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Abstract

Sustained hedgehog (Hh) signaling mediated by the GLI transcription factors is implicated in many types of cancer.
Identification of Hh/GLI target genes modulating the activity of other pathways involved in tumor development
promise to open new ways for better understanding of tumor development and maintenance. Here we show that
SOCS1 is a direct target of Hh/GLI signaling in human keratinocytes and medulloblastoma cells. SOCS1 is a potent
inhibitor of interferon gamma (IFN-y)/STAT1 signaling. IFN-у/STAT1 signaling can induce cell cycle arrest, apoptosis
and anti-tumor immunity. The transcription factors GLI1 and GLI2 activate the SOCS1 promoter, which contains five
putative GLI binding sites, and GLI2 binding to the promoter was shown by chromatin immunoprecipitation.
Consistent with a role of GLI in SOCS1 regulation, STAT1 phosphorylation is reduced in cells with active Hh/GLI
signaling and IFN-у/STAT1 target gene activation is decreased. Furthermore, IFN-у signaling is restored by shRNA
mediated knock down of SOCS1. Here, we identify SOCS1 as a novel Hh/GLI target gene, indicating a negative role
of Hh/GLI pathway in IFN-y/STAT1 signaling.
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Introduction

Hh/GLI signaling is of central importance during vertebrate
embryonic development and also plays a crucial role in
regulating cell proliferation and differentiation in the adult
organism. A rapidly growing number of facts has linked
aberrant Hh pathway activity to tumorigenesis. It has been
shown that malignant transformations in organs like skin, brain,
prostate, the lung and many more are involving irregular Hh
signaling (reviewed in [1,2]).

Hh signaling is canonically activated by binding of the
signaling molecule Hh to its transmembrane receptor patched
(PTCH), abrogating the inhibitory effect of PTCH on the signal
transducer smoothened (SMO). Activation of SMO leads to the
stabilization of the activator form of GLI transcription factors.
Active GLI proteins then translocate from the primary cilium,

where pathway activation takes place, to the nucleus to drive
Hh target gene transcription (reviewed in [3–5]).

First indications for a tumor promoting function of Hh
pathway activity was found in patients suffering from the
autosomal dominant hereditary disease BCNS (Gorlin
Syndrome) characterized by multiple Basal Cell Carcinomas
(BCCs) and rare cases of medulloblastoma (MB) and
rhabdomyosarcoma (RMS). The molecular basis of this
phenotype, but also for spontaneously developed BCCs and
MBs not associated with Gorlin syndrome, is most frequently
the mutational inactivation of the pathway repressor PTCH
[6–8]. Further causes for spontaneous BCCs and MBs can be
activating mutations in SMO [9] or loss of function mutations in
SUFU [8,10]. The importance of the hedgehog pathway in
BCC, MB and RMS development has been further
demonstrated by numerous transgenic and knock out mouse
models [11–13]. Recently Hh signaling has been shown to
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interact with several other signaling pathways like EGF, TGF-β,
WNT, NOTCH and IFN-y, which are playing key roles in
different cellular processes, but also strongly influence tumor
growth and metastasis [14–21]. Characterizing such
interactions is an important aim in developing new therapeutic
strategies for cancer treatment.

Suppressor of cytokine signaling 1 (SOCS1) is a member of
a protein family mainly known as negative regulators of
cytokine induced JAK-STAT signal transduction (reviewed in
[22–24]). The SOCS family consists of eight members, SOCS1
to 7 and the cytokine inducible SH2 containing protein CIS.
Characteristic for all SOCS family members are a central SH2
domain and a highly conserved C-terminal SOCS box motive.
SOCS1 contains an additional N-terminal kinase inhibitory
domain (KIR). The SH2 domain and the KIR motive are both
required for efficient binding to activated JAK kinases and
subsequent blocking of signaling by preventing STAT
phosphorylation [25–27].

In mouse models, SOCS1 was shown to specifically
antagonize STAT1 and its functions downstream of IFN-у.
SOCS1 knockout mice die within the first weeks after birth
because of hyper-responsiveness to IFN-у resulting from
increased STAT1 phosphorylation and IFN-у/STAT1 target
gene expression. They can be rescued by concurrent IFN-y
knock out [28,29]. Accordingly overexpression of SOCS1 in
transgenic animals or in cultured cells cause strongly reduced
IFN-у responsiveness [30–35].

The roles of SOCS1 in tumorigenesis are diverse and
strongly depend on the origin or type of the tumor. SOCS1 may
either promote or suppress tumorigenesis: Tumor suppressive
activity of SOCS1 was observed in SOCS1-/- knockout mice,
which develop colitis-induced colon tumors [36]. Deletion or
silencing of SOCS1 in human hepatocellular carcinoma (HCC)
[37], acute myeloid leukemia [38] and gastric cancer [39] also
points to the anti-tumor potential of SOCS1. In contrast,
SOCS1 acts as an oncogene by inhibiting the IFN-у mediated
effects on cancer cells such as enhanced anti-tumor immunity,
cell cycle arrest, apoptosis and reduced angiogenesis.
Depletion of SOCS1 negatively affects various tumor types like
melanoma and neuroendocrine tumors [40,41] supporting an
oncogenic potential for the STAT1 inhibitor SOCS1.

Here we show that SOCS1 is a direct target of Hh/GLI
signaling in human keratinocytes and a medulloblastoma cell
line. STAT1 phosphorylation and IFN-y target gene activation
are downregulated upon expression of GLI transcription
factors. This effect can be reversed by shRNA mediated
knockdown of SOCS1, suggesting that Hh signaling in tumor
cells blocks IFN-у mediated anti-tumor effects via activation of
SOCS1.

Results

SOCS1 expression is enhanced in response to Hh/GLI
signaling

SOCS1, a member of the SOCS protein family, was
identified as a GLI target gene in HaCaT keratinocyte cell lines
inducibly expressing either GLI1 (GLI1-HaCaT) or GLI2
activator form (GLI2act-HaCaT) [42]. Other members of the

SOCS family showed no response to either GLI transcription
factor. qRT-PCR demonstrated strong upregulation of SOCS1
mRNA in response to GLI2act (up to 35 fold) and moderate
activation due to GLI1 overexpression (Figure 1A and B). A
comparable increase of SOCS1 protein in response to GLI2act
expression was seen by Western blot (Figure 1C). Retrovirally
transduced GLI2act in the keratinocyte cell line N/TERT-1 can
also induce SOCS1 mRNA expression (Figure 1D). The
canonical Hh/GLI target PTCH was used as positive control for
GLI activity (Figure 1A, B and E). While in HaCaT cells
induction of SOCS1 by GLI1 is moderate compared to GLI2act
(Figure 1A and B), strong expression of SOCS1 was found in
the medulloblastoma cell line DAOY in response to either GLI1
or GLI2act expression (Figure 1F). To further support that GLI
mediated induction of SOCS1 is due to a physiological amount
of Hh signaling rather than excessive overexpression we
activated Hh signaling in DAOY cells with the smoothened
agonist SAG [43]. As expected, SAG treatment of DAOY cells
leads to a significant increase in PTCH expression (Figure 1G,
grey bars) and robust expression of endogenous GLI1 protein
(Figure 1G, lower panel). SOCS1 expression induced by SAG
was comparable to PTCH and was completely ablated by the
pathway antagonist cyclopamine (CYC) (Figure 1G, black
bars).

BCC is a keratinocyte derived tumor characterized by
constitutive activation of the Hh pathway [6–13]. We therefore
analyzed samples of human BCCs to determine whether and at
what level SOCS1 is expressed in these tumors. Seven BCC
samples showing characteristic high expression of GLI1
[7,44,45] were found to also strongly express SOCS1 mRNA
compared to three normal human skin biopsies (Figure 2A).
Immunohistochemical staining of human BCC paraffin sections
showed strong and specific staining of SOCS1 protein
throughout the tumor islands and in some infiltrated areas of
the surrounding stroma thus supporting qRT-PCR data (Figure
2B, left). Furthermore, staining of sections of paraffin-
embedded human normal skin showed significant expression
of SOCS1 protein in basal keratinocytes, which are sites of GLI
expression [46]. This agrees with previous studies of SOCS1
expression in skin [47] (Figure 2B, right).

SOCS1 is a direct transcriptional target of the GLI
transcription factors

To find out whether SOCS1 expression is directly regulated
by the GLI transcription factors, we searched for putative GLI
binding sites upstream of the transcriptional start site of
SOCS1. Using ScanACE [48] and a search motif based on
Winklmayr et al. [49] we identified a cluster of five sites within a
600bp region, located 822bp upstream of the transcriptional
start site (Figure 3A). All of these potential binding sites differ in
at least one position from the GLI consensus sequence [50]
(Figure 3A, right) and were previously shown to be active in
luciferase assays [49]. To confirm the role of the GLI binding
sites in SOCS1 upregulation, we cloned a 1478bp fragment
(-1650 to +172) of the human SOCS1 promoter containing the
transcriptional start site and the first exon into a luciferase
reporter plasmid (SOCS1prom) and a control promoter with all
five GLI binding sites deleted (SOCS1promdel) (Figure 3A). As
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expected, luciferase expression from the SOCS1 reporter was
significantly activated by both GLI1 and GLI2 (Figure 3B).
Deletion of the GLI binding site cluster led to strongly reduced
luciferase activity (Figure 3B), supporting direct regulation of
SOCS1 by the transcription factors GLI1 and GLI2. To show
physical interaction of the GLI proteins with this promoter
region in vivo, chromatin immunoprecipitation was done in
GLI2act-HaCaT cells, demonstrating that GLI2 binds to the
SOCS1 promoter fragments F1 and F2 (Figure 3A), which
contain putative GLI binding sites (Figure 3C). Together these
results show that SOCS1 is a direct target of the GLI
transcription factors.

Diminished IFN-у/STAT1 signaling in cells with
activated Hh/GLI pathway

Having shown that SOCS1 is a direct GLI target, we asked
whether GLI expression affects IFN-у signaling via modulation
of SOCS1 and consequently STAT1, the main signal
transducer of type II interferon signaling [51,52]. Federici et al.
have shown that SOCS1 overexpression in HaCaT
keratinocytes inhibits the activation of STAT1 and thus impairs
IFN-y dependent target gene expression [33]. Results of qRT-
PCR analysis of IFN-y target genes in HaCaT cells
overexpressing SOCS1 are in agreement with previously
published data [33] (Figure 4A). We then treated HaCaT cells
expressing SOCS1 (pLL-SOCS1) with IFN-у and quantified
expression of the known IFN-у target genes ICAM1, IRF1,

Figure 1.  Hh/GLI signaling induces SOCS1 expression.  A) and B) qRT–PCR of SOCS1 (black bars) and PTCH (grey bars)
mRNA levels in HaCaT keratinocytes expressing GLI1 (GLI1-HaCaT) (A) or GLI2act (GLI2act-HaCaT) (B) under doxycycline (DOX)
control for the times indicated. C) Western blot of SOCS1 and GLI2act protein level in DOX treated and untreated GLI2act-HaCaT
cells. Beta-actin (ACTB) was used as loading control. D) and E) qRT–PCR of SOCS1 and PTCH expression in the keratinocyte cell
line N/TERT-1 retrovirally transduced with GLI2act (pLL-GLI2act) or enhanced green fluorescent protein (EGFP) (pLL) as control.
Cells were assayed 48h post infection. Fold change refers to mRNA ratio of GLI2act to EGFP expressing cells. F) qRT-PCR of
SOCS1 mRNA in DAOY cells retrovirally transduced with EGFP tagged GLI1 (pLL-GLI1), GLI2act (pLL-GLI2act) or EGFP (pLL).
Lower panel: Western blot of GLI1 and GLI2act transgene expression using EGFP antibody. G) DAOY cells were treated with Hh
pathway agonist SAG alone or in combination with the antagonist cyclopamine (CYC) for 120h and analyzed for the expression of
SOCS1 and PTCH by qRT-PCR. Controls were treated with DMSO only. Lower panel: Activation of the Hh pathway was monitored
by Western blot using a GLI1 specific antibody. Error bars represent ± SD of biological triplicates. * unspecific signal.
doi: 10.1371/journal.pone.0075317.g001
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TRIM22, IFIT1 and the cell cycle inhibitor p21 (CDKN1A)
(reviewed in [51]) by qRT-PCR (Figure 4A). As expected, cells
transduced with EGFP as control (Figure 4A, black bars)
showed a strong response to IFN-у as evident from the
dramatic increase in ICAM1 (37 fold over IFN-у untreated),
IRF1 (30 fold), TRIM22 (12 fold), IFIT1 (5 fold) and CDKN1A (3
fold), while in cells expressing SOCS1 (pLL-SOCS1) very little
or no in IFN-у target gene activation was observed (Figure 4A,
grey bars).

We then asked whether the effect of SOCS1 on IFN-y target
gene expression could be triggered by GLI expression. GLI2
expression in the inducible GLI2act-HaCaT cells led to a
dramatically reduced IFN-у response almost completely
abolishing activation of ICAM1, HLA-DRA, IFIT1 and CDKN1A
(Figure 4B), while expression of the canonical Hh target gene
PTCH was not affected by IFN-у, but increased by GLI as
expected [53,54]. In agreement with reduced IFN-у signaling in
GLI2act expressing HaCaT cells Western blot demonstrated a
significant reduction in STAT1 phosphorylation (Figure 4C). To
extend the result to the context of a different cell type and
avoiding overexpression of GLI, we tested the IFN-у response
in DAOY cells treated with the hedgehog pathway agonist
SAG. As observed for HaCaTs, DAOY cells showed a strong
transcriptional response to IFN-у. In SAG treated cells both
IFN-у target gene expression and phosphorylation of STAT1
were significantly reduced compared to DMSO treated controls
(Figure 4D and E). In summary, these results indicate that Hh
pathway activation impairs IFN-у/STAT1 signaling.

Knock down of SOCS1 restores IFN-у target gene
activation in the presence of Hh/GLI signaling

To test whether SOCS1 is directly responsible for the
repression of IFN-у/STAT1 signal transduction in the presence
of Hh signaling, we used an shRNA approach to knock down
SOCS1. GLI2act-HaCaT cells were transduced with
shSOCS1_1, shSOCS1_2 or control shRNA. The efficiency of
the knock down was evaluated by Western blot and qRT-PCR
(Figure 5A). Next, we analyzed mRNA levels of selected IFN-у
targets in GLI2act-HaCaT cells stably expressing shSOCS1_1,
shSOCS1_2 or shCTRL. As predicted, knock down of SOCS1
in cells with active hedgehog signaling partly restores IFN-у
target gene activation: HaCaT cells expressing GLI2act and
SOCS1 shRNA showed significantly increased activation of the
IFN-у target genes CXCL10, CDKN1A and ICAM1 compared to
cell lines expressing GLI2 and control shRNA (Figure 5B).
Similar results were obtained in SAG treated DAOY cells
transduced with shSOCS1_1 or shSOCS1_2. Again, knock
down of SOCS1 strongly enhances IFN-у target gene
activation in SAG treated cells (Figure 5C).

Reduced anchorage-independent growth of DAOY cells
in response to SOCS1 knock down

Untreated DAOY cells display a sustained, low level of Hh
pathway activity (reviewed in [55]) and are known to form
colonies in colony formation assays [56–58]. Having shown
that high levels of Hh signaling impairs IFN-y signaling by
SOCS1 activation, we explored the influence of SOCS1 on Hh
driven tumor growth. An inducible GLI2act expressing DAOY
cell line (GLI2act-DAOY) and unmodified DAOY cells were

Figure 2.  SOCS1 is expressed in basal cell carcinoma (BCC).  A) mRNA levels of hedgehog target genes GLI1 and SOCS1 in
biopsies of human BCCs (n=7) and normal human skin samples (NS) (n=3) by qRT-PCR. Data were normalized to RPLP0 and
represent mean values of all tested BCC and NS samples. Fold change refers to the ratio of BCC to NS. B) Immunostaining of
sections of human BCCs (left) and normal skin (NS, right) with SOCS1 antibody.
doi: 10.1371/journal.pone.0075317.g002
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subjected to retrovirally induced SOCS1 knock down. The
efficiency of shRNA mediated knock down was evaluated by
qRT-PCR (Figure 6A). As expected, untreated DAOY cells and
uninduced GLI2act-DAOY cells (-Dox) when transduced with
control shRNA form a small number of colonies, which can be
further reduced by SOCS1 shRNA (Figure 6B upper and
middle row). Induced expression of GLI2act (GLI2act-DAOY
+Dox) leads to a higher number of larger colonies (> 200 µm)
(Figure 6B bottom, shCTRL). SOCS1 knock down strongly
reduces the number of colonies (Figure 6B, shSOCS1_1,
shSOCS1_2 vs shCTRL) and colonies larger than 200 µm are
completely absent (Figure 6B and 6C, small diagram). These
results demonstrate that colony formation of DAOY cells is
strongly enhanced in the presence of GLI2act. Furthermore, a
knock down of SOCS1 antagonizes colony formation, leading

to a significant reduction of colony number and size (Figure
6C). These results indicate that upregulated expression of
SOCS1 may contribute to tumor growth.

Discussion

The oncogenic potential of uncontrolled activation of Hh
signaling has been demonstrated extensively in the past years.
Interaction of Hh signaling with a number of other pathways
can enhance tumorigenesis and tumor growth. Here we
describe an inhibitory interaction of Hh/GLI signaling with the
IFN-у/STAT1 pathway. IFN-у/STAT1 signaling can have tumor
suppressor function and IFN-у treatment is recommended and
tested in tumor therapy [59]. Mice insensitive to IFN-у (STAT-/-,
IFN-уR-/-) exhibit enhanced chemically induced tumor

Figure 3.  SOCS1 is a direct transcriptional target of GLI.  A) Graphical overview of the cloned SOCS1 promoter region
containing 5 putative GLI binding sites. Numbers refer to the transcription start site (RefSeq NM_003745.1). Sequences of putative
GLI binding sites are listed on the right. Bases differing from GLI consensus sequence are underlined. B) Luciferase assay of a
1822bp fragment of the human SOCS1 promoter (SOCS1prom, see A) and deletion construct SOCS1promdel (see A). HaCaT cells
were co-transfected with SOCS1 reporter and GLI expression plasmids as indicated. +/-SD refers to quadruplicate samples. C)
Chromatin immunoprecipitation shows specific binding of GLI2 to the SOCS1 promoter. Chromatin isolated from doxycycline (DOX)
treated GLI2act-HaCaT cells was precipitated with either GLI2 specific antibody (αGLI2) or unspecific (normal IgG) antibody as
control. Two fragments (F1 and F2) spanning BS2, BS3, and BS4 or BS5 were amplified from the SOCS1 promoter by PCR. As
positive control a 148-bp fragment (PTCHprom) from the PTCH promoter was used [49] and a 284-bp fragment (RPLP0prom) from
the human RPLP0 promoter served as negative control [70]. * P < 0.001.
doi: 10.1371/journal.pone.0075317.g003
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development and are more susceptible to transplanted tumors
[60,61]. Moreover, 33% of all tested melanoma and lung
adenocarcinoma cell lines have inactivating mutations in at
least one IFN-у pathway component [60], suggesting that
inactivation of the IFN-у pathway can lead to evasion of
cytokine induced cell cycle arrest and cytokine mediated tumor
surveillance.

SOCS1, a specific inhibitor of IFN-y/STAT1 signaling, is
activated by IFN-y/STAT1 thus creating a negative feedback
leading to a block of STAT1 phosphorylation (reviewed in
26,62). Here we show that SOCS1 is a direct transcriptional
target of the oncogenic Hh signal mediators GLI1 and GLI2.
HaCaT keratinocytes and DAOY cells with elevated Hh
signaling due to either GLI1 or GLI2 overexpression or
treatment with the Hh pathway agonist SAG show highly
elevated levels of SOCS1. This results in a significantly
decreased expression of IFN-у target genes such as IRF1,
ICAM1, CDKN1A and HLA-DRA. The data by Umeda et al.
showing a protective function of Hh expression on IFN-y

induced cytotoxicity in pancreatic beta cells [63] may result
from a similar interaction, though a contribution of SOCS1 was
not investigated in this study.

A knock out of STAT1 leads to complete loss of IFN-y
responsiveness [64] and mice deficient for SOCS1, a STAT1
inhibitor, die from IFN-у mediated, dramatically increased
systemic inflammation [28,29]. Here we show that the levels of
active, phosphorylated STAT1 are reduced in response to
activation of the Hh pathway. Furthermore, we demonstrate
that a knock down of SOCS1 in cells with activated Hh pathway
restores IFN-y driven target gene activation. These data
support the hypothesis that hedgehog driven SOCS1
expression leads to reduced levels of phosphorylated STAT-1
and IFN-у susceptibility.

Upregulation of SOCS1 in response to Hh signaling is
observed not only in HaCaT keratinocytes and DAOY
medulloblastoma cells, but also in samples of human BCC.
Compared to normal epidermal keratinocytes, BCCs are
characterized by lower expression of IFN-y target genes

Figure 4.  IFN-у /STAT1 signaling is downregulated in cells with active Hh/GLI signaling.  A) The effect of SOCS1 expression
on IFN-у/STAT1 signaling was analyzed in HaCaT cells expressing FLAG tagged SOCS1 (pLL-SOCS1) or empty viral vector as
control (pLL). 48h hour post transfection cell were treated with 1 ng/ml IFN-у for 6h and assayed for mRNA levels of known IFN-у
target genes by qRT-PCR. Fold change refers to the ratio of IFN-у treated to untreated samples. B) qRT-PCR of GLI2act-HaCaT
cells expressing GLI2 (+DOX) for 72h and subsequently treated with 1 ng/ml IFN-у for 6h. mRNA levels IFN-у target genes (HLA-
DRA, ICAM1, IFIT1, and p21) are shown as ratios to untreated control. PTCH was used as marker for GLI2 activity. C) Western blot
showing STAT1 phosphorylation in GLI2act-HaCaT cells treated with doxycycline (DOX) for 72h followed by a 2h treatment with
IFN-у. D) qRT-PCR of IFN-у target gene expression in DAOY cells treated with SAG or DMSO control for 144h followed by 4h of
IFN-у treatment. mRNA levels are shown as ratio of treated to untreated samples. Data are given as mean ± SD of biological
triplicates. E) STAT1 phosphorylation in SAG/IFN-у treated DAOY was analyzed by Western blot.
doi: 10.1371/journal.pone.0075317.g004
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ICAM1 and HLA-DRA [65,66]. This may be due to elevated
SOCS1 expression and is in agreement with reduction of HLA-

DRA and ICAM-1 expression seen in GLI expressing
keratinocytes (Figure 4B).

Figure 5.  SOCS1 knock down restores IFN-у/STAT1 signaling in cells with activated Hh signaling.  A) Western blot analysis
of SOCS1, GLI2, and ACTB in GLI2act-HaCaT cells transduced with two shRNAs directed against human SOCS1 (shSOCS1_1,
shSOCS1_2) and control shRNA (shCTRL) expressing GLI2 for the time indicated (left panel). SOCS1 mRNA levels were also
analyzed by qRT-PCR in cells expressing GLI2 for 48h. B) qRT-PCR of IFN-у target genes (CXCL10, CDKN1A, and ICAM1)
measured in GLI2act-HaCaT cells after expressing GLI2 for 48h (+ DOX) with subsequent exposure to 1ng/ml recombinant IFN-у
for 6h. C) qRT-PCR of IFN-у target gene activation (HLA-DRA, ICAM1, IFIT1, TRIM22 and IRF1) in DAOY cell lines stably
expressing either shSOCS1_1 and shSOCS1_2 or unspecific control shRNA (shCTRL). Cells were pretreated with 200 nM SAG for
120h to activate the Hh pathway and subsequently incubated with 1ng/ml recombinant IFN-у for 6h. mRNA levels are shown as
ratio of IFN-у treated to untreated samples. Data are given as mean ± SD of biological triplicates.
doi: 10.1371/journal.pone.0075317.g005
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High levels of SOCS1 have been reported in breast cancer
and some melanomas [47,67–69]. However, also silencing of
SOCS1 has been described in various tumour types [37–41].
To further define the role of SOCS1 on tumorigenesis in the
context of Hh signaling, we used DAOY cells in a colony

formation assay. We observed a reduction in the number and
size of colonies in the presence of shRNA directed against
SOCS1 compared to control shRNA, indicating that high levels
of SOCS1 expression promote tumor growth. The observed
reduction of colonies even in the absence of exogenous IFN-y

Figure 6.  Reduced anchorage-independent growth of Hh-active DAOY cells in response to SOCS1 knock down.  A) SOCS1
mRNA levels were analyzed by qRT-PCR in DAOY and GLI2act-DAOY (24h GLI2act expression), showing efficient SOCS1 knock
down. Black bar: shCTRL, light grey bar: shSOCS1_1, dark grey bar: shSOCS1_2. B) Anchorage independent growth of DAOY
cells (top) or GLI2act-DAOY (middle: uninduced GLI2act DAOY (-Dox), bottom: induced GLI2act DAOY (+Dox)) expressing
shCTRL, shSOCS1_1 or shSOCS1_2. Number and size of colonies are enhanced in response to GLI2act expression and reduced
in presence of SOCS1 knock down. C) Quantification of assays shown in B). The large diagram shows the total number of all
colonies, the small diagram refers to the number of colonies with a diameter larger than 200 µm. rel. no. CFU relative number of
colony forming units. Black bar: shCTRL, light grey bar: shSOCS1_1, dark grey bar: shSOCS1_2. Error bars represent ± SD of
biological quadruplicates, * P < 0.05, ** P < 0.01.
doi: 10.1371/journal.pone.0075317.g006
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is probably resulting from a basal level of endogenous IFN-y
signaling, also shown by the presence of IFN-y transcript (see
also Figure S1) and a low, but detectable amount of
phosphorylated STAT-1 in DAOY cells, which is decreased by
induction of Hh signaling through SAG (Figure 4E).

In summary, we found that Hh signaling mediated by GLI
directly upregulates SOCS1 expression, leading to inhibition of
IFN-y signaling (Figure 7). These results may contribute to the
understanding how Hh dependent tumors evade cellular anti-
tumor strategies relying on IFN-y.

Materials and Methods

Ethics statement
The study was performed according to the Austrian Gene

Technology Act and in accordance with the Helsinki
Declaration of 1975 (revised 1983) and the guidelines of the
Salzburg State Ethics Research Committee, being neither a
clinical drug trial nor an epidemiological investigation.

Concerning this study, the local ethic committee (Salzburg
State Ethics Research Committee) was conducted. An
objection was not expressed and a waiver of approval was
issued (according to the hospital law of Salzburg (§30)). All
patients signed an informed consent concerning the surgical
removal, therapy of the tumors and use of the residual material
within the tissue bank of Salzburg (research purpose).
Furthermore, the study did not extend to examination of
individual case records. The anonymity of the patients’ samples
has been ensured.

Cloning of promoter and expression constructs
For the luciferase reporter construct SOCS1prom, a 1822bp

fragment of human SOCS1 (NM_ 003745.1) promoter was
amplified by PCR (forward primer: 5´
gagggtaccggtctccttgtattccatcaccctc 3´, reverse primer 5´
gagagatctccgactcctggctgccctggactcc 3´) from human genomic
DNA, digested with KpnI/BglII and cloned into the luciferase
reporter vector pGL3basic (Promega). To delete potential GLI
binding sites, SOCS1prom was digested with KpnI/SacI and re-

Figure 7.  Model showing negative cross talk of Hh signaling with the IFN-у /STAT1 signaling cascade.  Activation of Hh/GLI
signaling enhances SOCS1 transcription, thereby downregulating IFN-у signal transduction by circumventing STAT1
phosphorylation and dimerization.
doi: 10.1371/journal.pone.0075317.g007
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ligated resulting in the deletion construct SOCS1promdel. GLI1
and GLI2act expression constructs have been described
previously [70].

For the expression plasmid pLL-SOCS1, the open reading
frame of human SOCS1 was amplified from human cDNA
using PCR (forward primer: 5’ gagaagcttgtagcacacaaccaggtgg
3’, reverse primer: 5’ ctcgaattctcaaatctggaaggggaag 3’),
digested with HindIII/EcoRI and sub cloned into
pCMV10-3xFLAG (Sigma) to fuse a FLAG tag to the N-
terminus of SOCS1. FLAG-SOCS1 was again amplified by
PCR (forward primer: 5’ agtcaccggtgtgggaggtctatataag 3’,
reverse primer: 5’ gcatgaattctcaaatctggaaggggag 3’), digested
with AgeI/EcoRI and cloned into the retroviral expression
vector pLL3.7 (pLL) [71].

Cell culture and colony formation assays
HaCaT and GLI1- and GLI2act-HaCaT [42,72] cells were

cultured in Dulbecco’s modified Eagle medium (DMEM, high
glucose, PAA) with 10% fetal calf serum (PAA), 100 µg/ml
streptomycin and 62.5 µg/ml penicillin (Invitrogen) at 37°C, 5%
CO2. DAOY cells were cultured in MEM (PAA) with 10% fetal
calf serum (PAA), 110mg/l Na-Pyruvate, 100 µg/ml
streptomycin and 62.5 µg/ml penicillin (Invitrogen) at 37°C, 5%
CO2. Transgene expression in GLI1/2act-HaCaT cell lines was
induced adding 50ng/ml doxycycline (DOX) (Sigma-Aldrich).
During transgene expression or treatment with smoothened
agonist SAG (400nM) (Calbiochem) or human recombinant
IFN-у (1ng/ml Medium) (Thermo Scientific) serum
concentration was reduced to 0.5%. N/TERT-1 cells were
grown in Keratinocyte Serum-free Medium (Invitrogen) with 100
µg/ml streptomycin and 62.5 µg/ml penicillin, For the GLI2act-
inducible DAOY cell line GLI2act-DAOY, the T-REX System
(Invitrogen) was used, generating a double-stable cell line
expressing human GLI2act. DAOY cells used already
contained the Tet-repressor plasmid and were a kind gift of Dr.
Marcel Kool [73]. Medium of double-stable DAOY was
supplemented with 10 µg/ml mg/ml Zeocin (Invitrogen) and 2
µg/ml/ml Blasticidin S (Sigma-Aldrich). Transgene expression
was induced by 100ng/ml doxycycline (Sigma-Aldrich).

In order to analyze anchorage-independent growth, 8x103

cells were seeded into 12-well plates in 0.4% select agar on
top of 0.5% bottom select agar (Invitrogen) according to
manufacturer’s protocol. Cultures were grown for 6 weeks at
37°C, 5% CO2. Documentation of anchorage independent
growth was done using a stereomicroscope (Optimax) and the
Cell^D Image capture system (Olympus), for quantification
CellProfiler software (http://www.cellprofiler.org/) was used.

Retroviral gene expression and short hairpin RNA
(shRNA) mediated knock down

Lentiviral vectors used for expression of EGFP (pLL) [71]
and EGFP tagged GLI1 and GLI2act (pLL-GLI1, pLL-GLI2act)
are described in [74]. For shRNA mediated SOCS1 knock
down, two shRNAs (shSOCS1_1 (TRCN0000057063),
shSOCS1_2 (TRCN0000057067)) from the lentiviral
MISSION® shRNA set SHGLY-N2M_003745 (Sigma-Aldrich)
and a non-target control shRNA (shCTRL) (Sigma-Aldrich)
were selected. Virus production and infection of cells was

performed essentially as described in [42]. 24 h post virus
infection medium was supplemented with 1 µg/ml puromycin
(Sigma Aldrich) to select for infected cells.

RNA isolation and qRT-PCR analysis
Total RNA from human BCC (n = 7) and human normal skin

(n = 3) was isolated with TRI-Reagent (Molecular Research
Center, Inc.) followed by LiCl precipitation. Total RNA of
HaCaT and N/TERT-1 cells was isolated and purified with the
High Pure RNA Isolation Kit (Roche). cDNA synthesis and
qRT-PCR analysis was done as described [42]. Human large
ribosomal protein P0 (RPLP0) was used for normalization of
sample material in qRT-PCR analysis [75]. For primer
sequences see Table 1.

Western blot and Immunohistochemistry
Cells were lysed in 125mM Tris (pH 6.8), 5% glycerol, 2%

SDS, 1% β-mercaptoethanol, 0.006% bromphenol blue, and
proteins resolved by SDS-PAGE. EGFP, GLI2, SOCS1, total
STAT1, STAT1Tyr7001 and ACTB were detected using the
following primary antibodies: polyclonal rabbit-anti-GLI2 (GLI2-
H300), polyclonal rabbit STAT1p84/p91 (E23) and monoclonal
mouse ACTB (C4) all from Santa Cruz Biotechnology,
polyclonal rabbit anti SOCS1 (ZymedLaboratories) and p-
polyclonal rabbit STAT1 (Y701) (Cell signaling). Secondary
antibodies were HRP-conjugated goat-anti-rabbit, chicken-anti-
goat (Santa Cruz Biotechnology), and sheep-anti-mouse (GE
Healthcare). Proteins were visualized using the SuperSignal
West detection system (PIERCE). Paraffin embedded sections
of human BCC were stained for SOCS1 as described [70]
using a polyclonal rabbit SOCS1 (C20) antibody (Santa Cruz
Biotechnology).

Luciferase Reporter Gene Assay
HaCaT cells were grown in 24-well plates to 80% confluency,

and transfected in triplicate with the respective expression
constructs and pGL3 basic luciferase reporter plasmids. A lacZ
expression plasmid was co-transfected for normalization.
Transfection was carried out using SuperFect transfection
reagent (Qiagen) according to manufacturer’s protocol.
Luciferase activity in cell lysates was measured 48h after
transfection with a Lucy IIluminometer (AnthosLabtec) using
Luciferase Assay Substrate (Promega) according to
manufacturer’s instructions.

Chromatin immunoprecipitation
Chromatin immunoprecipitation from GLI2-HaCaT cells was

done as described in [70]. For immunoprecipitation polyclonal
goat-anti-GLI2 (N-20) antibody and normal goat IgG (both
Santa Cruz Biotechnology) were used. Sequences of PCR
primers used for analysis are listed in Table 1.

Statistical analysis
Data are shown as mean ± SD. The significance of mean

comparison was assessed by two tailed Student’s t test. If not
indicated otherwise, the p-value was less 0.05.
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Supporting Information

Figure S1.  DAOY cells express endogenous IFN-y. RT-
PCR measurement showed that untreated DAOY cells express
low, but detectable levels of endogenous IFN-y. The house
keeping gene RPLP0 was used as reference. Data are given
as mean ± SD of biological duplicates.
(TIF)
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