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Abstract: A critical symptom of Parkinson’s disease (PD) is the occurrence of Freezing of Gait (FOG),
an episodic disorder that causes frequent falls and consequential injuries in PD patients. There are
various auditory, visual, tactile, and other types of stimulation interventions that can be used to
induce PD patients to escape FOG episodes. In this article, we describe a low cost wearable system
for non-invasive gait monitoring and external delivery of superficial vibratory stimulation to the
lower extremities triggered by FOG episodes. The intended purpose is to reduce the duration of
the FOG episode, thus allowing prompt resumption of gait to prevent major injuries. The system,
based on an Android mobile application, uses a tri-axial accelerometer device for gait data acquisition.
Gathered data is processed via a discrete wavelet transform-based algorithm that precisely detects
FOG episodes in real time. Detection activates external vibratory stimulation of the legs to reduce
FOG time. The integration of detection and stimulation in one low cost device is the chief novel
contribution of this work. We present analyses of sensitivity, specificity and effectiveness of the
proposed system to validate its usefulness.

Keywords: sensors; neurodegenerative disorders; clinical assessment; Parkinson’s disease; freezing
of gait; discrete wavelet transform; vibratory stimulus

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative chronic illness that affects movement, making it
difficult for patients to comfortably perform tasks of everyday life such as: walking, stair climbing,
writing, eating, etc. The World Health Organization rates PD as the second most common
neurodegenerative disorder. According to the Parkinson’s Disease foundation, approximately
10 million people suffer from this disease worldwide [1,2]. People with PD experience both motor and
non-motor symptoms. Typical motor symptoms during the early stages of PD are resting tremors,
rigidity, and bradykinesia.

PD imposes a chronic burden not only on the patients but also on their personal and social
environments. The difficulty to control movement produced by PD has a negative impact on the social
and psychological behavior of the patient, who feels isolated and useless to perform common and
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simple tasks. Other important motor symptoms present during the disease’s middle stage include
cramping (dystonia), dyskinesia, loss of postural reflexes, and Freezing of Gait (FOG). FOG is a major
motor symptom of PD that shows up during the advanced stages of the disease. It is characterized
by a brief episode of involuntary absence of locomotion, i.e., a sensation of being stuck in place,
which is experienced by the patient especially when trying to initiate a step or when navigating
through or turning around obstacles. FOG episodes cause serious difficulties in mobility and balance
that significantly increase the risk of falling, thereby potentially producing serious injury, including
bone fracture. Most PD patients affected by FOG usually are aged between 60 and 80 years. Therefore,
if injured, these patients require permanent assistance and care by relatives as well as by specialized
healthcare personnel.

Being a disease presently without a cure, treatments for PD are aimed at suppressing or
ameliorating specific PD symptoms. Currently used symptom treatment types include pharmacological
(medication), invasive (e.g., surgical, deep brain stimulation), and non-invasive and minimally invasive
(e.g., transcranial and transcutaneous stimulation) interventions. Other more general treatment types
consist of lifestyle modifications such as diet and exercise.

The use of non-invasive sensors is an effective approach for monitoring [3] gait and detecting
motor symptoms such as FOG. Non-invasive sensors used for this purpose can be classified as either
portable or stationary. Portable sensors may be attached to clothing [4,5] or to adequate supports [6–12].
They have the advantage of not limiting the PD patient’s travel space. Stationary (a.k.a. environmental)
sensors are distributed at fixed positions throughout the personal environmental space of the PD
patient [13] allowing the acquisition of a wider range of characteristics.

Both types can be used for the detection and prediction of FOG episodes, depending on the type
of processing their output data is subjected to. Processing tools and techniques used for this purpose
include: Power Spectral Density (PSD) [5], root mean square error (RMSE) [6], Fast Fourier Transform
(FTT) [7,9], Artificial Intelligence (AI) [10,12,14] and Discrete Wavelet Transform (DWT) [14]. The use
of some of these processing tools within common and easily accessible technologies, such as the mobile
smartphones, already has achieved sensitivities and specificities greater than 70% [7,9,10,13].

Symptom detection sensors and data processing algorithms are used, in conjunction with external
(non-invasive) sensory stimulation, for treatment of FOG. Among the most significant sensory type
of external stimulation interventions are the auditory [7,11], visual [15] and tactile [4,6,10] modalities.
Although early auditory or vibratory stimulation per se are not known to prevent FOG [16,17], they are
nonetheless able to reduce the length of FOG episodes [6,11,16,18]. With this in mind, we present
and describe here a novel low cost, compact, comfortable and integrated (detection + stimulation)
real-time system intended to induce prompt resumption of gait during FOG episodes. The proposed
integrated system consists of two light-weight devices, which are attached to the lower limbs of the
PD patient, strategically placed to avoid discomfort. The devices sense gait and send the resulting data
to be processed through a DWT-based Java encoded algorithm, designed to detect FOG episodes, in a
mobile Android application. As soon as the FOG episode is detected, the system generates and applies
a vibratory stimulation to help the PD patient to quickly regain gait, thus reducing the probability of
serious injury.

2. Parkinson’s Disease

PD is a multi-systemic neurodegenerative disorder that affects the human nervous system,
specifically the dopamine-producing (“dopaminergic”) neurons in the substantia nigra region of the
brain. Dopamine is essential for sending messages to control and coordinate movement [19]. It acts as a
messenger between the substantia nigra and the striatum, an area of the brain responsible for controlled
smooth movement [19,20], as shown in Figure 1.

As was already mentioned, the most characteristic motor symptoms of the disease are resting
tremor, limb rigidity, bradykinesia, and postural instability [1,2]. The diagnosis of PD depends
on the presence of one or more of these four motor symptoms, as well as on the presence of
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other motor and non-motor secondary symptoms [5,21], such as changes in writing (micrography),
reduction of facial expression and loosing of arm swinging and gait [22], constipation, olfactory
dysfunction, psychiatric symptoms (such as apathy, anxiety, depression, dementia and psychosis),
sleep disturbances, hypophonia, drooling (due to reduced swallowing) and pain [20,23,24].

Figure 1. How Parkinson’s disease originates [25].

Early studies about PD were mostly aimed at describing movement and motor disorders and at
differentiating the stages of the disease. The degree of PD can be estimated using a widely accepted
metric, the unified scale for the evaluation of Parkinson’s disease (UPDRS) [26]. The UPDRS value lays
in the range from 0 to 176, where 0 represents the healthy condition and 176 represents total disability
condition. This scale is based on the following three factors:

1. Mood, mental and behavioral,
2. Activities of daily living,
3. Motricity factor, which ranges from 0 (symptom-free condition) to 108 (severe motor

condition) [27].

Symptoms and signs of PD vary from person to person, often beginning on one side of the body
and usually continuing to worsen on that side, as symptoms begin to affect both sides. Evolution may
be slow in some patients while it can be quicker in others.

Drugs used to reduce motor symptoms in PD can cause neuropsychiatric disorders. Among them,
dopaminergic receptor agonists are the most frequently produced. However, there are no well-designed
comparison studies about the frequency of such disorders in relation to the type of treatment
used [28,29].

PD symptoms, including the FOG episodes, progressively worsen over time [30,31]. There are
monitoring devices, based on accelerometers and gyrometers, which can be placed on different parts of
the body to detect FOG episodes. Although these devices cannot prevent by themselves the occurrence
of FoG, they can be used to trigger stimulation mechanisms to induce the resumption of gait [30].

2.1. Symptoms of Parkinson’s Disease

PD symptoms may be separated into three categories: primary motor symptoms, secondary
motor symptoms, and pre-motor symptoms. They all progressively worsen as the disease advances.
Table 1 lists the three categories.
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Table 1. Motor and non-motor symptoms of Parkinson’s disease.

Primary Motor Secondary Motors Pre-Motor

Tremor, is presented in the The freezing of gait, important signal

first signs of PD. of the PD that he does not explain by Loss of the sense of smell.
the rigidity or bradykinesia.

Bradykinesia, slow movement
Micrograph, contraction of the patient’s fist. Constipation,indicating reduction of sleep disorder.spontaneous movement.

Rigidity, inflexibility in the Lack of facial expression Mood Disorder.extremities, neck and trunk.

Postural instability, a tendency Festivity, uncontrollable Low blood pressure

to be unstable when placed vertically. acceleration in the march when standing.
Orthostatic hypotension

Gait disorders caused by PD, such as FOG, have important effects on the health of the patient,
most notably the risk of falling, which can cause injuries with serious consequences. Falls cause
stress, pain, and are the leading cause of death from injuries in the elderly. In fact, more than a third
of PD patients older than 65 suffer at least one fall per year, representing 65% of all their injuries.
As a consequence, PD patients develop increasing fear of falling, which causes stress and produces a
significant psychological impact on their lives [32].

2.2. Freezing of Gait (FOG)

Movement freezing during the march is an episodic motor function disturbance, known as
Freezing of Gait (FOG). FOG episodes last only a few seconds, and rarely exceed 30 s duration [33].
FOG is commonly observed in PD patients during the advanced stage of the disease [34,35].
Patients usually describe the episode as a feeling of having your feet “glued to the ground.”.
FOG episodes may be triggered by different factors: attempting to start or continue the march,
changing gait speed or direction of the march, presence of obstacles, walking in narrow spaces,
monotone color environments, etc. Actual causes of FOG are still not well known, although there are
some hypotheses, such as freezing being caused by the inability to generate a normal amplitude step
length, or asymmetry of gait [36]. There does not seem to be a direct correlation between the frequency
of FOG and other PD motor symptoms, such as stiffness and bradykinesia. However, FOG ocurrence
is inversely proportional to the presence of tremors [37,38]. There is also evidence that indicates that
L-Dopa and dopamine agonists contribute to the development of FOG. Neurodegeneration associated
with normal aging seems to be a contributing factor [34,36]. The use of dopamine antagonists such as
ropirinole [39] and pramipexole [40] can increase the frequency of freezing. FOG that occurs during
the off phase of PD responds to L-Dopa, while freezing that occurs during the on phase does not
[41]. Evidence indicates that L-Dopa or dopaminergic agonists can contribute to the development
of freezing [38]. On phase patients do not respond to L-Dopa, suggesting possible involvement of
non-dopaminergic pathways [41]. The inability to generate normal step length can trigger freezing
[34]. Likewise, alteration in visual perception may be involved also in the genesis of FOG [39].

Appraisal of FOG is usually performed by a team of neuropsychiatric experts using certain tools and
methods, such as: the Unified Scale for Parkinson’s disease (UPDRS) to determine the stage of the disease,
the freezing of gait questionnaire (FOGQ) to determine presence of FOG [42]. They are complemented by
an evaluation of the emotional and cognitive status, as well as the quality of life of the patient.

3. Mathematical Tool for Processing

3.1. Wavelet Theory

The wavelets operate analogously to Fourier analysis in some applications. The main difference
that wavelets have with Fourier transforms is that wavelets perform local analysis, which makes them
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appropriate for the analysis of signals in the time-frequency domain, while Fourier transforms are
global [43,44]. Wavelet techniques allow to divide a complex function into simpler ones and study
them separately. They are appropriate for the analysis of image and biomedical signals, since they
allow for decomposing a signal in subband, allowing the calculation of energy for each subband of
decomposition.

The term “wavelet” is used to define the functions that are used to sample the signal (1):

S(τ,α) =
∫ +∞

−∞
S(t)

1√
α

Ψ∗(
t− τ

α
).dt, (1)

where Ψ∗ is the conjugate of the mother wavelet that will be scaled and run point by point to determine
the levels of comparison with the signal S(t).

A wavelet function is a small wave, whose energy is concentrated in time and serves as a tool for
the analysis of transient phenomena, non-stationary and variants in time [45]. In a wavelet mother,
a signal S(t) can be decomposed into:

S = A1 + D1
= A2 + D1 + D1
= A3 + D3 + D2 + D1
= ...

(2)

Thus,
= Aj + ∑

j≤J
Dj,

where:
Aj(t) = ∑

k
cjkφj(t− k), (3)

Dj(t) = ∑
k

djkψj(t− k), (4)

where Aj and Dj are the coefficients of approximation and detail respectively of the signal S(t) at
the level j (see Figure 2); φj and ψj are the scaling function and the wavelet function at level j for
reconstruction; cjk and djk , given by the wavelet transformed, there are coefficients of the function
scaling and wavelet coefficients in the level j and the change of time k, respectively. The analysis
wavelet allows the use of large intervals of time in those segments where greater accuracy is required
at low frequency and smaller regions where high frequency information is required.

A1

S(t)

D1

A2 D2

A3 D3

Level 1

A4 D4

A5 D5

Level 2

Level 3

Level 4

Level 5

Figure 2. Decomposition wavelet in five levels: tree topology.
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3.2. The Discrete Wavelet Transform

The Discrete Wavelet transform (DWT) is very similar to the discrete Fourier transform (DFT),
but, instead of using sine and cosine functions like the latter, it uses a type of function called scale
functions and wavelets. These functions combine the double characteristic of orthogonality (so that
the reconstruction is the same as the transformation), as well as compact support in space [46].

The DWT of a function f (x) is given by the following expression (5):

DWTφ f (j, τ) =
∫ +∞

−∞
f (x)φ∗j,τ(x)dx. (5)

3.3. Energy of the Wavelet Coefficients

The energy in these components and their wave coefficients are related to the energy of the
original signal. According to Parseval’s theorem, the energy contained in the signal is equal to the
sum of the energy contained in the coefficients of detail and approximation in the different resolution
levels of the wavelet transform [47,48]. That is, the signal energy can be decomposed in terms of the
coefficients of transformation. Equations (6) and (7) express this theorem in function of different times
(k) and scales (j = 1, ..., l):

EDCj =
N

∑
k=l
|DCj,k|2, j = 1, ..., l, (6)

EACl =
N

∑
k=l
|ACj,k|2, (7)

where N is the number of details coefficients (DCj) and approximation (ACl) in each decomposition
level. In Equation (8), the total energy of the wavelet coefficients is detailed:

Etot = EACl + EDCj. (8)

4. Diagnostic Tests

In order to validate the system, the results were submitted to calculations of: sensitivity (9),
specificity (10) and effectiveness (11), taking into account its calculation parameters: True Positive (TP),
False Negative (FN), True Negative (TN) and False Positive (FP) [49]. The total duration of the signals
that were processed and analyzed is 480 s of each patient (15 signals of 32 s for patient), doing a total
of 3840 s for eight patients:

Sensitivity =
TP

TP + FN
× 100%, (9)

Speci f icity =
TN

TN + FP
× 100%, (10)

E f f ectiveness =
Resumption o f the gait

TP
× 100%. (11)

4.1. Data Collection and Processing

The tests were performed in eight patients between 60 and 84 years of age, of which seven
suffer from Parkinson’s disease (PD) and a healthy subject considered as the control patient. The
characteristics of the patients are presented in Table 2, along with the identification of the degree of the
disease and the episodes of Freezing of Gait (FOG) that occurred during the system test (described by
a neurologist).

Figure 3 compares the similarity between both low extremities (right and left); through the
application of cross-correlation, it was determined that both extremities present the same behavior,
indicating that there is no need to acquire the signals of the two legs. In all patients, the acceleration of
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motor activity of the posterior sural nerve of the right leg was recorded and a superficial stimulation
was performed on the intersection of the posterior tibial nerve and the lateral plantar nerve in both legs.
A test circuit was established with the typical scenarios of the occurrence of an episode of freezing.
For 32 s, the data of the walk was registered crossing the circuit of each patient, which in turn contain
256 values of the module of the tri-axial acceleration. During testing, patients made some activities to
stimulate FOG occurrence:

• Walk in straight line,
• 180 degree turns on the walk,
• Climb steps.

The processing was done in the Arduino Pro Mini module (3.3 V/40 mA), based on the ATmega328
microcontroller (Atmel Corporation, San Jose, California, United States of America) that works on an
open source platform, in which the rest of the modules and elements are connected. Acceleration data
of the lower extremity is acquired by means of MPU 6050, where the Arduino Pro mini is in charge of
applying a pre-processing and sending the measurements through bluetooth to the Smartphone, after
the processing is forwarded a bit (1 or 0) for the Control of the motor, where the device replicates the
bit when it is sent via radio frequency to the left device in order to control the second motor.

Table 2. Characteristics of the patients evaluated.

Age Gender Parkinson’s Disease Degree of PD Freezing of Gait Episodes
On Off

Patient 1 78 Female Yes 4 3 Yes
Patient 2 84 Male Yes 4 3 Yes
Patient 3 69 Male Yes 3 2 Yes
Patient 4 67 Female Yes 3 1 Yes
Patient 5 71 Female Yes 4 2 Yes
Patient 6 73 Male Yes 3 1 Yes
Patient 7 62 Female Yes 2 1 No
Patient 8 60 Male No 0 0 No

Figure 3. Acceleration in patients 5 and 6, performed in the lower extremities.

4.2. Hardware

We used two devices. On the right leg, one device acquires the data, sends it via Bluetooth to
the Smartphone and executes the vibratory stimulation when necessary, and, on the left leg, another
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device only executes the vibratory stimulation. Both are built on a Printed Circuit Board (PCB) to
double layer with a supply of individual energy by means of two batteries of lithium of 3.7 V/500 mA,
in addition to a load system and covered with encapsulated of Poly-lactic Acid (PLA). The right device
contains the following elements: Triaxial accelerometer (MPU 6050), Bluetooth Module v 2.0 (HC-05),
Radio Frequency (RF) Emitter (433 MHz), On/OFF switch, LED indicator and vibratory motor; while
the left device consists of: RF receiver (433 MHz), voltage amplifier module, On/OFF switch, LED
indicator and vibratory motor (see Figure 4a).

The already encapsulated devices are located on two ergonomic supports and adjustable to the
lower extremities, designed in polyamide and elastane material, as shown in Figure 4b. The devices
and vibratory motors are placed in these supports, so that they coincide with the proposed location
for the acquisition and stimulation. The total weight is 220 g for the right device and 210 for the left.
In Figure 4c, it is possible to visualize the devices and the motor that remains fixed thanks to the
adjustment of the supports, allowing complete mobility and the use of the patient’s usual footwear.
In addition, the LED indicators, charging port and switches are displayed.

 

 

 

(a) (b) (c)

Figure 4. (a) Printed Circuit Board with components; (b) Encapsulated device in ergonomic support;
(c) Device placed in patient.

4.3. Software

Inside the Arduino, the acceleration of the sensor to 8 Hz (frequency of sampling) is acquired, it is
transmitted by radio frequency and Bluetooth with the help of virtual libraries, and the pins of input
and output of data are also configured. The data frame received in the Smartphone is decomposed to
separate the values of the acceleration in each axis, and Equation (12) is applied to acceleration data,
which determines the module resulting from the triaxial acceleration in the patient:

Acceleration =
√

AccX2 + AccY2 + AccZ2. (12)

The result of the previous calculation is stored in a dynamic FIFO (First In First Out) vector of 256
elements. When this vector is full, with first 256 elements, DWT is executed. The DWT parameters
used are: wavelet = Haar, scaling = 2, decomposition levels = 5 and filter order = 1. The algorithm is
encoded in Java to run inside an Android platform developed application.

The saved signal is multiplied with a vector and its result is debugged by orthogonal low-pass
and high-pass filters. This is sent to a second filtering that depends on the scale and length of the
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signal, and allows all data to be divided and stacked in frequency ranges, covering the size of the
sampling frequency. The data groups resulting from the low-frequency filter (according to their level
of decomposition) continue to be filtered, separated and grouped according to the frequency spectrum;
the grouped vector compendium is designated as wavelet coefficients. The wavelets’ coefficients of
all levels of decomposition correspond to the same number of elements that exist in the vector of the
acquired signal, grouped in a new vector and separated as detail and approximation coefficients.

From the coefficients of the DWT, it is possible to estimate the total energy level of the signal
as well as the amount of energy stored in each frequency subband that was established in the wavelet
decomposition. Equations (6)–(8) establish the amount of energy in Joules by levels of the coefficients
of detail, approximation and total, respectively.

The calculation of the DWT and wavelet energy is made for every eight new pieces of acceleration
data, which, according to the sampling frequency is every 1 s, then the detection of FOG and therefore
the decision to activate the stimulus is made every 1 s. The time of the stimulation will be until the
energy levels exceed the proposed threshold.

4.4. Graphical User Interface

An Android mobile application “FOG Detection” was developed for graphic interaction with
the patient, and Figure 5a shows the first screen that appears when the application is opened. The
following elements are found on this screen:

• List of previously linked bluetooth devices,
• MAC address of each physical bluetooth device.

(a) (b) (c)

Figure 5. Graphical interface of application “FOG Detection” (a) home screen; (b) results
screen/stimulus OFF; (c) results screen/stimulus ON.

Once a device to link from the list of available Bluetooth’s devices is selected, the screen changes
to Figure 5b. This screen interface shows the following:

• Acceleration data in its three axes (x, y, z),
• Amount of energy in the signal,
• Buttons for manual activation and deactivation of the vibratory stimulus,
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• Real time graph of triaxial acceleration,
• Indicator of motors activation.

In Figure 5c, active state of the automatic stimulation is observed, by means of a green indicator,
representing the appearance of a FOG and the activation of vibratory stimulus.

5. Results and Discussion

From acquisition and processing were obtained results of acceleration and energy, respectively.
The acceleration data provide characteristics of the walk and allow for differentiating and extracting
characteristics of the episodes of FOG, while the energy levels establish the beginning, duration and
end of the episodes, permitting the activation of the vibratory stimulation until the resumption of the
gait. The patient’s response to stimulation during the walk is evaluated by calculations of sensitivity,
specificity, and effectiveness, to quantify the ability of the system to differentiate between patients who
have FOG from those who do not.

5.1. Acceleration

The triaxial acceleration data are received and correlatively stored in a file with “.csv” extension.
Figure 6 show some graphs of recorded signals where patients 1 to 6 exhibit episodes of FOG, along
with the beginning of the episode and the resumption of the walk, while patients 7 and 8 did not show
episodes of FOG during testing.

The segment limited by parallel lines of red establishes the episodes of FOG that were diagnosed
by the specialist. The green lines establish the beginning of the resumption of the gait in patients
affected by the vibratory stimulus.

It is notable that signals with FOG (Figure 6) contain lower extremities accelerations that change
less rapidly and have less amplitude compared to signals of Figure 7, which correspond to patients
without PD. In turn, in Figure 6, there is a greater number of peaks and uniformity in their signals,
while the signal segments that were diagnosed as FOG present small variations in peak-to-peak
amplitude around 9.81 m/s2, which indicates a state of almost at rest of the lower extremities.

In Figure 6, FOG episodes occur at different instants and periods of duration with a range between
9 to 11 m/s2 of amplitude, establishing a peak-to-peak magnitude of approximately 2 m/s2, regardless
of age and sex. Two episodes of FOG are presented in patient 3 (Figure 6), corresponding to 32 s
duration of the accumulated signal, becoming an indicator that the patient may be in a grade 4 of
the PD; patients with this degree of disease require long-term continuous stimuli to continue the gait.
The above establishes that, depending on the degree of the disease, the duration of its episodes of FOG
can increase.

Patient 7 (Figure 7) has the signal of a patient diagnosed with Parkinson’s disease without FOG in
grade 1, with its mild symptoms and the disease is controlled by medication administration; there is a
decrease in energy between 20 and 24 s of the signal due to an incomplete turn made by the patient.
This isn’t a FOG episode. While patient 8 (Figure 7) is a healthy patient, within the same age range as
previous patients, its acceleration is uniform and periodic, that is to say, it does not present flaws in the
behavior of the walk.
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                                  Patient 1                                                                              Patient 2 

 

                                 Patient 3                                                                               Patient 4 

 

                                 Patient 5                                                                               Patient 6 

 Figure 6. Signals of patients with FOG.

  

                                        Patient 7                                                                              Patient 8 

Figure 7. Signals of patients without FOG.
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5.2. Energy Levels

Figure 8 shows the amount of energy that contains the wavelet coefficients, a product of the DWT
processing. It shows the difference in energy levels between patients with episodes of FOG and those
who do not have them. In addition, the distribution of the energy for each level of detail decomposition
and approximation coefficients is observed.
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Figure 8. Distribution of total energy in the subbands of the wavelet coefficients.

In [50], it is established that the frequency of FOG occurs in the bandwidth of 3 to 8 Hz. This range
was placed within the detail coefficients of the first level (DC1), excluding from the analysis the
coefficients in the frequency range of 3 to 4 Hz because they do not provide relevant information
in FOG detection, but it is necessary to consider all the coefficients for the calculation of the total
energy and energy levels of the subbands, as included in the Equations (6)–(8). Based on the above
considerations, for calculations, processing and analysis, there is a spectrum of frequencies for the
presence of FOG from 4 to 8 Hz, whose frequency ranges are contained by detail coefficients from
level 1 (DC1) to detail coefficients of level 5 (DC5).

According to the results of the tests in Figure 8, each patient, regardless of the degree of their
illness, presents different amounts of energy because everyone maintains a different walking pattern,
establishing that there are no significant characteristics that differentiate the presence of FOG in the
signals. Then, it is necessary to do a percentage comparative analysis, except for AC5, but included
in the calculation as shown in Equation (13), which is contrasted in Figure 9, which presents the
percentages of energy from DC’s from level 1 to level 5 (five levels of wavelet decomposition) derived
from eight signals from the eight patients described in Table 2: six with PD and FOG (Patients 1 to 6), 1
with the PD without FOG (Patient 7) and one without the PD or FOG (Patient 8):

Energy =
|AC5|2 + |DCj|2

|AC5|2 + ∑5
i=l |DCi|2

× 100%. (13)
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Figure 9. Percentage distribution of energy in the subbands of the coefficients.

Based on the results in Figure 9, it is shown that the total energy of signals with FOG is lower than
that of signals without FOG (see Figure 8), due to the scarce or null activity of movement in the lower
extremities during a FOG episode. Because the FOG occurs in the DC1 frequency band, the DC1’s
energy value is compared between all patients described in Figure 9, where the percentage of energy in
patients 7 and 8 is higher than in patients 1 to 6, approximately over 4%, while patients who had FOG
episodes have energy levels below 2%. The value of 2% is taken as the limit level for the activation
of the proposed vibratory stimulation, which should increase with the resumption of activity in the
lower extremities and thus avoid possible falls.

5.3. System Validation

Tables 3 and 4 summarize the results of the tests performed with the system developed in
conjunction with the neurosurgeon’s assessment. Taking into account the parameters useful for
calculating sensitivity, the amount of TP and FN was recorded in Table 3, while the amount of TN and
FP, necessary for the calculating specificity, is recorded in Table 4.

Table 3. Results and resumption of gait for patients with episodes of FOG.

FOG Episodes Diagnosed
FOG Episodes Detected

Resumption of Gait
by the Neurosurgeon

by the Proposed System
through Vibratory StimulusTrue False

Positive (TP) Negative (FN)
Patient 1 6 4 2 4
Patient 2 2 2 1 2
Patient 3 5 2 2 3
Patient 4 3 2 2 1
Patient 5 4 3 3 3
Patient 6 7 4 2 3

Total 27 20 13 16
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Table 4. Results of patients who do not have episodes of FOG.

System Results

Signals Analyzed True Negative (TN) False Positive (FP)

Patient 7 15 14 1
Patient 8 15 12 3

Total 30 26 4

Using the values recorded in Tables 3 and 4 in the Equations (9)–(11), it obtains a specificity
of 86.66% and a sensitivity of 60.61% in the FOG detection, while the system’s effectiveness for the
resumption of walking after the freezing is detected is 80%.

Table 5 highlights an improvement in the time reduction of the FOG episodes of each patient using
vibrational stimulation versus measurements without any stimulation, approximately 27% reduction
in the duration of FOG episodes.

Table 5. FOG time with stimulation and without stimulation.

Time Average without Time Average with Improvement
Stimulation [s] Stimulation [s] Percentage [%]

Patient 1 7.74 4.52 41.63
Patient 2 9.87 9.22 6.59
Patient 3 10.19 6.83 33.02
Patient 4 7.04 5.92 15.87
Patient 5 7.18 4.97 30.84
Patient 6 4.56 3.06 32.89

Total average 7.76 5.75 26.81

To verify system usability, all patients were asked about system comfort and stimulus effect,
with two questions:

• Have you ever experieced any discomfort while wearing the system?
• Do you feel uncomfortable from any aspect with system feedback (vibratory stimulus)?

All of them manifest that wearing the system does not represent any discomfort, and system
feedback is soft enough to not be annoying, but detectable enough to help.

To detect FOG, many techniques were tested by different researchers. Table 6 shows the
most recent papers about it. Most of them combine Video Recording and Acceleration [51–56];
Acceleration alone was used by [57–59]; Acceleration in combination with angular velocity by [60]
and in combination with Inertial Measurement Unit sensor by [61,62]; Video Recording alone by [63];
Using Microelectromechanical systems by [64] and using Electroencephalography by [14,65]. The main
objective of our research is to find an efficient system to detect and to stimulate with an affordable cost
based on motor frequency analysis that can be improved with the implementation of neural networks
and hip acceleration measures, in addition to exploring vibratory stimulation as a blockage of FOG.
It has a similar performance in specificity and a lower average performance of 22.96% in sensitivity
with respect to the other investigations, but our system works in real time (some studies use external
hardware to processes data offline with, of course, better results), it is low cost, compact, comfortable
and integrated (detection + stimulation).
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Table 6. Comparison of methodologies and results of work oriented to the detection of FOG.

Reference
Methodology Results

Number of Acquisition Processing Specificity Sensitivity
Patients/Episodes (%) (%)

[14] 5
EEG* Time-frequency analysis

89.5 83.1(cortical regions: with combinations
frontal, central, parietal) of DWT* and SVM*

[51] 20/98 VR* and Step rate,
84.1 70.1Acc* (hip) freezing and

energy index

[52] 20 VR* and
Support vector machines,

94 96Acc* (hip)
stride detection,

spectral power and
motor status threshold

[53] 15 VR* and Acc* (hip) Support vector machines >90 >90

[54] 10/237
VR* and Acc* Continuous wavelet 81.01 84.9(ankle, thigh transformand lower back)

[55] 18 VR* and
Diffuse Logic: Freezing

>86 >78Acc* (hip)
index, derived energy ratio,

variation of the cadence
and power spectrum

[56] 18/>200
Visual, Support Vector

91 91motion and Machines and
depth Logistic Regression classifier.

[57] 10/237 Acc* (ankle, thigh Power spectrum, 81.6 73.1and lower back) Freezing index, FFT*

[58] 8/237 Acc* (ankle)
Classifier: Freezing

85 70index, energy, FFT* and
statistical characteristics

[59] 10/237 3 × Acc*
DL*

90.6 69.29(Convolutional
Neural Networks)

[60] 15/46 Acc* and angular Automatic learning 91.7 86velocity (hip) algorithm

[61] 32
IMU* sensor, Variations of

93.41 97.57Acc* of K during
Smartphone (hip) threshold crossings

[62] 21
IMU* sensor, Data representation + DL*

89.5 91.9(Acc*, gyroscope (Convolutional
and magne-tometer) Neural Networks)

[63] 30/25 VR*
Time-frequency analysis

>95 75–83with combinations
of FFT* and WT*

[64] 7 MEMS* Dynamic Time Warping 96.7 94.5(headset or shins) and ANN*

[65] 6
EEG* Short time Fourier 88 84.2(cortical regions: TransformFrontal F4)

* EEG = Electroencephalography, DWT = Discrete Wavelet Transform, SVM = Support Vector Machine,
VR = Video recording, Acc = Acceleration, FFT = Fast Fourier Transform, MEMS = Microelectromechanical
systems, ANN = Artificial Neural Network, IMU = Inertial Measurement Unit, WT = Wavelet Transform,
DL = Deep Learning.

6. Conclusions

The motor problems of Parkinson’s disease originate in the brain and branch out through the
nervous system, leading to changes in gait such as FOG. The use of an exogenous stimulus allows the
brain to break from the freezing state of the lower extremities and resume the gait.



Sensors 2019, 19, 737 16 of 20

This device integrates a wireless, low cost, compact, comfortable, easy to use and portable system
designed, developed and implemented for patients with Parkinson’s disease who have episodes
of FOG.

This device integrates an algorithm that detects in real time and accurately episodes of FOG and
then stimulates the patient to resumption of gait.

The duration of the FOG episodes is variable for each patient as well as the reaction time of the
patient to the vibratory stimulus; although its appearance is strongly linked to situations of stress and
low self-esteem, such as the difficulty of crossing narrow places or climbing steps. During system
tests, it was observed that the resumption of the gait presented sudden and accelerated movements
compared to normal walking.

The use of this developed device helps the patient to move and perform their daily activities
without restrictions, and, at the same time, allows their real-time monitoring. In addition, storage of
gait data that would help to understand, process and clarify FOG episodes occurs.

The mathematical tool of the DWT is useful to find differences in the acquired signals and to
establish thresholds variables that define an episode of FOG, with the possibility of characterizing
other types of motor anomalies.

Future work with more patients and with different processing techniques, as, for example, neural
networks, will be done to improve specificity and sensitivity, maintaining the restriction of a low cost
system. This would provide the possibility of differentiating an episode of FOG from a voluntary
pause in gait, correcting system levels of sensitivity, and calibrating effectiveness of the stimulus.
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