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ABSTRACT: Adsorption of small amphiphilic molecules occurs in various
biological and technological processes, sometimes desired while other times
unwanted (e.g., contamination). Surface-active molecules preferentially bind
to interfaces and affect their wetting properties. We use molecular dynamics
simulations to study the adsorption of short-chained alcohols (simple
surfactants) to the water−vapor interface and solid surfaces of various
polarities. With a theoretical analysis, we derive an equation for the
adsorption coefficient, which scales exponentially with the molecular surface
area and the surface wetting coefficient and is in good agreement with the
simulation results. We apply the outcomes to aqueous sessile droplets
containing surfactants, where the competition of surfactant adsorptions to
both interfaces alters the contact angle in a nontrivial way. The influence of surfactants is the strongest on very hydrophilic and
hydrophobic surfaces, whereas droplets on moderately hydrophilic surfaces are less affected.

1. INTRODUCTION
Adsorption of dissolved molecules from an aqueous phase onto
interfaces with air and solids is a ubiquitous phenomenon in
natural and technological processes. For instance, the
adsorption of organic material (e.g., microorganisms and
pollen) plays a prominent role in several aspects of
atmospheric and oceanic environments.1−4 Adsorption is
essential in many applications, ranging from detergency,
printing, surface catalysis, dialysis, and filtration5 to petro-
chemical processes6 and removal of water pollutants.7 Yet,
adsorption is a process often challenging to predict and
control. Uncontrolled adsorption contributes to surface
contamination, biofouling (i.e., unwanted bacterial adhesion),
loss of product to vessel surfaces, clogging of small
constrictions in coronary stents8,9 or microfluidic devices,10

and deterioration of biosensors.11

It is known that small molecules and proteins tend to adsorb
better onto hydrophobic than onto hydrophilic surfaces,12−14

making the latter suitable self-cleaning materials against
biofouling.9 The water contact angle became a useful proxy
for the hydrophobicity of a surface, even when addressing
complex phenomena such as cellular responses to synthetic
surfaces in culture media or simulated medical device service
environments.15 However, in many complex biological
scenarios, other factors become important as well.16 Unfortu-
nately, the surfactant adsorption processes are challenging to
study experimentally, in particular, because the adsorbing
layers are typically below a few nanometers in thickness, often
comprising a single molecular monolayer.17−20

An important effect of adsorbed molecules is that they
reduce the surface tension of the interface to which they

adsorb,21,22 which is why surfactants are often used to enhance
the wetting ability of aqueous solutions23 and to suppress
hydrophobic cavitation.24,25 Surface-active molecules can
dramatically alter the substrate wettability, thereby leading to
phenomena such as superspreading26 or autophobing (sponta-
neous retraction of a drop after initial spreading).27,28

Determining the relationship between the surface tension
and the structures of surfactant additives at different
temperatures, pressures, salinities, and pH regimes is critical
for the design in many industry sectors, ranging from consumer
chemicals to oil and gas extraction.29,30 In recent years, we
have witnessed an enormous interest in surfactant-containing
droplets, where the surfactant’s adsorption to the solid−water
and air−water interfaces can render wetting in a nontrivial
way.31−39

Among the vast number of additives, alcohols hold a special
place, being by far the most frequently used.40 Short-chained
alcohols are the simplest molecules that contain both
hydrophobic and hydrophilic groups and are therefore
excellent model systems in studies of interfaces.41−45 They
are the most common cosurfactants added to surfactant and oil
systems, for instance, in microemulsions. Alcohol adsorption is
also relevant to distillation,46 biofuels,47 biomass trans-
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formation,48 pharmacological processes (binding to mem-
branes and proteins),49−51 and aerosol science.52,53

In this work, we employ molecular dynamics (MD)
simulations to study how short-chained alcohols (i.e.,
methanol, 1-propanol, and 1-pentanol, shown in Figure 1a)

adsorb to two kinds of interfaces: water−vapor and solid−
water. For the latter, we use a self-assembled monolayer
(SAM) with various degrees of polarity and water contact
angles. The three linear alcohols are soluble in water,54 which
enables studying the effect of chain length directly. Since they
adsorb to both interfaces and lower their surface tension, we
will refer to them also as surfactants55 in this work. We

compute the adsorption of alcohols onto the interfaces and
analyze the dependence on the chain length and the surface
contact angle, θ, expressed in terms of the wetting coefficient,
cos θ. We invoke a continuum-level approach to rationalize the
observed relationship between the adsorption and the wetting
coefficient. Furthermore, using the Gibbs adsorption-isotherm
formalism, we relate the surfactant adsorption to the decrease
in the surface tensions. This enables us to analyze the variation
of droplet contact angles as a function of the surfactant
concentration.

2. METHODS

2.1. Atomistic Models. We used the simple point charge/
extended model for water56 combined with the GROMOS
force field57 for simulating alcohols and the solid surface. All-
atom structures and topology files for alcohols were obtained
from the ATB repository.58

To simulate the adsorption at the water−vapor interface, we
set up an NVT (fixed number of particles, volume, and
temperature) simulation with box dimensions of 5 nm × 5 nm
× 10 nm with a water slab (containing various numbers of
alcohol molecules) of thickness 5 nm in the middle (see Figure
1b and Section S1 in the Supporting Information for
simulation details). Periodic boundary conditions were applied
in all three directions. The vapor layer (of thickness 5 nm) was
thick enough so that the water slab did not interfere with its
periodic images along the z direction.
For the planar solid surface, we adopted an atomistic model

introduced before,59−61 which mimics a SAM. The surface was
composed of restrained, hexagonally packed aliphatic chains
terminated by hydroxyl (OH) head groups with the area
density of 4.3 nm−2. For the aliphatic chains, the united-atom
representation was used. To generate different hydrophilicities
of the surface, the original partial charges in the OH groups
were scaled by the factors 0, 0.4, 0.6, 0.7, and 0.8, which
resulted in the water contact angles of θ = 135, 120, 97, 76, and
45°, respectively, as determined previously by the sessile
droplet method61 as well as thermodynamic integration.62 The
relation between the polarity and contact angle is provided in
Section S2 of the Supporting Information. A 5 nm-thick water
slab with added surfactants was placed in contact with the
surface. The simulation box (of height 10 nm and lateral
dimensions 5.2 nm × 4.5 nmthe closest commensurable
choice to the water-slab system) was replicated in all three
directions via periodic boundary conditions (see Figure 1c).

Figure 1. Simulation models. (a) Surfactant molecules in this work:
methanol, 1-propanol, and 1-pentanol. (b) Simulation box of a water
slab containing surfactant molecules, used to study the water−vapor
adsorption. (c) Simulation box of a water slab in contact with the
planar surface.

Figure 2. Normalized water (dashed lines) and surfactant (solid lines) density profiles (in logarithmic plot) at the water−vapor interface for
different concentrations of (a) methanol, (b) propanol, and (c) pentanol. Different colors correspond to different bulk concentrations c0 of the
surfactant shown by the color bar on the right in the unit of mol/l. The green vertical lines indicate the Gibbs dividing surface of the water phase.
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2.2. Simulations and Data Analysis Details. The MD
simulations were performed with the GROMACS 2019
simulation package.63 The temperature was maintained at
300 K using the velocity-rescaling thermostat64 with a time
constant of 0.1 ps. In NPT (fixed number of particles, pressure,
and temperature) simulations (used for the Kirkwood−Buff
integrals), the pressure was controlled with the Parrinello−
Rahman barostat65,66 of time constant 1.0 ps. Electrostatics
was treated using particle-mesh-Ewald methods67,68 with a
real-space cutoff of 0.9 nm. The Lennard-Jones potentials were
cut off at 0.9 nm in order to be compatible with the previous
studies that employed the same SAM model and also evaluated
the contact angles.61,62 Simulation times spanned up to 300 ns
for the water−vapor systems (three independent realizations of
100 ns, used to gather sufficient statistics for evaluations of
surface tensions) and 100 ns for the surface−water systems.
When performing fits to data, we used the orthogonal

distance regression algorithm,69 which allows us to include the
uncertainty of the data in both (x and y) coordinates. This is
necessary since, for some sets of data, the relative uncertainty
of the x-coordinate is much larger than that of the y-
coordinate.

3. RESULTS AND DISCUSSIONS
3.1. Adsorption at the Water−Vapor Interface. We

start by examining the adsorption behavior at the water−vapor
interface (a proxy for the air−water interface), which is one of
the most studied interfaces.45,46,54 Figure 2 shows normalized
density profiles of water [cw(z)/cw0; dashed lines] with various
concentrations of surfactant [c(z)/c0; solid lines] in the
proximity of the liquid−vapor interface. The pronounced
density peaks of surfactants at the interface indicate
preferential adsorption.
Adsorption is commonly quantified as the surface excess

number density Γ of the surfactant across the effective water−
vapor boundary, located at z0

z c z z c z cd ( ) d ( )
z

z
0

0

0

∫ ∫Γ = + [ − ]
−∞

∞

(1)

where c0 is the bulk surfactant concentration. We define the
effective position of the water−vapor interface, z0, as the Gibbs
dividing surface of the water phase (i.e., the position at which
the excess water adsorption vanishes). To numerically
compute the above integrals, we first identify the water bulk
as the region where surfactant density is roughly uniform and
use it to evaluate c0 (Tables S1−S3 in the Supporting
Information provide the number of simulated molecules and

the bulk concentrations). We used the trapezoidal summation
rule of subinterval length Δz = 0.1 nm to numerically integrate
density profiles c(z) from a position well inside the vapor phase
to a position well inside the water phase.
In Figure 3, we plot evaluated adsorptions Γ as a function of

bulk concentration c0 for all three surfactants. Generally, at
first, a linear trend for low concentrations starts leveling off at
higher concentrations, which can be approximately described
by the Langmuir adsorption isotherm21,70−72

k c
k c1

c 0

c 0
Γ = Γ

+∞
(2)

shown in Figure 3 as green solid lines and where kc and Γ∞ are
fitting parameters. For low concentrations, eq 2 reduces to
Henry’s law

Kc0Γ = (3)

where K = kc Γ∞ is the adsorption coefficient. We denote it as
Kv when representing the adsorption coefficient to the water−
vapor interface and Ks to the solid−water interface. Henry’s
law is also shown in Figure 3 as dashed lines for comparison,
with the adsorption coefficient Kv as obtained from the fit of
the Langmuir isotherm. The adsorption coefficient Kv, as well
as kc, grows rapidly with the molecular size, starting from Kv =
0.8 nm for methanol, 21 nm for propanol, and 410 nm for
pentanol. Experimental values reported in the litera-
ture21,70,73−77 (we estimated some of the values from surface
tension measurements, as described in Section S3 of the
Supporting Information) are 2.1 nm (methanol), 19−32 nm
(propanol), and 270−290 nm (pentanol). Thus, the MD
results are capable of satisfactory reproducing experiments,
given the high sensitivity on the surfactant size, as we will see
later on.
In contrast, the evaluated saturation values of Γ∞ are

comparable for the three surfactants obtained from the
simulations (6.52 nm−2 for methanol, 5.06 nm−2 for propanol,
and 4.80 nm−2 for pentanol), reflecting the fact that the
adsorbed molecules occupy similar areas. Experimental data
give Γ∞ ≃ 3.5 nm−2 for propanol and pentanol,21,70 which also
compares reasonably well with our MD results. Note that the
systematic accuracy of Γ∞ may not be very high because the
fits are intentionally focused on low-concentration regimes,
with few points at high concentrations.
A notable effect of surfactant adsorption at the water−vapor

interface is that it reduces the surface tension, γ. The reduction
can be calculated using the Gibbs adsorption equation, dγ =
−Γdμ, where μ is the surfactant chemical potential. Both Γ and

Figure 3. Adsorption Γ at the water−vapor interface as a function of bulk concentration of (a) methanol, (b) propanol, and (c) pentanol. The MD
data (red symbols) are fitted with the Langmuir isotherm (eq 2) (green line). Yellow dashed lines correspond to Henry’s law (eq 3), for which the
coefficient Kv is obtained from the Langmuir fit (Kv = kcΓ∞).
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μ depend on surfactant concentration, c0. Whereas for Γ(c0),
we assume the Langmuir isotherm (eq 2), we invoke the
Kirkwood−Buff (KB) relation for the chemical potential
μ(c0)

78−80
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∂
∂

=
+ −

(4)

where kB is the Boltzmann constant, T is the temperature, and
mm and mw are the molecule−molecule and molecule−water

KB integrals, respectively, defined as

g r r r( ) 1 4 dij ij0

2∫ π= [ − ]
∞

(5)

where gij(r) is the radial distribution function between species i
and j in bulk. Evaluated gij(r) in bulk solutions and calculated
KB integrals mm and mw are shown in Section S4 of the
Supporting Information. Since both KB integrals are nearly
constant for low concentrations, we can treat them as
constants. We combine eqs 2 and 4 with the Gibbs adsorption
equation, and after integration, we obtain the relation between
the surface tension reduction Δγ and the adsorption Γ

i
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jjjjj
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zzzzz

k T
ln 1B
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Γ
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with the correction factor

K
1

( )mm mw

v
ξ = −

Γ −∞

(7)

The surface tension reduction is sometimes also expressed in
terms of surface pressure π = −Δγ.
The correction factor ξ amounts to ∼0.650 for methanol,

∼0.950 for propanol, and ∼0.998 for pentanol. Let us briefly
discuss the expected importance of ξ for various molecule
sizes. Denoting the linear size of the molecule as l, Γ∞ roughly
scales as ∼ l−2 (i.e., corresponding to the density of tightly
packed monolayer of surfactants), and for nonattractive
molecules (e.g., hard spheres), lmm mw

3− ∼ (i.e., corre-
sponding to the volume of the surfactant). The numerator of
eq 7 consequently scales with the size of the molecule,

l( )mm mwΓ − ∼∞ . As we will see later on, the adsorption
coefficient Kv in the denominator of eq 7 increases
exponentially with the molecular size. Thus, the ξ correction
is important only for small molecules, whereas for larger
molecules, the exponentially increasing Kv makes the
correction tending to unity, ξ → 1, consistent with the
simulation results.
In the limit of low adsorption (i.e., Γ ≪ Γ∞, relevant at low

concentrations), eq 6 simplifies to a linear form

k TBΔγ ≃ − Γ (8)

which follows directly from Henry’s law81 and by assuming
ideal behavior of the chemical potential. The second-order
term in the above expansion is − (kBTξ/2Γ∞)Γ2, from which it
follows that eq 8 is expected to be valid for Γ ≪ ξ−1Γ∞ (i.e.,
when the second-order term is much smaller than the first
term).
Figure 4 shows the relation between the surface tension

reduction Δγ and the surfactant adsorption Γ as obtained from
simulations (calculated from the diagonal pressure-tensor
components82) and theory (eqs 6 and 8). In a complementary

figure in the Supporting Information (Figure S2), we compare
MD simulations with experiments in terms of Δγ(c0), which
shows qualitative agreement for methanol and, notably,
quantitative agreement for propanol and pentanol, thereby
verifying the quality of the used molecular model.
For small adsorption, the simple linear relation given by eq 8

(dotted line) matches very well the MD data in Figure 4. For
higher adsorptions, the surface tension progressively sinks with
adsorption, which is considerably well captured by the
nonlinear relation (eq 6). However, some deviations are
observed for intermediate values of Γ for propanol and, more
so, pentanol. Clearly, the underlying theoretical assumptions
have limitations, one of which is the use of the Langmuir
isotherm, especially for fitting the pentanol data (Figure 3c).
In the Supporting Information (Section S5), we analyzed the

surfactant adsorption based on the second-order virial
expansion.62,83 The calculated values for Γ(c0) (Figure S6)
and Δγ(Γ) (Figure S7) match the MD values up to the
intermediate concentrations very well. The observed agree-
ment implies that the deviations mentioned above stem from
the attraction and cluster formation of surfactants at the
water−vapor interface, which is not captured by the Langmuir
isotherm or the theories based on them.

3.2. Adsorption onto Solid Surfaces. We now turn our
attention to solid surfaces and investigate how changing the
polarity, manifesting in different contact angles (θ ≃ 45°−
135°), affects the adsorption of the three surfactants. More
details are provided in the Methods section and in refs 59−61.
Figure 5a is a snapshot of a pentanol molecule adsorbed on

the hydrophobic surface with θ = 135°. The molecule partially
penetrates into the surface’s interior by locally deforming the
neighboring surface molecules. From the density profiles of
this scenario, shown in Figure 5b, we estimate that the
molecule penetrates into the surface’s interior roughly by half
of its size. Similar behavior is also found for the other two
alcohols and other surface polarities; see Figure S8 in the
Supporting Information.
Following the same procedure as for the water−vapor

adsorption, we evaluate the adsorption−concentration rela-
tions, a few representative examples of which are shown in
Figure 6 for a mildly hydrophobic surface with θ = 97° (the
rest can be found in Section S6 of the Supporting
Information). The overall qualitative behavior is the same as
at the water−vapor interface, and it can be likewise well
described by the Langmuir isotherm (shown by solid lines in

Figure 4. Reduction of the water−vapor surface tension versus
adsorption as obtained from MD simulations (symbols) and
theoretical predictions: eq 6 (solid lines) and its linear expansion
eq 8 (dotted line).
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Figure 6). The values of Γ∞ are shown in Figure S12 in the
Supporting Information.
In Figure 7a, we plot the adsorption coefficients for the

surface, Ks, against the surface wetting coefficient, cos θ. The
outcomes clearly show that the hydrophobic surfaces have a
much higher propensity to molecular adsorption than
hydrophilic surfaces, which is consistent with the overall
adsorption correlation with the contact angle found in various
contexts.9,14,84,85 Moreover, the results even suggest an
approximate quantitative relation of the form ln Ks ∼ cos θ,
which we will rationalize in the following.
Since the adsorption increases with alkyl length, the driving

mechanism should be the hydrophobic effect.20 In order to at
least qualitatively explain the observed relation, we resort to a
continuum description of adsorption, as schematically depicted
in Figure 8a: A surfactant molecule (m) adsorbs from bulk
water (w) to the soft surface (s) by partially penetrating inside.
The free energy of this adsorption scenario is composed of two
contributions. Upon adsorption, the surfactant molecule forms
direct contact with the surface of area Ac. In doing so, the
water molecules in this area of the surfactant molecule had to
be removed. The corresponding free-energy change is − Acγmw,
where γmw is the molecule−water surface tension. The other
contribution comes from new contacts between the molecule
and the surface. However, even though the overall contact area
with the surface is Ac, the surface area with the OH head
groups is equal to the cross-sectional area of the molecule Ac*.

The surplus Ac − Ac* comes from the hydrocarbon groups
hitherto buried inside the surface that are now exposed to the
surfactant (see Figure 8b for illustration). Because the
surfactant molecule is predominantly also a hydrocarbon (an
alkyl chain), the surface surplus does not contribute to the
excess surface free energy. The free energy contribution due to
the new contacts is therefore Ac*(γsm − γsw), where γsm and γsw
are solid−molecule and solid−water surface tensions,
respectively. Summing up both contributions gives the
adsorption free energy of the surfactant molecule in the
continuum, macroscopic picture as

G A A( )s c sm sw c mwγ γ γΔ = * − − (9)

Figure 8b outlines the essential molecular rearrangements
during the adsorption. The effective cross-sectional area Ac*,
which is the area of the removed water molecules from the
surface, is best described by the cross-section of the bare
molecule. If we approximate the molecule by a sphere (i.e., Am
= 4πRm

2 and Ac* = πRm
2 , where Rm is its radius), the cross-

sectional area is A Ac
1
4 m* = . In the other extreme limit, in

which the molecule is considered as an infinitely long cylinder
(i.e., Am = 2πRmL and Ac* = 2RmL, where Rm is the radius and L
is the length of the cylinder), the relation becomes Ac* =
π−1Am. In cases of finite rodlike molecules (such as alcohols in
our case), the ratio Ac*/Am lies somewhere between the two
extremes of 1/4 = 0.25 and 1/π ≈ 0.32, which is a rather
narrow interval. Since the continuum approach for describing
molecular details is very approximate, we will assume the
spherical approximation in the forthcoming analysis.
Before proceeding with eq 9, we have to be aware that

applying macroscopic concepts of interfacial surface at the
molecular level is in general a delicate move. Nonetheless,
some problems can be, at least qualitatively, formally resolved
by identifying effective molecular surface areas and curvature
(i.e., Tolman) corrections to surface tensions.86,87 Such an
analysis is, however, far beyond the scope of this study.
Therefore, we will use the above continuum equation only to
extract the dependence of adsorption on the contact angle.
The latter is related to removal of water from the flat area of
the solid, whose surface is flat (requiring no curvature
corrections) and whose surface tension is macroscopically
well defined.
The solid−water surface tension γsw is the only quantity in

eq 9 that depends on the contact angle. The dependence is

Figure 5. (a) Snapshot of an adsorbed pentanol molecule at the
nonpolar surface (on the left in blue) with θ = 135°. (b)
Corresponding rescaled density profiles of pentanol (red solid line)
with bulk concentration of c0 = 0.0026 mol/l, surface OH groups
(magenta dash-dotted line), and water (cyan dashed line). Effective
phase boundaries are depicted by the Gibbs dividing surface for water
(cyan solid line) and the position at half-height on the water side of
the OH group (magenta solid line).

Figure 6. Adsorption onto the surface with a wetting contact angle of θ = 97° as a function of bulk concentration of (a) methanol, (b) propanol,
and (c) pentanol. MD values are shown by red circles, whereas solid green lines show the fits of the Langmuir isotherm. Yellow dashed lines
correspond to Henry’s law (eq 3), for which the coefficient Kv is taken from the Langmuir fit.
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provided by the Young equation of a water droplet on the
surface

cossw svγ γ γ θ= − (10)

where γsv is the solid−vapor surface tension. Equation 9 now
expresses as

G G A
1
4

coss s
(0)

mγ θΔ = Δ +
(11)

where the reference value ΔGs
(0) = Ac*(γsm − γsv) − Acγmw is the

adsorption free energy to the surface with a vanishing wetting
coefficient, cos θ = 0 (i.e., for θ = 90°). The above equation

nicely demonstrates the modulation of the adsorption free
energy with the contact angle.
From a known ΔGs, the adsorption coefficient to the surface

can be estimated as

K b e G
s s

s= −βΔ
(12)

where β = 1/kBT and bs is a free parameter. Using eq 11, the
dependence of the adsorption coefficient on cos θ follows as

i
k
jjj

y
{
zzzK K Aexp

1
4

coss s
(0)

mβ γ θ= −
(13)

where the reference Ks
(0) = bs exp(−βΔGs

(0)) is the adsorption
coefficient for the surface with a vanishing wetting coefficient.
As seen in Figure 7a, agreement between the MD data and eq
13 (with Ks

(0) as a fitting parameter to the middle data points)
is reasonably good, particularly in the hydrophobic regime (cos
θ < 0). For hydrophilic cases (cos θ > 0), agreement becomes
worse, especially for smaller molecules such as methanol,
which feature weak adsorption. One reason for the poorer
agreement is that in weakly adsorbing cases (i.e., small Ks), the
molecule penetrates less into the surface (see Figure S6 in the
Supporting Information), and thus, Ac* is smaller than Am/4.
The next relevant question is, how does the reference

adsorption coefficient Ks
(0) depend on the molecular surface

area. In Figure 7b, we plot the relation between Ks
(0) and the

molecular surface area Am. The result can be easily understood
using eq 9, which suggests that the adsorption free energy is
proportional to the molecular surface area, ΔGs

(0) = −γ̃sAm,
where the proportionality coefficient γ̃s can be considered as an
effective molecular surface tension for adsorption.86,87 For the
reference adsorption coefficient, we can thus write

K b e A
s
(0)

s
s m= βγ ̃

(14)

and likewise, for the adsorption coefficient at the water−vapor
interface

K b e A
v v

v m= βγ ̃
(15)

The above two equations fit the MD data points in Figure 7b
very well, with bi and γ̃i (i = v, s) used as fitting parameters.

Figure 7. Adsorption coefficients. (a) Adsorption coefficient versus wetting coefficient of the surface for all three alcohols. The lines are predictions
of eq 13, whereby the coefficient Ks

(0) (controlling the offset) was used as a fitting parameter to the middle data points, with the wetting coefficient
closest to zero (cos θ = −0.12). The arrows on the left indicate the adsorption coefficients to the water−vapor interface, Kv. (b) Adsorption
coefficient Ks

(0) for the vanishing wetting coefficient versus the molecular surface area Am. A comparison with the water−vapor interface Kv is also
shown. The solid lines are fitted exponential functions (eqs 14 and 15), which give γ̃s ≃ 25.6 and γ̃v ≃ 32.7 mN/m. (c) Correlation between
adsorption coefficient to the solid surface (Ks) and that to the water−vapor interface (Kv). The symbols are MD results, and solid lines are
predictions of eq 16. The dashed diagonal line denotes the symmetric case Ks = Kv.

Figure 8. Schematic depiction of molecular adsorption to a soft
surface. (a) Continuum picture: Adsorption is governed by surface
tensions between the molecule (m), water (w), and the surface (s).
(b) Molecular picture: The relevant areas are the bare cross-sectional
surface area of the molecule (Ac*) and the surface-accessible contact
surface area (Ac).
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It is insightful to look at the correlation between the
adsorption coefficients to both interfaces, Ks and Kv, as plotted
in Figure 7c. The two coefficients are very well correlated for a
given surface contact angle, implying that the better a molecule
adsorbs onto the water−vapor interface, the better it adsorbs
onto the solid surface. This correlation stems primarily from
the linear dependence of adsorption energies on the molecular
surface area. Using eqs 13−15 and eliminating Am, we come up
with the following analytic relation

K
b

K
b

ln
cos

lns

s

s
1
4

v

v

v

γ γ θ

γ
=

̃ −

̃ (16)

which demonstrates that, indeed, the logarithms of the two
adsorption coefficients are linearly related, with a prefactor that
linearly decreases with cos θ. Using the fitted coefficients form
Figure 7b, we plot the predictions of eq 16 in Figure 7c as solid
lines. Even though the agreement is not perfect, the slope is
nicely captured by the prefactor of eq 16, at least for the larger
two alcohols.
From the correlation plot, we conclude that the adsorption

to the water−vapor interface is always stronger than to the
polar solid surfaces with contact angles below θ ≈ 97°  the
data lie below the diagonal symmetry line. Moreover, the ratio
Ks/Kv becomes progressively smaller with an increasing Kv
(i.e., molecular size). In contrast, the hydrophobic surfaces
with contact angles above θ ≈ 120° outdo the water−vapor
interface in adsorption, at least for not too large and too
strongly adsorbing molecules. Same qualitative trends were
experimentally observed on hydrophobic and mildly hydro-
philic surfaces.44,88

3.3. Surfactant Effect on the Wetting Contact Angle.
In the end, we take a look at a scenario where the adsorption to
the water−vapor and a solid surface compete with each
othera sessile water droplet containing surfactants. A neat
water droplet deposited on a solid surface forms the contact
angle θ with the surface, given by the Young equation (eq 10).
When the surfactant is introduced into the droplet, it adsorbs
to both interfaces, solid−water and water−vapor, thereby
reducing their surface tensions, which become dependent on
the surfactant concentration (i.e., γsw(c0) and γ(c0)). In
principle, less-soluble surfactants can also adsorb at the
solid−vapor interface,39 which does, however, not occur in
our case (see Section S7 of the Supporting Information).
Consequently, the solid−vapor surface tension, γsv, remains

unaffected. The Young equation of the surfactant-laden droplet
then reads27,37

c

c
cos( )

( )

( )
sv sw 0

0
θ θ

γ γ
γ

+ Δ =
−

(17)

where θ is the contact angle of the neat (surfactant-free) water
droplet and Δθ is the change of the contact angle due to the
surfactant. For small changes in contact angle (Δθ ≪ 1), the
above equation simplifies to

cos

sin
swθ

γ θ
γ θ

Δ ≃
Δ + Δγ

(18)

In the linear adsorption regime, in which Henry’s law and eq
8 apply, the expression further simplifies to

k T
K K

c
cos

sinB
s v

0θ
θ

γ θ
Δ ≃ −

+
(19)

which can also be derived from the Lucassen-Reynders
equation.89

In Figure 9, we show the predictions of the contact angle
change for all three alcohols and for different surface
hydrophilicities, based on eq 17 (solid lines) and its linearized
version, eq 19 (dashed lines), along with some experimental
measurements.75 In eq 17, we used eq 6 for calculating the
surface tension reduction of both interfaces. We see that in all
cases, the contact angle θ monotonically decreases with the
bulk surfactant concentration in the droplet, that is, adding
surfactant enhances wetting. This observation is in qualitative
agreement with the Zisman plot, an empirical relation stating
that cos θ linearly decreases with γ for various liquids on a
given solid substrate.32,44,75,90,91 Experimentally measured
droplet contact angles75 as a function of methanol and
propanol concentrations on a silanized glass, which features θ
≃ 104°, show very good agreement with our results for θ = 97°
(the closest value of θ we investigated). The relation of Δθ
versus c0 is altogether linear at first, as predicted by eq 19, and
becomes nonlinear at higher concentrations: Sublinear on
hydrophobic surfaces and superlinear on hydrophilic ones.
Interestingly, the change in contact angle drastically and

nonmonotonically depends on the surface hydrophilicity, given
by cos θ, as shown in Figure 10. The nonmonotonicity results
from the competition between the adsorptions onto the
water−vapor and solid−water interfaces of the droplet, which
is encoded in the numerator of eq 19, reading Ks(θ) + Kv cos θ.
On considerably hydrophilic surfaces (small θ), the adsorption

Figure 9. Change of the contact angle Δθ due to surfactant adsorption as a function of (a) methanol, (b) propanol, and (c) pentanol
concentrations on surfaces of different contact angles. The solid lines are predictions of eq 17, and the dashed lines are low-concentration
predictions given by eq 19. The black squares are experimental data for a silanized glass with θ ≃ 104° taken from ref 75, where we used the data
from ref 74 to convert from molar fractions to concentrations.
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of surfactants onto the surface is negligible (i.e., Ks ≪ Kv), and
thus, the surfactant effect is dominated by the adsorption onto
the water−vapor interface, dictated by the term Kv cos θ in eq
19. In this regime, the change in the contact angle scales as Δθ
∝ − cot θ. The effect of surfactant becomes extremely large for
small contact angles, and it even diverges as the surface
approaches the complete wetting regime (θ → 0°). In other
terms, already low concentrations of surfactant in a low-contact
angle droplet can easily push the droplet into the complete
wetting regime. This observation also suggests that measure-
ments of small contact angles are particularly challenging
because of potential contamination of aqueous systems with
surface-active molecules.21,92,93

With increasing hydrophobicity (increasing θ), the surface
adsorption coefficient Ks rapidly increases (see Figure 7a and
eq 13) and eventually exceeds Kv. Thus, |Δθ| starts
dramatically rising with the surface hydrophobicity. Our
analysis also shows that surfaces with contact angles around
θ = 90° are the least sensitive to wetting alterations due to
surfactants as compared to very hydrophilic or hydrophobic
surfaces.
Remarkably, the net effect of adding simple alcohols to water

is always to decrease the contact angle of the droplet (Δθ < 0),
even though this is not strictly imposed by eq 19. Moreover,
most experimental studies show that surfactants decrease the
contact angle of aqueous solutions on hydrophobic surfa-
ces.22,44,88 Theoretically, the effect could be positive (Δθ > 0)
for hydrophobic surfaces (for which cos θ < 0) if the
adsorption onto the surface remains small, such that Ks > − Kv
cos θ, which is, however, not the case in our systems.

4. CONCLUSIONS
In this MD simulation study, we showed that the adsorption of
simple surfactants (short-chained alcohols) to water−vapor
and solid−water interfaces approximately follows the Langmuir
adsorption isotherm. Smaller deviations at intermediate
concentrations are found in the case of pentanol, which we
attribute to attractive interactions between the surfactants. The
adsorption coefficient of surfactants to solid surfaces scales
roughly exponentially with the surfactant’s cross-section and
the surface wetting coefficient (eq 13). The observed
dependence arises from the free energy of removing the
water molecules from the surface area onto which the

surfactant adsorbs after that, as corroborated by the continuum
approach. This finding is in accordance with widely reported
observations that hydrophobic surfaces are much more prone
to adsorption than hydrophilic surfaces. We applied our
quantitative findings to water droplets and found that adding
short-chained surfactants in all cases reduces the contact angle
and enhances wetting. Our predictions also agree well with
experimental studies. Such wetting enhancement depends
drastically and nonmonotonically on the wetting coefficient.
The highest sensitivity of the contact angle on the surfactant
concentration is found on very hydrophilic and very hydro-
phobic surfaces, which stems from two distinct effects. On
hydrophilic surfaces, the effect is due to the adsorption onto
the air−water interface, whereas on hydrophobic surfaces, it is
due to the adsorption onto the solid−water interface. In
contrast, mildly polar surfaces, with contact angles around 90°,
are the least sensitive to wetting alterations. Our findings can
be applied to other well-soluble, short-chained surfactants for
promoting liquid spreading, treating, or preventing bubble
formation and for self-cleaning processes by aqueous
drops.31,94 Finally, making surface-active molecules charged
brings about numerous electrochemical phenomena, man-
ifested, for instance, in zeta potential, nanobubble stability, and
Jones−Ray effect,95 which delineate interesting research routes
for future studies.
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Figure 10. Change in the water contact angle as a function of the
wetting coefficient for c0 = 0.016 mol/l of added pentanol based on eq
19. The symbols are obtained by using Kv and Ks

(0) from the
simulations of pentanol. The lines are obtained using the predictions
of eqs 13, 14, and 15 for Kv and Ks and three different values for the
molecular surface area Am.
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