 51 
phenotypes, it only interprets subpopulations increasing or decreasing with the phenotype 52 
qualitatively without ordering cells in a trajectory manner. As a result, further methodological 53 
development of new frameworks beyond cell-cell similarity is necessary.  54 
       In order to select informative genes, we need a framework that can directly take the 55 
gene matrix as an input. Additionally, this new framework must reject irrelevant cells while 56 
retaining high-confidence cells. To address these two needs, we propose a new tool that 57 
uses the learning with rejection (LWR) strategy to detect high-confidence phenotype-58 
associated subpopulations from single-cell data (PENCIL). LWR includes a prediction 59 
function (Fig. 1a) along with a rejection function (Fig. 1b) to reject low-confidence cells. 60 
Then, by embedding a feature selection function into this LWR framework, PENCIL can 61 
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perform gene selection during the training process, which allows learning proper gene 62 
spaces that facilitate accurate subpopulation identifications from single-cell data. Thus, the 63 
PENCIL framework also provides a new perspective for gene selection in single-cell analysis 64 
beyond the unsupervised architecture. Furthermore, by updating the prediction loss function, 65 
PENCIL has the flexibility to address various phenotypes such as binary, multi-category and 66 
continuous phenotypes. Most importantly, the regression mode of PENCIL can order cells to 67 
reveal the subpopulations undergoing continuous transitions between conditions, which is 68 
fundamentally different from the differential abundance analysis. To our knowledge, PENCIL 69 
represents the first tool for simultaneous gene selection and phenotype-associated 70 
subpopulation identification from single-cell data that can detect subpopulations enriched by 71 
specific categorical phenotypes or learn their continuous phenotypic trajectory.  72 

Results 73 

Overview of PENCIL 74 
To construct a new framework distinct from the existing KNN-based frameworks, we 75 
introduced a learning with rejection (LWR) strategy (Fig. 1a,b) into single-cell data analysis 76 
for phenotypic subpopulation identification. Then, by incorporating a feature selection 77 
function into LWR, we developed a new tool named PENCIL to simultaneously select genes 78 
and identify phenotype-associated cell subpopulations from single-cell data. The data 79 
sources for PENCIL input include a single-cell quantification matrix and condition labels for 80 
all cells (Fig. 1c,d). Condition labels can be in various forms, such as multiple experimental 81 
perturbations, disease stages, time points, and so on. In brief, PENCIL consists of three 82 
modules, gene weights, predictor, and rejector (Fig. 1e). Gene weights are penalized with a 83 
sparse penalty (𝑙!-norm) to select genes informative for the targeted phenotypes; the 84 
predictor is a general trainable model in supervised learning that is used to predict cell 85 
labels, and the rejector assigns each cell with a confidence score to quantify the credibility of 86 
the predicted label from the predictor (Fig. 1f). The parameters of all three modules are 87 
trained by minimizing the total loss function and regularization terms on the input expression 88 
matrix with condition labels (Fig. 1g). Then, the combination of the predicted labels and the 89 
confidence scores (𝑟(𝑥) > 0) from the rejection function will output the selected 90 
subpopulations with predicted labels (Methods).  91 
      PENCIL is flexible to take either categorical phenotypes or continuous variables as 92 
inputs by changing the prediction function. For example, Figure 1h shows a simulated 93 
scRNA-seq dataset with binary phenotype labels in a Uniform Manifold Approximation and 94 
Projection (UMAP)22 using the top 5000 most variable genes (MVGs). The standard top 95 
5000 MVGs based clustering analysis cannot distinguish the two phenotypic clusters 96 
contained in cluster 0 (Fig. 1i). In contrast, our classification mode of PENCIL with gene 97 
selection can identify the two subtle phenotypic subpopulations, as shown by the UMAP 98 
based on the PENCIL selected genes (Fig. 1j), demonstrating the importance of gene 99 
selection in cell subpopulation identification. Furthermore, by setting the predictor module as 100 
a regressor, PENCIL can handle continuous phenotype labels like time points and disease 101 
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stages, which carries out a fundamentally different task than the differential abundance 102 
analysis in the classification mode for single-cell applications. For instance, in a simulated 103 
single-cell dataset from two conditions23 (Fig. 1k), the category-based subpopulation 104 
identification methods, like Milo11 or the classification mode of PENCIL, can only identify the 105 
differentially abundant subpopulations (Fig. 1l). Intriguingly, the regression-based PENCIL 106 
can reconstruct the phenotypic trajectory to reveal the subpopulations that are undergoing a 107 
continuous transition between conditions (Fig. 1m), like the cells transforming from normal to 108 
malignant. Thus, the regression mode of PENCIL offers an opportunity to understand 109 
dynamic processes of biology and disease that is unattainable with existing methods.  110 

PENCIL's classification mode simultaneously selects genes and cells  111 
To test the effectiveness of PENCIL, we set up a series of simulated datasets for the 112 
classification task, and performed comprehensive comparisons with existing methods, 113 
including DAseq10, Milo11, and MELD12. We exploited a real T cell scRNA-seq expression 114 
dataset6 with 6,350 cells to generate various simulation settings by picking informative gene 115 
sets and simulating condition labels accordingly. In the simulation with two conditions, we 116 
first selected a subset of genes from the top 2000 most variable genes (MVGs) as 117 
informative genes for the downstream clustering and visualization in UMAP to generate 118 
ground truth phenotypic subpopulations. After clustering based on these manually selected 119 
genes, we picked out two clusters and designated them to be ground truth subpopulations 120 
enriched in specific conditions, respectively (Fig. 2a), and all other cells were set as 121 
background cells. Next, we assigned condition labels to the cells based on the ground-truth 122 
subpopulations and background cells. For each ground-truth subpopulation, we used a 123 
number 𝛼 called mixing rate to control the ratio between the majority and the minority 124 
condition labels. Within each ground truth subpopulation, we assigned (1 − 𝛼) of the total 125 
cells with the designated majority condition label, and the remaining cells with other labels. 126 
For the background cells, each cell was randomly assigned with a condition label. In this 127 
way, we generated the condition labels for all cells for one simulation, as shown in Figure 2b 128 
with a mixing rate 𝛼 = 0.1 (see Supplementary Figure 1 and the Methods for more details). 129 
Since the genes to generate the clustering and UMAP are only a subset of the total genes, 130 
the standard scRNA-seq analysis pipeline using the top 2000 MVGs will not capture the 131 
proper cell similarities, resulting in ambiguous aggregation patterns for cell label information 132 
(Fig. 2c,d), thus making it difficult for the methods using the KNN based on the top 2000 133 
MVGs to identify subpopulations of interest. After setting up the simulation, we used the 134 
gene expression matrix of the top 2,000 MVGs and the simulated conditions labels as the 135 
source data for all four methods.  136 
      Due to its unique ability to simultaneously select genes and identify subpopulations, 137 
PENCIL recovered 84.5% of the ground truth phenotype-enriched cells while maintaining a 138 
high precision (0.833) (Fig. 2e, Supplementary Fig. 2a-c). In contrast, because the top 2000 139 
MVGs were not able to capture the proper similarities of the ground truth phenotypic 140 
subpopulations (Fig. 2c,d), the other three KNN-based methods did poorly, especially MELD, 141 
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which did not select any cells (Fig. 2f-h, Supplementary Fig. 2d). Indeed, the feature 142 
selection in PENCIL contributes to improving the performance of this process, as illustrated 143 
by the UMAP generated from the PENCIL selected genes, which captured an appropriate 144 
cell-cell similarity structure of the designed ground truth subpopulations (Fig. 2i,j). We 145 
repeated this experiment 30 times, each time with 300 randomly selected key genes from 146 
the top 2000 MVGs to cluster cells. Then, we picked out two clusters, designated them as 147 
two distinct ground truth subpopulations and placed other cells as background cells. We 148 
performed the label assignments for four mixing rates to mimic the varying components 149 
within subpopulations. We utilized precision, recall and F1 scores between the identified 150 
cells and ground truth cells to evaluate the four methods. As the mixing rate increased, the 151 
performances of all the methods decreased, but PENCIL consistently provided better 152 
performances than other methods (Fig. 2k). In addition, merging cells from different samples 153 
and conditions must address the batch-effect issue. Various batch effect removal algorithms 154 
have been developed to date24. PENCIL can take the batch-corrected and scaled expression 155 
matrix as input, such as the data processed by Seurat25. We exploited Splatter26 to simulate 156 
expression data with batch effect. The results suggested that PENCIL can be integrated 157 
successfully with classic batch correction methods implemented in the Seurat25 Package 158 
(Supplementary Fig. 3). We repeated the simulations 20 times with four mixing rates for the 159 
batch-effects and showed that PENCIL consistently performed better than existing KNN-160 
based methods (Fig. 2l). 161 
     In addition, as noted before, PENCIL can naturally be extended to address multiple 162 
conditions. Therefore, we did similar evaluations on simulation datasets with three conditions 163 
(Fig. 2m, Supplementary Fig. 4a-c) using the same T-cell scRNA-seq dataset6 as the two 164 
conditions. For the comparisons, we included Milo and MELD because they can easily 165 
address more than two conditions, whereas DAseq can only handle two conditions. 166 
Consistently, PENCIL outperformed other methods with 0.815 recall and 0.884 precision 167 
(Fig. 2n, Supplementary Fig. 4d,e), compared to 0.816, 0.001 (recall) and 0.418, 0.176 168 
(precision) for Milo and MELD (Fig. 2o,p, Supplementary Fig. 4f,g), respectively. 80.4% of 169 
the PENCIL selected genes came from the manually pre-selected genes (1000th-1300th 170 
MVGs), which were used to generate this simulation (Fig. 2q), confirming its capability in 171 
feature selection to facilitate subpopulation identification. We repeated experiments in 172 
multiple conditions 20 times, demonstrating better performance for PENCIL than other 173 
methods (Fig. 2r).  174 
     Taken together, we evaluated PENCIL in identifying subpopulations of two conditions, 175 
three conditions, and datasets with batch effects. Given that our primary goal was to 176 
demonstrate PENCIL’s ability to solve the feature selection problem rather than claim 177 
superior performance to other methods, all simulations were designed to necessitate gene 178 
selection. In fact, when assessing performance based on a constant set of informative 179 
genes, e.g., genes learned by PENCIL, all methods performed comparably (Supplementary 180 
Fig. 5). Indeed, the feature selection function embedded in the PENCIL framework selected 181 
informative genes associated with phenotypes and helped improve the performance in 182 
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identifying phenotype-enriched subpopulations hidden in a latent gene space, which cannot 183 
be accurately detected by methods lacking gene selection during the training process. 184 

PENCIL’s regression mode enables supervised phenotypic trajectory learning of cell 185 
subpopulations 186 
In addition to categorical phenotypes, increasingly single-cell datasets are designed to 187 
profile tissues from multiple time points and continuous disease stages27, such as cell 188 
differentiation, disease progression and drug response15-17. Our LWR-based PENCIL 189 
framework can also easily incorporate those continuous phenotypes into the regression 190 
mode by updating the prediction loss function (Methods). In comparison to classic differential 191 
abundance analysis, which identifies the subpopulation enriched in each categorical 192 
condition only (Fig. 1k,l), regression-based PENCIL can reveal subpopulations undergoing a 193 
continuous transition between conditions (Fig. 1m). Herein, we conducted a series of 194 
simulations to demonstrate the performance and applications of PENCIL in the regression 195 
tasks. In the first simulation to demonstrate its utility, we used data from a real scRNA-seq T-196 
cell dataset10 (16291 cells with 10 principal components) that had been processed by the 197 
principal component analysis (PCA) dimensionality reduction algorithm to generate time-198 
point labels. Three overlapping time points on the selected cell trajectory were set as the 199 
ground truth for the simulation experiment (Fig. 3a, Supplementary Fig. 6a), and cell labels 200 
were simulated accordingly, with the other cells being randomly assigned a time label as 201 
background noise (Fig. 3b). Regressing the simulated time points as continuous variables, 202 
PENCIL captured practically the entire track of cells defined in the simulated ground truth 203 
(Fig. 3c, Supplementary Fig. 6b). Though Milo also claims to be able to handle continuous 204 
variables, it only picked out the cells at the beginning and end of the trajectory, omitting the 205 
middle cells (Fig. 3d). The Venn diagram comparisons showed that PENCIL did allocate 206 
more ground truth cells (92% vs 54%) with higher precision (90% vs 80%) than Milo (Fig. 207 
3e). More importantly, the most unique characteristics of regression-based PENCIL is its 208 
ability to predict continuous time scores for the selected cells (Fig. 3f), whereas Milo merely 209 
tests for a decrease or increase (negative or positive) in abundance over time (Fig. 3g). The 210 
predicted continuous time orders of selected cells by PENCIL provide unique opportunities 211 
to make novel discoveries such as the gene expression pattern associated with the time 212 
orders. Intriguingly, in this example, the histogram plot of the distribution of the time orders 213 
predicted by PENCIL showed two additional peaks at time points 1.5 and 2.5, suggesting 214 
hidden cell transition stages between the 3 designed time points (t1.5, t2.5) (Fig. 3h). Thus, 215 
the predicted continuous time scores can reveal new critical time points or phenotypic stages 216 
between designated time points that would otherwise be either overlooked or unnoticed by 217 
experimental plans or clinical definitions. 218 
       Next, we examined the gene selection function of PENCIL in the regression task. We 219 
employed the same scRNA-seq data of T cells6 in the classification tasks to simulate a time-220 
series dataset. First, like in the previous experiment, we picked a subset of genes (the top 221 
1000-1300th MVGs) from the top 2000 MVGs for the clustering and UMAP visualization to 222 
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set up the simulated ground truth. Then we selected five subpopulations as the ground truth 223 
cells for five time-points and background cells based on the clusters generated from the 224 
selected genes (Fig. 3i). The standard top 2000 MVGs based analysis cannot correctly 225 
capture the structures of the five ground truth subpopulations (Fig. 3j). Then, we assigned 226 
the condition labels accordingly for phenotypic subpopulations and randomly assigned 227 
condition labels for background cells (Supplementary Fig. 6c). With the top 2000 MVGs 228 
expression matrix and the simulated labels as the input source data, the regression mode of 229 
PENCIL found most of the ground truth cells (Fig. 3k, Supplementary Fig. 6d) and the genes 230 
learned by PENCIL mainly located in the pre-defined 1000th-1300th MVG regions, as 231 
indicated by the dashed rectangle (Fig. 3l). In contrast, Milo selected many false positive 232 
cells (Fig. 3m). Specifically, PENCIL achieved 0.75 sensitivity and 0.79 precision, while Milo 233 
achieved 0.51 sensitivity and 0.39 precision (Fig. 3n). As before, the regression model of 234 
PENCIL can predict continuous time points for the selected cells to construct the trajectory 235 
(Fig. 3o). Additional simulations can be found in the accompanying supplementary material 236 
(Supplementary Fig. 6e-n). 237 
      By incorporating the supervised regression technique, PENCIL identifies high-confidence 238 
phenotype-associated subpopulations and orders them along a phenotypic trajectory, 239 
thereby facilitating novel insights into dynamic biological and pathological processes. 240 
Additionally, the gene selection function in PENCIL further empowers it to uncover 241 
continuous phenotypic patterns hidden within a latent gene space.    242 

PENCIL implementation, speed and scalability 243 
PENCIL is implemented in Python to employ the powerful PyTorch framework enabling 244 
direct integration with other Python-based single-cell analysis platforms such as SCNAPY28. 245 
Alternatively, data preprocessed by R packages like Seurat can be saved into intermediate 246 
files for loading into Python. To streamline the analysis, we incorporated both native R and 247 
Python codes into a single document using "R Markdown", which allows us to seamlessly 248 
transfer objects between them. Thus, PENCIL can easily interact with Seurat25 and 249 
SCANPY28, two popular single-cell analysis frameworks. We provided tutorials to run 250 
PENCIL with SCANPY and Seurat. Furthermore, with the ever-increasing ability of single-251 
cell sequencing to assess thousands to millions of cells4, 29, it is critical for the tool to analyze 252 
large-scale single-cell experiments efficiently. We simulated a large scRNA-seq dataset with 253 
1,000,000 cells and 2000 genes from 3 conditions. We then down-sampled cells to run 254 
PENCIL in both regression and classification modes. The elapsed time, CPU and GPU 255 
memory usages increase linearly with the number of input cells to PENCIL (Fig. 4). When 256 
the full set of 1,000,000 cells were analyzed, the regression mode of PENCIL took less than 257 
60 minutes, while the classification mode took 30 minutes. Both runtimes are acceptable for 258 
analyzing such a large dataset (Fig. 4a). As CPU and GPU memory were used to load data, 259 
regression and classification modes used the same amount for the same number of input 260 
cells (Fig. 4b,c). The runtime evaluations were performed using an AMD EPYC 7502 32-core 261 
processor and an NVIDIA A100 GPU. 262 
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PENCIL can identify T-cell subpopulations associated with immunotherapy outcome 263 
To illustrate the utility of PENCIL outside of a simulated setting, we first applied PENCIL to a 264 
CD8 T-cell scRNA-seq dataset (6,350 cells) from melanoma patients consisting of 17 265 
responders and 31 non-responders to Immune Checkpoint Blockade (ICB) therapy6 (Fig. 266 
5a). ICB therapy has been a major breakthrough in cancer treatment30, but it only benefits a 267 
limited set of patients31. The purpose of this clinical dataset is to understand the underlying 268 
molecular mechanisms behind ICB response and resistance.  269 
      Targeting the ICB outcome phenotypes, the classification mode of PENCIL identified 270 
2,663 cells and 1,243 cells associated with the non-responders and responders, respectively 271 
(Fig. 5b). Simultaneously, PENCIL selected 88 informative genes (Supplementary Fig. 7), 272 
and the UMAP based on those selected genes exhibited a clear aggregation pattern for the 273 
PENCIL selected cells (Fig. 5c), showing how gene selection facilitated phenotypic 274 
subpopulation identification. To catalog transcription patterns underlying ICB outcomes, we 275 
executed a differentially expressed gene (DEG) analysis between the two subpopulations 276 
specific to ICB response and resistance. This analysis revealed 1,216 DEGs between the 277 
PENCIL selected phenotypic subpopulations (Fig. 5d), which included 950 new DEGs in 278 
addition to the ones derived from the original all responder vs. non-responder cells (Fig. 5d, 279 
Supplementary Table 1). Notably, the subpopulation associated with ICB responders has 280 
higher expressions of genes related to T-cell memory and survival, such as IL7R, CCR7, 281 
LEF1, SELL and TCF7 (Fig. 5e). In contrast, the subpopulation associated with non-282 
responders is marked by the expression of T-cell exhaustion and dysfunction genes such as 283 
TOX, LAG3, ENTPD1, PDCD1, BATF and CTLA432, 33 (Fig, 5e).  284 
      Moreover, distinct from other strategies, our LWR-based supervised learning framework 285 
has an additional unique utility in that the trained PENCIL model from the given dataset can 286 
directly predict cell phenotypes from new single-cell samples, thus broadening the 287 
application of our framework. To demonstrate this utility, in the same dataset with 48 288 
samples, we conducted a leave-one-out (LOO) evaluation of our PENCIL model. In this 289 
approach, 47 samples were used to train the PENCIL model, which was applied to predict 290 
cell phenotypes from the single left-out sample. We then classified each "left-out" patient as 291 
a responder if greater than 50% of cells were predicted as responder cells and evaluated 292 
this status against the actual clinical annotation. As a result, PENCIL correctly predicted the 293 
ICB outcomes in 40 out of 48 samples (Fig. 5f), which achieved 83.3% accuracy in the LOO 294 
evaluation, greater than 75% accuracy in the original study for the 48 samples6. In addition, 295 
given the PENCIL model trained on this T-cell melanoma ICB dataset, we applied it to an 296 
independent T-cell scRNA-seq dataset of a melanoma patient from Tirosh et al.34. In this 297 
new patient, PENCIL predicted more responder T-cells (657) than non-responder T-cells 298 
(428) (Fig. 5g), suggesting this melanoma patient would likely benefit from ICB treatment. 299 
The downstream marker gene analysis of the phenotypic subpopulations of this patient 300 
revealed that TCF7-high and CCR7-high Tumor-infiltrating leukocytes (TILs) were enriched 301 
in responder subpopulations while PDCD1-high and CTLA4-high TILs were enriched in non-302 
responders (Fig. 5h). Thus, we demonstrated a unique function of PENCIL to transfer labels 303 
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to new samples, which further independently confirmed the performance of PENCIL for 304 
phenotype-enriched subpopulation analysis.   305 

PENCIL learned the phenotypic trajectory of subpopulations in response to treatment  306 
As previously discussed, PENCIL's regression mode can resolve the phenotypic trajectory of 307 
subpopulations in a supervised manner that differs fundamentally from differential 308 
abundance analysis (Fig. 1 l,m). To illustrate this utility in real data, we next applied the 309 
regression-based PENCIL to a scRNA-seq dataset with samples collected at different times 310 
throughout a drug treatment period, which can provide insight into the mechanisms of action 311 
of a drug by characterizing transcriptional responses to the drug. 312 
      In a clinical trial to evaluate a NEDD8-activating enzyme (NAE) inhibitor in treating a 313 
mantle cell lymphoma (MCL) patient, a subtype of B-cell non-Hodgkin lymphoma (NHL), 314 
peripheral blood mononuclear cells (PBMCs) were collected from the patient at baseline and 315 
after 3 and 24 hours after drug infusion. Standard clustering of 3,236 PBMC cells detected 4 316 
clusters with 3 B-cell clusters and one CD4 cell cluster (Supplementary Fig. 8a). The largest 317 
B-cell-1 cluster with 2,329 cells can be characterized by the deletions of chromosomes 6 and 318 
9 through inferCNV35 analysis (Supplementary Fig. 8b), two recurrently affected genomic 319 
regions in MCLs36. Thus, we focused our analysis on this largest malignant B-cell cluster. In 320 
this cluster, standard clustering analysis based on the top 2000 MVGs did not find any 321 
cluster dominated by a specific time point (Fig. 6a, Supplementary Fig. 8c,d). We then 322 
performed PENCIL analysis by regressing the continuous cell labels 1, 2 and 3, 323 
corresponding to 0h, 3h, and 24h conditions, respectively. PENCIL identified high-324 
confidence treatment-associated subpopulations, selecting 516 out of 1064 cells, 445 out of 325 
583 cells, and 340 out of 682 cells from the 0h, 3h and 24h conditions, respectively (Fig. 6b). 326 
At the same time, PENCIL selected 44 informative genes (Supplementary Fig. 8e), and the 327 
UMAP plot based on this PENCIL selected genes clearly displayed the treatment response 328 
trajectory upon NAE inhibition (Fig. 6c,d). Then, correlating gene expressions with the 329 
predicted time orders of selected cells, we found 145 genes changing as cells progress 330 
along the treatment trajectory18 (Fig. 6e, Supplementary Table 2). Specifically, JUNB and 331 
JUN, whose overexpression is a hallmark of lymphoma cells37, had reduced expression 332 
following NAE inhibition (Fig. 6e). Overall, our PENCIL predicted time course analysis 333 
resulted in more signature genes than the differentially expressed genes (DEGs) of each 334 
time point from all cells (Fig. 6f). For example, gene JUND is positively correlated with 335 
malignant cell proliferation in NHL38, and PENCIL analysis found NAE inhibitor repressed its 336 
expression along the predicted time course during treatment (Fig. 6g), which was not 337 
detected by the DEG analysis (Supplementary Fig. 8f).  338 
      Next, we explored the impacts of NAE inhibition at the pathway level. The proliferation 339 
and growth of MCL cells are dependent on NFKB signaling39. Interestingly, in our pathway 340 
analysis, the NFKB signaling pathway was the most negatively correlated with predicted time 341 
orders, suggesting NAE inhibition downregulated NFKB signaling along the trajectory to 342 
induce apoptosis in the MCL cells (Fig. 6 h,i). This observation is consistent with our pre-343 
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clinical data that NAE inhibitor abrogates NFKB pathway activity in chronic lymphocytic 344 
leukemia B cells40.  Other on-target effects continuously downmodulated by NAE inhibition 345 
included the hypoxia pathway41 (Fig. 6h).  346 
      Together, this application demonstrated the unique abilities of PENCIL's regression 347 
mode in selecting genes, selecting cells, and predicting time orders simultaneously, which 348 
unraveled the dynamic course of phenotypic changes.  349 

Discussion 350 
PENCIL is unique in the following features and advantages (Supplementary Fig. 9). First, we 351 
introduced the learning with rejection strategy to single-cell analysis, enabling subpopulation 352 
identification in a supervised learning manner that is flexible to address categorical 353 
phenotypes or continuous variables. Second, we embedded the feature selection function 354 
into the supervised learning model, allowing for simultaneous gene selection and 355 
subpopulation identification to allocate phenotypic cell subsets hidden in a latent gene space 356 
that would otherwise be missed. Thus, we also introduced a new gene selection strategy to 357 
single-cell analysis beyond the existing unsupervised approaches. Third, the regression 358 
mode of PENCIL can select genes, identify phenotype-associated subpopulations and 359 
predict phenotypic trajectory simultaneously in a unified framework, providing supervised 360 
learning of subpopulations undergoing a continuous phenotypic transition. Fourth, by 361 
employing the powerful PyTorch framework, PENCI is fast and scalable, which can analyze 362 
1 million cells within 1 hour (Fig. 4). Finally, besides subpopulation identifications, PENCIL 363 
has a unique utility that the model trained on the given dataset can directly predict cell 364 
phenotypes from new samples (Fig. 5). 365 
      The classification mode of PENCIL identifies subpopulations enriched by specific 366 
phenotypes, which has the same application as differential abundance testing algorithms like 367 
DAseq10, Milo11, and MELD12. However, our supervised learning-based PENCIL framework 368 
provides a more flexible way to select genes and identify subpopulations simultaneously 369 
from a global optimization perspective. To demonstrate this unique feature, the simulations 370 
for the comparison with other methods were designed in such a way that gene selection is 371 
necessary. However, we have to point out that our effort was not intended to develop a new 372 
method to improve the performance over existing methods incrementally, but to demonstrate 373 
that PENCIL is capable of performing gene selection to assist subpopulation identification. 374 
Actually, when disabling the feature selection function, PENCIL and other methods 375 
performed similarly with the same input genes (Supplementary Fig. 5). Furthermore, the 376 
genes selected by PENCIL can be inputs for other methods to construct proper KNN graphs, 377 
which will be complementary to existing KNN-based approaches to improve their 378 
performances (Fig. 2f-h,o,p, Supplementary Fig. 5a,d) as well as utilize their advantages.  379 
      Although the extension of PENCIL to regression looks trivial, it has novel applications in 380 
single-cell analysis. Unlike the traditional supervised learning, in the LWR framework, this 381 
switch in loss function will affect not only the prediction term, but also the learning with 382 
rejection term, causing it to accept the cells transitioning between conditions (Fig. 1 l,m), 383 
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which is a fundamentally independent application differing from differential abundance 384 
testing for single-cell data analysis. Thus, the regression mode of PENCIL extends beyond 385 
detecting static categorical cell states to reveal transitions during dynamic biological 386 
processes. Even though Milo can evaluate continuous inputs, it tends to select the 387 
subpopulations where phenotypic abundance monotonically increases or decreases, which 388 
usually misses phenotypic subpopulations in the middle of the time course (Fig. 3d,g). Most 389 
importantly, existing methods cannot assign time scores for the selected cells to reflect the 390 
dynamic course of phenotypes. Therefore, we believe the regression mode of PENCIL 391 
addresses a new application to supervised learning of the phenotypic trajectory of 392 
subpopulations. 393 
      PENCIL assigns cells from the same replicate with the same group label, so technical 394 
variability between samples is not taken into account, which is an inherited limitation in 395 
machine learning frameworks. In contrast, the statistics-based Milo can handle replication in 396 
an elegant way using the generalized linear model (GLM). Since PENCIL is complementary 397 
to other methods, we can provide the PENCIL-learned genes to Milo to exploit GLM's 398 
statistical advantages. Furthermore, to address condition or sample imbalanced cell 399 
numbers, we introduced the condition/sample weights to the loss function, encouraging 400 
higher probabilities to retain cells from conditions/samples with smaller cell numbers. 401 
      As we stated before, our PENCIL framework is very flexible to take various forms of loss 402 
functions and we have implemented the loss functions to handle multi-category phenotypes 403 
and continuous phenotype scores. In the future, with single-cell experiments designed to 404 
profile more samples with survival information, we will add the cox-regression model into 405 
PENCIL to identify subpopulations associated with patient survival. Furthermore, though we 406 
only demonstrated the applications of PENCIL in scRNA-seq datasets, it can also handle 407 
other types of single-cell omics assays like single-cell ATAC-seq profiling different 408 
conditions7, 42-44. 409 
      In summary, by leveraging supervised LWR, we have developed PENCIL to 410 
simultaneously select genes, select cells, and predict categorical labels or continuous 411 
orders, thereby providing a new paradigm for identifying high-confidence phenotype-412 
associated subpopulations from single-cell data. We anticipate that PENCIL will enable a 413 
broad application of phenotype-centric single-cell data analysis to deliver knowledge from 414 
single-cell experiments by focused interrogations of functionally and clinically significant cell 415 
subpopulations. 416 

Methods 417 

Learning phenotype-associated high confidence cell subpopulations by PENCIL. We 418 
build our method based on a concept known as Learning with Rejection (LWR), a machine 419 
learning strategy that introduces rejection labels in the prediction results (Fig. 1a,b). An 420 
insightful analysis for binary classification models with rejection was given in several 421 
previous studies45-47, and a general learning model with rejection has also been implemented 422 
experimentally48. For this application, we further develop a more robust and theoretically 423 
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supported generic rejection-based learning method and apply it to single-cell data analysis to 424 
identify phenotype-associated subpopulations with high confidence. Moreover, we 425 
incorporate feature selection into this LWR framework to achieve the unique function of 426 
simultaneously selecting genes and detecting phenotype-associated subpopulations from 427 
single-cell data. 428 

The workflow of PENCIL is represented in Figure 1c-g. The inputs for PENCIL are a 429 
quantified single-cell matrix and a label set of interest for each cell. Adhering to the general 430 
machine learning narrative conventions, let us denote the dataset combination to	𝐷 =431 
{(𝑥" , 𝑦")}"#!$ , where 𝑥" ∈ 𝑅% is the 𝑑-dimensional gene expression vector of the 𝑖th cell and 𝑦" 432 
is the corresponding target label of the 𝑖-th cell, such as condition, phenotype, stage, etc. 433 
(Fig. 1c). 434 

Let 𝑤 be a trainable weight vector on genes, 𝑟& be a learnable model called rejector 435 
parametrized by Φ to determine the confidence score for the cells (𝑟&(𝑥) ≤ 0 means the cell 436 
has low confidence and it will be rejected, and conversely, it will be accepted), and ℎ' 437 
denote the predictor to be learned with parameters set Θ (Fig. 1e,f). And 𝑙 be the learning 438 
loss function for a specific supervised learning task. For any sample (𝑥, 𝑦) in dataset 𝐷, 439 
PENCIL's goal is to minimize the following rejection loss with gene weights (Fig. 1g), 440 

𝐿(ℎ', 𝑟&, 𝑤, 𝑥, 𝑦) = 𝑙(ℎ'(𝑤 ⊙ 𝑥), 𝑦)1(!(*⊙,)./ + 𝑐1(!(*⊙,)0/ + 𝜆!‖𝑤‖! + 𝜆1‖Θ‖1, 441 

where ⊙ is the element-wise multiplication,1(!./ and 1(!0/ are indicator functions, and 𝑐 is 442 
the cost of rejection. We impose a sparse penalty (𝑙!-norm) on gene weights 𝑤 to choose 443 
informative genes and 𝑙1 -norm on Θ to control the model complexity of the predictor ℎ' , 444 
enable PENCIL to pick out high confidence cells that can be readily explained by a simple 445 
predictor. 446 

The supervised loss 𝑙 could come from a wide range of learning tasks, making PENCIL a 447 
flexible framework to be applicable in various scenarios. For example, if the target labels are 448 
multiple discrete categories, 𝑙	can be a loss function for multi-classification; thus, PENCIL 449 
can identify the high confidence cell subpopulations related to multi conditions or phenotypes 450 
(Fig. 1j). When the labels are continuous variables, such as time points or disease stages, 451 
𝑙	can be a regression loss, so that PENCIL can determine a trajectory of selected cells highly 452 
correlated with the labels (Fig. 1m). 453 

454 
Differentiable surrogate and model setup. The total loss function 𝐿 cannot be optimized 455 
directly using the gradient-like algorithm, due to the inclusion of indicators 1(!./ and 1(!0/. 456 
We use 𝑙(ℎ') to denote 𝑙(ℎ'(𝑤 ⊙ 𝑥), 𝑦) without causing ambiguity and temporarily ignoring 457 
the regularization terms. Drawing on the relaxation method in Cortes et al.46. 458 

𝐿(ℎ', 𝑟&, 𝑤, 𝑥, 𝑦) = 𝑙(ℎ')1(!./ + 𝑐1(!0/	459 
= 𝑚𝑎𝑥D𝑙(ℎ')1(!./, 𝑐1(!0/E	460 
≤ 𝑚𝑎𝑥D𝑙(ℎ')12(!0/, 𝑐1(!0/E	461 
≤ 𝑚𝑎𝑥D𝑙(ℎ')𝛹(𝑟&), 𝑐𝛹(−𝑟&)E	462 
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≤ 𝑙(ℎ')𝛹(𝑟&) 	+ 𝑐𝛹(−𝑟&), 463 
we can obtain the Max Surrogate (MS) and Plus Surrogate (PS) of 𝐿 as,  464 

𝐿Rej
MS(ℎ', 𝑟&, 𝑤, 𝑥, 𝑦) = 𝑚𝑎𝑥D𝑙(ℎ')𝛹(𝑟&), 𝑐𝛹(−𝑟&)E 465 

𝐿Rej
PS (ℎ', 𝑟&, 𝑤, 𝑥, 𝑦) = 𝑙(ℎ')𝛹(𝑟&) + 𝑐𝛹(−𝑟&) 466 

respectively, where 𝛹(∙) can be any one of the forms mentioned in Charoenphakdee et al. 467 
49. Furthermore, the total loss on the whole dataset 𝐷 can be formulated as 468 

𝐿IRej(ℎ', 𝑟&, 𝑤, 𝑋, 𝑌) = 𝐸I
,,4∼6

M𝐿Rej(ℎ', 𝑟&, 𝑤, 𝑥, 𝑦)N =
!
$
∑ 𝐿Rej(ℎ', 𝑟&, 𝑤, 𝑥" , 𝑦")$
"#! , 469 

where 𝑋 = (𝑥!, . . . , 𝑥$), 𝑌 = (𝑦!, . . . , 𝑦$), and 𝐸I[∙] is the sample mean. 470 
We substitute 𝑤⊙ 𝑥 with 𝑥 in the latter part for narrative simplicity. In the context of a multi-471 
classification (MC) task with 𝑀 classes, the classifier ℎ'(𝑥) is set to a linear classifier,  472 

𝑜(𝑥) = 𝜃!𝑥 + 𝜃1	473 
ℎ'(𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥D𝑜(𝑥)E 474 

where 𝑜(𝑥) ∈ 𝑅7. And 𝑟(𝑥) is a two-layer neural network using the activation function 𝜎(𝑥) =475 
𝑥 ⋅ 𝑡𝑎𝑛ℎD𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥)E50, i.e., 476 
𝑟&(𝑥) = 𝑡𝑎𝑛ℎ(𝜑8𝜎(𝜑!𝑥 + 𝜑1) + 𝜑9) 	∈ (−1, 1). 477 
We use misclassification rate (MR) as the loss function for the multiclassification task, and 478 

set 𝛹(𝑟) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑟) = !
!:;,<(2()

49, and use PS type rejection. So, for multi-classification, 479 

our final implementation is  480 

𝐿MC(ℎ', 𝑟&, 𝑤, 𝑥, 𝑦) ≜
𝑙7=(ℎ'(𝑥), 𝑦)

1 + 𝑒𝑥𝑝D−𝑟&(𝑥)E
+

𝑐
1 + 𝑒𝑥𝑝D𝑟&(𝑥)E

 481 

where 𝑙7=(ℎ'(𝑥), 𝑦) = 1 − ℎ'(𝑥)4, hence the selection range of 𝑐 can be restricted to b0, !
1
c. 482 

Though binary-classification is a special case of multi-classification and is included in MR, 483 
we have also implemented some other losses dedicated to binary-classification, such as 484 
hinge loss45, 48. 485 
In the regression (Reg) task, the regressor ℎ'(𝑥) is set to a nonlinear neural network with a 486 
dropout layer,   487 

ℎ'(𝑥) = 𝜃8 ∙ 𝑑𝑟𝑜𝑝𝑜𝑢𝑡D𝜎(𝜃!𝑥 + 𝜃1)E + 𝜃9 488 
while ℎ'(𝑥) ∈ 𝑅. The rejector 𝑟&(𝑥) is the same as one in the classification task. The loss 489 
function for regression is Huber loss, 𝛹(𝑟) = 𝐻𝑖𝑛𝑔𝑒(𝑟) = 𝑚𝑎𝑥(1 + 𝑟, 0)49, and MS type 490 
rejection is used, then,  491 
𝐿Reg(ℎ', 𝑟&, 𝑤, 𝑥, 𝑦) ≜ 𝑚𝑎𝑥D𝑙Huber(ℎ'(𝑥), 𝑦)D1 + 𝑟&(𝑥)E, 𝑐D1 − 𝑟&(𝑥)E, 0E, 492 
where  493 

𝑙Huber(ℎ'(𝑥), 𝑦) = e 0.5
(ℎ'(𝑥) − 𝑦)1, |ℎ'(𝑥) − 𝑦| < 1,

|ℎ'(𝑥) − 𝑦| − 0.5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,  494 

which is insensitive to outliers and gives more robust regression results than mean square 495 
error loss (MSE). 496 
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497 
Adjust cell numbers. In addition, we introduce class weights in the sample loss to 498 
overcome the class-imbalanced cell numbers, which is as follows, 499 

𝐿I>-MC(ℎ', 𝑟&, 𝑤, 𝑋, 𝑌) =
!

∑ $">"#
"$%

∑ 𝑢@(")𝐿MC(ℎ', 𝑟&, 𝑤, 𝑥" , 𝑦")$
"#! , 500 

where 𝑁A is the number of cells in the 𝑗-th class, 𝑢A is the weight for the 𝑗-th category and 𝐼(𝑖) 501 
indicates the index of the category to which cell 𝑖 belongs. Similarly, we can also define the 502 
weight of each sample to adjust sample-imbalanced cell numbers to have higher weights to 503 
keep the cells from samples with smaller cell numbers. 504 

505 
Hyperparameter search. The rejection cost 𝑐 is an important hyperparameter in the model. 506 
It directly affects the proportion of rejected cells and, hence, the final result. To eliminate the 507 
hassle of manual selection, we devised an algorithm to automatically select the 508 
hyperparameter 𝑐. The core principle is that when the labels are disrupted, the result of the 509 
rejection model should reject the vast majority of cells. Otherwise, it implies that the current 510 
cost of rejection is excessive, i.e., 𝑐 is too large, hence a smaller 𝑐 should be picked. On the 511 
other hand, to reject as few samples as possible on the original dataset, the rejection cost 512 
should be as high as possible. Thereby, we can take as the final choice the maximum cost 513 
that can reject the majority of samples on the dataset when the labels are disrupted. This 514 
search process can be accomplished by a bisection flow as shown in Alg. 1. 515 

Algorithm 1 516 

Input: 𝑐BC,, 𝑐B"D, termination error bound 𝜀, disruption rate 𝑟%, and a small 
acceptance ratio threshold 𝑡.  

Output: a proper cost of rejection 𝑐. 

1. Randomly select ⌈𝑁𝑟%⌉ samples from the dataset 𝐷.

2. Randomly permute the labels of selected samples from step 1 → D𝑋, 𝑌oE.

3. While 𝑐BC, −	𝑐B"D > 𝜀:

4. 𝑐 = E&'(:	E&)*
1

5. Train the rejection model on the disrupted dataset D𝑋, 𝑌oE with cost 𝑐.

6. Count the samples non-rejected → 𝑛.

7. If D
$
> 𝑡:

8. 			𝑐B"D = 𝑐

9. Else:

10. 𝑐BC, = 𝑐

11. Return 𝑐B"D
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 517 

Pre-train for faster convergence  518 
The prediction model pre-trained on a purely learning task without the rejection module can 519 
converge faster in subsequent training. So, we first optimize 𝑙(ℎ') to pre-train the predictor 520 
ℎ', and then optimize the rejection loss ℒ to train ℎ'(𝑥) and 𝑟&(𝑥). 521 
 522 
Simulation setup. In simulations for the classification mode of PENCIL, we exploited a real 523 
T cell scRNA-seq dataset6 with 6350 cells and 55737 genes. Since scRNA-seq data is noisy 524 
and sparse, we first selected the top 2000 most variable genes (MVGs) using the default 525 
function in the Seurat25 Package as the source data for PENCIL and other methods. First, for 526 
the specific simulations with two or three conditions as shown in Figure 2a,m, the 1000-527 
1300th MVGs were manually pre-selected as the informative genes, then all cells were 528 
visualized and clustered based on the expressions of these pre-selected genes to generate 529 
the ground truth phenotypic subpopulations. After that, we picked out two or three clusters 530 
and designated them to be enriched in specific conditions, respectively. And all other cells 531 
were set as background cells. Next, we assigned simulated sample labels to the cells based 532 
on the conditions. We used a number 𝛼 called mixing rate to control the ratio between the 533 
majority and the minority sample labels. Within each ground truth phenotypic condition, we 534 
assigned (1 − 𝛼) of the total cells of this condition with the designated majority condition 535 
labels, and the remaining cells with other labels. For the background cells, each cell was 536 
randomly assigned with a sample label. In this way, we got the labels for all cells for our 537 
analysis. We also depicted this simulation process in Supplementary Figure 1. 538 
    Second, to repeat simulations multiple times, we randomly selected 300 key genes from 539 
the top 1000 MVGs and subsequently clustered cells according to these pre-selected key 540 
genes. After that, we randomly picked out two or three clusters and designated them as the 541 
ground truth of phenotype-enriched subpopulations and placed other cells as background 542 
cells. Next, using the same procedure as before, we generated the condition labels for cells 543 
according to their designated ground truth phenotypes for four mixing rates (Fig. 2k).  544 
For the simulation with batch-effects, we employed Splatter26 to simulate an expression 545 
matrix with 9000 cells and 8000 genes in two batches. 6000 of these cells are from one 546 
batch, and 3000 are from the other batch. And these cells are from 3 simulated groups with 547 
group probability of 0.6, 0.6, and 0.2. The probabilities of differential gene expression among 548 
the three groups were set as 0.1, 0.1, and 0.1. In order to produce the expression data which 549 
necessitates gene selection, we selected 500 genes and disrupted them 6 times along the 550 
cell orientation, resulting in 3,000 highly variable random noisy genes. Then, we merged 551 
these noisy genes with the original remaining 7500 genes into a new gene expression matrix 552 
of size 10500×9000. Following the default Seurat pipeline for finding MVGs25, we got the 553 
new top 3000 MVGs. As expected, most of these 3000 genes are the shuffled noisy genes, 554 
and only a very small fraction of them are key genes differentiating ground truth phenotype-555 
associated subpopulations. Simulated groups can be completely separated under these 556 
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differential genes (Supplementary Fig. 3a) and the batch-correction using Seurat revealed 557 
the 3 simulated groups (Supplementary Fig. 3b). But it did not work when using the top 3000 558 
MVGs (Supplementary Fig. 3c). Thus, we obtained a simulated expression matrix 559 
comprising potential key genes, groups, and batches. Next, we generated the condition 560 
labels for all cells by setting the cells of group 1 as background cells, cells of group 2 and 561 
group 3 as two ground truth phenotypic conditions, and labeled them accordingly with a 562 
mixing rate of 0.1. After batch removal by Seurat51, using the batch-corrected and scaled 563 
expression matrix as an input, PENCIL selected the genes (Supplementary Fig. 3d) and 564 
identified 91.0% of the ground-truth cells with a precision 0.914, as shown in the UMAP 565 
generated from the PENCIL selected genes and Venn diagram (Supplementary Fig. 3e,f). 566 
To repeat this simulation, we conducted the simulations 20 times with 4 mixing rates and 567 
showed that PENCIL has better performance than other methods (Fig. 2l). 568 
     In the simulations for the regression mode of PENCIL analyses, we employed two types 569 
of single-cell expression data. In the first simulation, we used a scRNA-seq dataset 570 
preprocessed by PCA dimensional reduction10, which comprises 16291 cells and 10 571 
principal components (PCs). Based on these principal components, we performed clustering 572 
and UMAP visualization following the standard pipeline in the Seurat25 package and selected 573 
5 clusters (denoted as cluster1-5) as the ground truth trajectory (Supplementary Fig. 6a). We 574 
then set time-point labels for each of these selected clusters, where cluster 1,3, and 5 were 575 
assigned time point labels of t1, t2, and t3 respectively, while cluster 2 and 4 are set to be an 576 
equal mix of the two adjacent time point labels to mimic the transition stages (Fig. 3a). All of 577 
the other cells were set as the background cells, which were randomly assigned time point 578 
labels as noise (Fig. 3b). Then, we used the expression matrix with 10 PC along with the 579 
simulated time point labels to perform PENCIL analysis without the feature selection 580 
function. In the second simulation, because we wanted to demonstrate the feature selection 581 
of PENCIL in the regression mode, we employed the raw gene-level expression scRNA-seq 582 
matrix that was used in the classification tasks. We still pre-selected a subset of genes to 583 
necessitate the gene selection, which was further used for clustering and UMAP 584 
visualization to generate the ground truth subpopulations. For example, the top 1000th-585 
1300th MVGs were used for clustering and UMAP visualization, which was used to select 586 
the clusters as ground truth subpopulations for the simulation case shown in Figure 3i. The 587 
time point labels of all cells were set up in a similar way as before by assigning time point 588 
labels according to their designated time point labels. To further demonstrate the regression 589 
mode of PENCIL's capability in simultaneous feature selection, cell selection and continuous 590 
time points prediction, we performed two more simulation cases by manually pre-selecting 591 
different key genes (Supplementary Fig. 6e-n). 592 

Running Milo, DASeq and MELD 593 
Milo11 samples a number of small clusters called neighborhoods from the KNN graph and 594 
then applies the negative binomial (NB) generalized linear model (GLM)52 to test differential 595 
abundance among conditions in each neighborhood. When using Milo, we set the 596 
neighborhood size parameter k to 30 and the sample probability to 0.1. Since Milo's input 597 
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must have multiple replicates to conduct statistical tests, cells from each condition were 598 
randomly divided into two replicates of equal size. We followed the tutorial of Milo to perform 599 
the analysis. Milo uses the spatially corrected false discovery rate (FDR) as the criterion to 600 
filter cell neighborhoods, and we set an FDR threshold of 0.05 to call neighborhoods that are 601 
differentially abundant between conditions.  602 

DAseq10 is a multiscale approach based on the KNN graph to detect subpopulations of cells 603 
that are differentially abundant between single-cell data from two conditions. It calculates a 604 
differential abundance score vector for each cell based on the 𝑘-nearest neighbors of this 605 
cell across a range of 𝑘 values, which is then utilized as the input to predict the biological 606 
condition of each cell using a logistic regression model. According to the tutorial offered by 607 
DAseq, we set the range of 𝑘 to be 50~500, with 50 as the step by default. DAseq 608 
subsequently picks the phenotype-enriched cells by setting a threshold on the score, which 609 
is derived by randomly permuting the labels.  610 

MELD12 employs the theory of kernel density estimation on manifolds to compute the 611 
probability density distribution of biological states, which is then normalized to the relative 612 
likelihoods of the cells belonging to each state. The kernel density estimation method can 613 
also be viewed as a diffusion process of state labels on the graph. Then, the relative 614 
likelihoods are input into a Gaussian mixture model for cell clustering to identify phenotype-615 
enriched cell clusters. Following the tutorial, we performed MELD analyses with default 616 
parameters for two conditions and multiple conditions. 617 
 618 
Evaluation metric: precision, recall, and F1 score 619 
In all simulations, the ground truth benchmark is defined as the groups of cells that generate 620 
the phenotype-associated subpopulations. The true positive (TP) is the number of cells that 621 
are identified by both the evaluated methods and the ground truth cell set. The false positive 622 
(FP) is the number of cells selected by the methods but not included in the ground truth. The 623 
false negative (FN) is the number of cells rejected by the methods but belonging to the 624 
ground truth. Then, we use the precision, recall and F1 score to assess the performance of 625 
all methods, where precision is defined as TP/(TP+FP), recall is defined as TP/(TP+FN), and 626 
the F1 score is the harmonic mean of precision and recall, calculated by (2 * precision * 627 
recall)/(precision + recall).  628 
 629 
Standard scRNA-seq process in Seurat 630 
We followed the standard Seurat (v4.0.5) pipeline to analyze scRNA-seq. After quality 631 
control and data normalization, the top 2000 most variable genes were selected by 632 
FindVariableFeatures function with default parameters in Seurat, which were further scaled. 633 
Then, principal component analysis (PCA) was applied to the selected MVGs to reduce 634 
noise from single-cell data for the downstream graph construction, clustering and low-635 
dimensional visualization. The selection of the top most informative principal components 636 
was based on elbow and Jackstraw plots (usually 20-30). Data was visualized using the 637 
Uniform Manifold Approximation and Projection (UMAP)22  for dimension reduction, and 638 
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clusters were detected by the FindClusters function with the default resolution (0.8). The 639 
differential gene expression analysis was performed for phenotype-associated 640 
subpopulations by the FindMarkers function in Seurat. Here, the default parameters for 641 
FindMarkers were Wilcoxon rank-sum test (two-sided), 0.25 for the log2 fold change cutoff, 642 
0.10 for the parameter 'min.pct', and adjusted p-value less than 0.05. When removing batch 643 
effects, we used Seurat comprehensive data integration pipeline51 to merge samples from 644 
different conditions. 645 

646 
Sade-Feldman single-cell RNA-seq cohort with Melanoma immunotherapy outcome. 647 
Sade-Feldman cohort data of melanoma immunotherpay6 was used in this study. The gene 648 
expressions of single-cell RNA-seq were downloaded from GSE120575, consisting of 16291 649 
cells and 36602 genes from 17 responders and 31 non-responders to Immune Checkpoint 650 
Blockade (ICB) therapy. The CD8+ T-cells (6350 cells) annotated in the original study6 were 651 
analyzed by PENCIL to identify high-confidence subpopulations associated with the ICB 652 
outcome (Fig. 5), which were normalized and scaled in the Seurat package. The scaled 653 
matrix of the top 2000 MVGs along with the ICB outcome labels were used as the input for 654 
PENCIL analysis. This CD8+ T-cell gene expression matrix was also employed to set up the 655 
simulation in different experiments (Fig. 2, Fig. 3i). 656 

657 
Tirosh Melanoma single-cell RNA-seq data 658 
The T-cell from Tirosh’s melanoma scRNA-seq data34 was predicted by PENCIL trained on 659 
another dataset to identify T cell subpopulations associated with immunotherapy outcomes. 660 
The preprocessed expression matrix was directly downloaded from GEO (accession 661 
number: GSE72056), and the 2,068 cells annotated as T-cells in the original paper were 662 
extracted for further analysis. Before performing the prediction, we excluded the smallest 663 
cluster with 174 cells characterized by the high expression of cell cycle-related genes, as 664 
indicated by another study that these cells may be contaminated with melanoma markers6. 665 
After that, we obtained 1,894 T cells for the final analysis (Fig. 5g,h). 666 

667 
Genes significantly associated with predicted time points 668 
We employed the functions implemented in Monocle3 (v1.2.9)53 to identify the genes 669 
significantly depending on the time points predicted by PENCIL's regression mode. The 670 
gene expression levels were first fitted with the time points. Then, Wald test calculated the 671 
P-value by checking whether each coefficient differs significantly from zero, which was672 
further adjusted by the Benjamini and Hochberg53. The genes were called as significant if 673 
their adjusted p-values were less than 0.05. 674 

675 
Pathway analysis in single-cell RNA-seq 676 
For each cell, we calculated the enrichment scores of the pathways in the MSigDB54 677 
hallmark gene sets (v7.2) using the AddModuleScore function in the Seurat package25. 678 
Then, for each pathway, we calculated the Pearson correlation between the pathway 679 
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enrichment scores and PENCIL predicted time points of PENCIL selected cells. The 680 
pathways significantly associated with the time course were called by absolute values of 681 
Pearson correlation coefficients greater than 0.2 and p-values less than 0.05.  682 
 683 
single-cell RNA-seq samples across three treatment time points from an MCL patient 684 
This scRNA-seq dataset of an MCL patient across multiple treatment points was collected in 685 
a clinical trial led by Dr. Alexey Danilov to investigate the benefits of an NAE inhibitor55 on 686 
NHL patients. The manuscript of this clinical trial provides more detail about the protocol for 687 
generating scRNA-seq data, which is currently under review. We will upload this dataset to 688 
make it publicly available. In brief, we used the 10x Genomics Single Cell 3' v3 kit according 689 
to the manufacturer's instructions for the capture of single cells and preparation of cDNA 690 
libraries from patient peripheral blood mononuclear cells (PBMCs). The three samples 691 
collected at baseline and after 3 and 24 hours of treatment from the same patient were 692 
labeled with Cell Multiplexing Oligos (CMOs). Reads were de-multiplexed, aligned and 693 
counted using the 10x Genomics CellRanger v6.1.1 "multi" pipeline with default settings. 694 
After merging samples in Seurat, we performed data quality control by removing cell 695 
barcodes with < 200 UMIs, < 200 expressed genes or > 10% of reads mapping to 696 
mitochondrial RNA Genes. Doublets were removed using DoubletFinder56 (v2.0.3) with 697 
default parameters and a doublet rate threshold of 4%. We finally obtained the single-cell 698 
gene expression matrix with 14632 genes and 3236 cells. After normalization, the data was 699 
further scaled by regressing out the number of UMIs and the percentage of mitochondrial 700 
genes. The top 2000 most variable genes were identified with Seurat’s FindVariableFeatures 701 
using the default VST method, which were further analyzed by PCA. Then, the top 20 PCs 702 
were used to cluster and visualize the cells in UMAP. The cell types were annotated by 703 
SingleR57 (v1.8.1) following the standard procedure.  704 
 705 
InferCNV: Copy number alteration analysis from single-cell RNA-seq: InferCNV35 706 
(v1.6.0) with the default parameters was used to predict the segmented copy-number 707 
alterations (CNAs) in scRNA-seq data. A healthy subject's B-cells from the pbmc3k dataset 708 
in the SeuratData (0.2.1) were used as reference controls.  709 
 710 
Data availability 711 
The description of public datasets used in this study and their accession numbers are 712 
detailed in the methods section above. 713 
 714 
Code availability  715 
The open-source PENCIL program and its tutorials are freely available at GitHub 716 
https://github.com/cliffren/PENCIL. 717 
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Fig. 1. The workflow of PENCIL and its main functions. a-b, A simulated example to 888 
show the learned prediction model with the red line as the boundary with prediction scores 889 
ℎ(𝑥) = 0 to separate the two predicted classes; and the learned rejection model with the 890 
green lines as the boundary with confidence scores 𝑟(𝑥) = 0 to reject cells. c, The inputs for 891 
PENCIL are a single-cell data matrix and condition labels of all cells 𝒴. d, The single-cell 892 
expression matrix is visualized by the UMAP using the top 2000 most variable genes 893 
(MVGs) with cells colored by the condition labels. e, The three trainable components of 894 
PENCIL: gene weights 𝑤, rejector module, and predictor module. f, The outputs of PENCIL 895 
are confidence scores, predicted labels, and learned gene weights. The UMAPs are 896 
generated by the PENCIL selected genes with 𝑤t ≠ 0. g, The rejection-based total loss 897 
function of PENCIL for the optimization. h, UMAP using the top 5000 MVGs showing a 898 
dataset with two conditions colored by their condition labels. i, Standard clustering analysis 899 
based on the top 5000 MVGs. j, UMAP based on the PENCIL selected genes showing the 900 
identified phenotype-enriched cell subpopulations. k, UMAP visualization of a simulated 901 
single-cell RNA-seq data with cells colored by the conditions. The designated regions 902 
enriched in each condition were denoted by the dashed ovals. l, Differential abundance 903 
analysis like Milo and classification mode of PENCIL can only identify static phenotype-904 
associated cell subpopulations from the data shown in k. m, Continuous phenotype 905 
regression PENCIL analysis rejected the irrelevant cells and predicted the time orders of 906 
phenotypic cells to reveal continuous transition states as indicated by the red dashed circle. 907 
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Fig. 2. Evaluation of classification mode of PENCIL for simultaneously selecting 908 
genes and cells in simulations. a, The ground truth of phenotype-enriched subpopulations 909 
and background cells on UMAP generated from a manually pre-selected gene set (1000-910 
1300th MVGs) for the simulation with two conditions. b, The two phenotypic subpopulations 911 
were assigned to the two conditions accordingly with a mixing rate of 0.1 and all other cells 912 
are evenly assigned with condition labels, as shown by the arrows and ratios. c, The ground 913 
truth phenotype-enriched subpopulations in panel a visualized on the UMAP using the top 914 
2000 MVGs. d, The cells with condition labels in panel b visualized on the UMAP using top 915 
2000 MVGs. e-h, The predicted results of PENCIL, Milo, DAseq and MELD. i, The learned 916 
gene weights by PENCIL. j, The ground truth of phenotype-enriched subpopulations in panel 917 
a visualized on the UMAP using the PENCIL selected genes. k, The box plots showing the 918 
comparison results of the four methods (n=30 simulations) with four different mixing rates 0, 919 
0.1, 0.2 and 0.3. The evaluation metrics of precision, recall, and F1-score were calculated to 920 
assess the abilities to recover the simulated ground truth cell subpopulations. l, The box 921 
plots comparing the performances of PENCIL, Milo, DAseq and MELD in the simulated 922 
batch effects datasets with four different mixing rates (n=20 simulations). m, The ground 923 
truth of phenotype-enriched subpopulations and background cells on UMAP generated from 924 
a manually pre-selected gene set (1000-1300th MVGs) for the simulation with three 925 
conditions. n, o, p, The prediction results of PENCIL, Milo and MELD. q, The learned gene 926 
weights by PENCIL for the three conditions simulation. The dashed rectangle region 927 
indicating the pre-selected gene set (1000-1300 MVGs) to simulate the UMAP in panel m. r, 928 
The box plots of performance comparisons for PENCIL, Milo, and MELD in the simulations 929 
with three conditions and four different mixing rates 0, 0.1, 0.2 and 0.3 (n=20 simulations). 930 

931 
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Fig. 3. Evaluation of regression mode of PENCIL on the simulated datasets. a, For the 932 
first simulation, UMAP showing cells from a real scRNA-seq dataset assigned with 3 933 
simulated ground truth phenotypic subpopulations and background cells. The regions within 934 
dashed lines indicating cells with labels evenly mixed by two adjacent time points. b, The 3 935 
phenotypic subpopulations are assigned to the 3 samples accordingly and all other cells are 936 
evenly assigned to the 3 samples to form the sample labels for all cells. c, PENCIL selected 937 
cells. d, Milo selected cells. e, Venn diagrams comparing the cells selected by PENCIL and 938 
Milo with the ground truth phenotypic cells, respectively. f, PENCIL predicted continuous 939 
time points for the selected cells. g, Milo only assigned the selected cells as negatively and 940 
positively associated with the time course, corresponding to subpopulations decreasing and 941 
increasing with time, respectively. h, Histogram of PENCIL predicted time scores of selected 942 
cells colored by the sample labels. Dashed rectangles indicating the potential transition 943 
stages. i, For the second simulation, UMAP from a manually pre-selected gene set (1000-944 
1300th MVGs) to show cells with simulated ground truth phenotypic subpopulations of 5 time 945 
points. j, Ground truth of phenotype-associated subpopulations in panel i visualized on the 946 
UMAP using top 2000 MVGs. k, PENCIL selected cells. l, PENCIL selected genes. The 947 
dashed rectangle region indicating the pre-selected gene set (1000-1300th MVGs) to set up 948 
the simulation in panel i. m, Milo predicted cells increase and decrease with the time course. 949 
n, Venn diagram comparing the cells selected by PENCIL and Milo with the ground truth 950 
phenotypic cells. o, The PENCIL-predicted continuous time points for the selected cells in 951 
the second simulation. 952 

953 
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Fig. 4. The running time and memory usages of PENCIL against the number of cells. a, 954 
Runtime of the PENCIL pipeline from inputting the normalized data to the final selected cells. 955 
b-c, Overall memory usage of CPU and GPU across the PENCIL workflow, respectively.956 
MiB, mebibyte. 957 

958 
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Fig. 5. PENCIL analysis of T-cell subpopulations associated with melanoma 959 
immunotherapy outcomes. a, UMAP showing the cells using the top 2000 MVGs. Cell 960 
number in parentheses. b, The PENCIL predicted cell labels over the two conditions. c, 961 
PENCIL results on the UMAP based on PENCIL selected genes. Cell number in 962 
parentheses. d, Venn diagram comparing the DEGs of two conditions using all cells and the 963 
DEGs of PENCIL predicted labels of selected cells. e, Dot plots showing the expression 964 
levels of selected signature genes of PENCIL predicted phenotypes. The size of the dot 965 
encodes the percentage of cells expressing each gene and the color encodes the average 966 
expression level. f, Leave one out (LOO) prediction of responder and non-responder cells in 967 
the testing patient. The horizontal dashed line representing the cutoff to predict patients as 968 
responders or non-responders, and "x" indicating the LOO predictions inconsistent with the 969 
true condition. Sample number in parentheses. g, UMAP based on PENCIL selected genes 970 
during training showing the predicted labels of T-cells from a new melanoma patient in the 971 
Tirosh study34. Cell number in parentheses. h, The same UMAP from panel g colored by 972 
gene expressions of all T-cells from the Tirosh study. 973 
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Fig. 6. Regression mode of PENCIL analysis of scRNA-seq malignant B cells across 3 974 
time points from an MCL patient. a, UMAP based on the top 2000 MVGs showing all cells 975 
of three conditions. cell number in parentheses. b, PENCIL selected cells across conditions. 976 
c, UMAP based on the PENCIL selected genes showing PENCIL selected cells colored by 977 
conditions. cell number in parentheses. d, PENCIL predicted time orders of PENCIL 978 
selected cells on the same UMAP in panel c. e, Genes significantly associated with the 979 
PENCIL predicted time points. f, Venn diagram comparing the DEGs of conditions using all 980 
cells and the genes associated with PENCIL predicted time orders. g, The scatter plot shows 981 
JUND as an example of genes significantly associated with predicted time points which were 982 
not detected by the DEG analysis. The adjusted P value was calculated by the Wald test. h, 983 
Hallmark pathways significantly associated with the predicted time orders with absolute 984 
correlation values great than 0.2. Pearson correlation values in parentheses. i, The 985 
scatterplot between the NFKB pathway activities and the predicted treatment time points 986 
predicted by PENCIL on cell subpopulations selected by PENCIL. The Pearson correlation 987 
coefficient and the corresponding P-value were indicated. The cell number is in parentheses. 988 
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