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Decades of research dedicated toward Alzheimer’s disease (AD) has culminated in

much of the current understanding of the neurodegeneration associated with disease.

However, delineating the pathophysiology and finding a possible cure for the disease is

still wanting. This is in part due to the lack of knowledge pertaining to the connecting

link between neurodegenerative and neuroinflammatory pathways. Consequently, the

inefficacy and ill-effects of the drugs currently available for AD encourage the need for

alternative and safe therapeutic intervention. In this review we highlight the potential

of mGluR5, a metabotropic glutamatergic receptor, in understanding the mechanism

underlying the neuronal death and neuroinflammation in AD. We also discuss the role of

mGlu5 receptor in mediating the neuron-glia interaction in the disease. Finally, we discuss

the potential of mGluR5 as target for treating AD.
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Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by memory
loss, cognitive impairment, and changes in behavior and personality (Reddy andMcWeeney, 2006).
The disease continues to be a major public health issue owing to its increasing prevalence, long
duration, high cost of care, and lack of disease-modifying drugs Deaths due to AD have been rising
dramatically compared to other life compromised diseases. According to the survey conducted for
the period between 2000 and 2008 (preliminary data), while there was a reduction in the deaths
due to heart diseases by 13%, stroke by 20%, and prostate cancer by 8%, the deaths because of AD
increased by 66% (Alzheimer’s Association, 2011).

Although the pathology of AD was described more than 100 years ago, its research has gained
momentum only in the last 3 decades. Moreover, despite the extensive research, none of the
currently available drug offers an effective treatment. Therefore, the need arises to understand
disease pathogenesis, identify novel targets and develop effective clinical treatment.

The neuropathology of AD is characterized by the presence of extracellular senile plaques
and intracellular neurofibrillary tangles composed of amyloid-β (Aβ), a cleavage product of the
amyloid precursor protein; and aberrantly phosphorylated tau (Glenner and Wong, 1984; Price
and Sisodia, 1998). Aβ proteins are thought to play a dual role in central nervous system (CNS)
in a concentration dependent manner. When secreted constitutively at picomolar concentration
(Cirrito et al., 2003), these proteins increase neurogenesis (López-Toledano and Shelanski, 2004),
enhance memory (Puzzo et al., 2008), reduce oxidative stress (Bishop and Robinson, 2004),
and improve neuronal survival (Plant et al., 2003). However, pathological overproduction of the
same protein at nanomolar concentration leads to neurotoxic effects. Aβ peptide in its native
state is unstable in water, as one-third of its amino acids (-AA-) sequence is hydrophobic.
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As a consequence, these peptides follow a hierarchy of
aggregation from a monomer, through soluble oligomers
including low molecular weight oligomer—paranuclei—high
molecular weight oligomer—protofibrils; to a mature amyloid
fibrilllary state relatively resistant to chemical denaturation and
proteolytic digestion (Pallitto and Murphy, 2001; Glabe, 2008;
Pryor et al., 2012).

Mounting evidence indicates that the overproduction of Aβ

and its aggregation in the brain is a primary cause of AD
(Jarrett et al., 1993; Hardy and Selkoe, 2002; Walsh and Selkoe,
2004; Lesné et al., 2006; Ferreira and Klein, 2011). Further,
the anatomical observations in AD post-mortem brains and
AD transgenic (Tg) mice revealed that Aβ secretion occurs
mainly in the entorhinal cortex, hippocampus, temporal cortex,
and frontoparietal cortex of the brain, the areas associated
with learning, memory, and cognitive functions (Braak and
Braak, 1991; Reddy and McWeeney, 2006). It is previously
documented that β(1−42) variant of amyloid is more prone to
precipitation and aggregation than Aβ(1−40), that further results
into plaque formation (Lansbury, 1997; Yan and Wang, 2006).
Further, Shankar and colleagues demonstrated that the insoluble
amyloid plaque from AD brain cortex did not impair LTP unless
solubilized to release Aβ dimers, suggesting that the plaque cores
are largely inactive, but sequester Aβ dimers that are synaptotoxic
(Shankar et al., 2008). In corroboration, studies indicate that early
stage aggregates are likely to be more damaging compared to
that of senile plaques (Pallitto and Murphy, 2001; Glabe, 2004;
Pryor et al., 2012). Contrary to this, relatively weak correlation
has been found between fibrillar plaque and severity of dementia
in AD, as seen in some cognitively normal individuals with high
amounts of deposited Aβ (Delaère et al., 1990; Dickson et al.,
1995). However, the molecular basis underlying the progressive
decrement of memory and cognitive functions in AD is
not clear.

Aβ mediated dysregulation of N-methyl-D-aspartate
(NMDA) receptors has been hypothesized as a potential
mechanism in the pathophysiology of AD (Miguel-Hidalgo
et al., 2002; Molnár et al., 2004; Snyder et al., 2005; Shankar
et al., 2007; Malinow, 2012). Although, the role of ionotropic
glutamate receptors in excitotoxic cell death associated with
neurodegeneration is well-described (Doble, 1999; Miguel-
Hidalgo et al., 2002; Fan and Raymond, 2007). The NMDA
receptor antagonists are not suitable for long term treatment
due to their unwanted side effects as they impair excitatory
synaptic transmission, causing sedation, ataxia and memory loss
(Nicoletti et al., 1996; Lee et al., 1999; Koller and Urwyler, 2010).
Thus, it shifts the impetus of the research toward identifying a
novel target which can modulate, and not mediate excitatory
synaptic transmission in an attempt to obtain neuroprotective
drugs with a good profile of safety and tolerability. More recently,
the attention has shifted on to the role of metabotropic glutamate
receptors (mGluRs) in Aβ oligomers mediated synaptic
dysfunction (Renner et al., 2010). mGluRs are suggested to play
a modulatory rather than direct role in excitatory glutamatergic
synaptic transmission, making it a pharmacological avenue for
producing modulatory action on glutamate systems in the CNS.
mGluRs have been shown to play an important role in processes

requiring synaptic plasticity, such as learning and memory, and
neuronal development (Nakanishi, 1994; Zhong et al., 2000;
Hannan et al., 2001; Wu et al., 2001). These also find implication
in the pathophysiology of neurodegeneration (Kingston et al.,
1999; Bruno et al., 2001).

Based on sequence homology and preferred signal
transduction pathways, mGlu receptors have been divided
into three subgroups comprising group I (mGlu1 and mGlu5),
group II (mGlu2 and mGlu3) and group III (mGlu4, 6, 7, and
8) (Pin and Bockaert, 1995; Conn and Pin, 1997). This review
focuses mainly on the mGluR5 subtype and its plausible role in
the pathology of AD.

Biology of mGluR5

mGluR5 is a transmembrane (TM) G-protein couple receptor
positively coupled to phospholipase C via Gαq/11 and inositol
1,4,5 trisphosphate formation (Alberts et al., 1994; Abdul-Ghani
et al., 1996). Structural analysis shows a large extracellular amino-
terminal domain with 17 cysteine’s in conserved position (about
65 kDa, constituting one-half of the protein), 7TM hydrophobic
segments and intracellular carboxy-terminal domain. It also
contains an additional hydrophobic domain in the extracellular
domain, postulated to form the ligand binding domain and
the segments surrounding this region possible involved in G-
protein coupling (Pin and Duvoisin, 1995). mGluR5 exist in
three splice variant forms, mGlu5a, mGlu5b, and mGlu5d (Joly
et al., 1995; Minakami et al., 1995; Romano et al., 1996;
Malherbe et al., 2002). In the post-synaptic elements, mGlu5
receptors are physically linked to the NR2 subunit of NMDA
receptors via a chain of interacting proteins, including PSD-
95, Shank and Homer (Tu et al., 1999). mGluR5 activation
increases intracellular calcium levels further stimulating protein
kinase C activation. mGlu5 receptors primarily display a
peri-synaptic localization at the post-synaptic membrane of
glutamatergic neurons (Lujan et al., 1996), where they often
regulate neuronal excitability by modulating currents through
ionotropic glutamate receptor channels (Shigemoto et al.,
1993, 1997). These are found to be localized in the neurons
and glia throughout the CNS including the cortex and the
hippocampus (Romano et al., 1995; Kerner et al., 1997; Biber
et al., 1999).

Pharmacology of mGluR5

Even though mGluRs were identified and cloned much earlier,
the pharmacology of these receptors was not explored much for
several years due to the lack of subtype selective antagonists.
The very first mGluR5 selective agonist was CHPG, [(RS)-2-
chloro-5-hydroxyphenylglycin], which showed the potentiation
response in NMDA-induced depolarizations in rat hippocampal
slices by selectively activating the mGluR5a (Doherty et al.,
1997). Shortly after, conformationally constrained cyclobutane
analogs of quisqualic acid, (Z)- and (E)-CBQA were described
as selective and highly potent mGlu5 receptor agonists (Littman
et al., 1999). Using high throughput screening, Varney et al.
(1999) reported the discovery of SIB-1757 and SIB-1893,
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the first subtype selective mGlu5 receptor antagonists. In rat
striatal slices, SIB-1757 inhibited (S)-3,5-dihydroxyphenylglycine
(DHPG) stimulated phosphoinositide hydrolysis (IC50 value
3.3mM) but failed to inhibit it in the cerebellum where mGlu5
receptor expression is low. Subsequently, two more compounds
MPEP [2-Methyl-6-(phenylethynyl)pyridine] and MTEP [3-
((2-Methyl-4-thiazolyl)ethynyl)pyridine], were identified which
showed improved selectivity against mGluR5 and were easily
penetrable through blood brain barrier, therefore making them
suitable for in vivo brain studies (Gasparini et al., 1999).
Schield analysis suggested that these drugs reduce the efficacy
of glutamate-stimulated phosphoinositide hydrolysis without
affecting the EC50 of the glutamate and hence, behave as non-
competitive antagonists (Schoepp et al., 1999).

Pathological Involvement and Therapeutic
Potential in Alzheimer’s Disease
mGluR5 in Neuronal Cells

As mentioned previously, the Aβ oligomers (Aβo) were
hypothesized to exert their synaptotoxic effects through NMDA
receptors, which is known to be the early symptom of cognitive
dysfunction in AD. Memantine, a non-competitive NMDA
receptor antagonist, and an FDA approved drug for AD is
known to slow down the progression of moderate-to-severe AD
(Lipton, 2007). However, the complete NMDA receptor blockade
may also lead to memory impairment. In current scenario,
researchers and the pharmaceutical companies are investigating
for the drug targets which can modulate, rather than mediate,
the toxic effect of NMDA receptors. Further, the study by Song
et al. (2008) reported that memantine failed to attenuate Aβ-
induced potentiation of extracellular glutamate levels, suggesting
the involvement of other surface receptors too. Since, mGluR5 is
highly expressed in the brain cortex and hippocampal regions,
it can be assumed that mGluR5 may have a predominant role
in cognitive dysfunction related brain disorders like AD. Plenty
of evidence suggests that the neuronal expression of mGluR5 is
required for several physiological functions, in interaction with
NMDA receptors; possibly via Homer/PSD95/Shank protein
complex (Tu et al., 1999; Pisani et al., 2001; Collett and
Collingridge, 2004; Homayoun et al., 2004; Matta et al., 2011;
Won et al., 2012). However, while constitutive expression of
mGluR5 is required for NMDA receptor mediated synaptic
plasticity, pathologically overexpressed mGluR5 may possibly
trigger the neurotoxic downstream signaling pathway that may
further lead to cell death. In addition, pharmacological blockade
or genetic alteration of mGluR5 is found to be neuroprotective
(Bruno et al., 2000; Schiefer et al., 2004; Vernon et al.,
2005; D’Antoni et al., 2011; Hamilton et al., 2014), further
emphasize toward its contribution in the neurodegeneration.
Further, it has also been shown that mGluR5 antagonists exhibit
neuroprotection against excitotoxic degeneration (Kingston
et al., 1999; O’Leary et al., 2000; Movsesyan et al., 2001) as well
as β-amyloid-induced toxicity in cortical cultures (Bruno et al.,
2000). Intriguingly, mGluR5 has been found to be upregulated
in the cerebral cortex of the patients suffering from Down’s
syndrome (Oka and Takashima, 1999). Since the dementia
associated with Down’s syndrome shares a common amyloid

pathology with AD (Weksler et al., 2013), the role of mGluR5
in AD pathogenesis can be as well speculated. Although limited
evidence directly associates mGluR5 signaling with AD, several
studies have shown potential mechanistic interactions between
AD-associated molecules and mGluR5. Investigations by Renner
et al. (2010) exposed a mechanism whereby membrane bound
Aβo induced the abnormal accumulation and overstabilization
of a glutamate receptor to synapses through direct or indirect
interactions. Moreover, while mGluR5 gene transfer into the
CA1 region resulted in neurodegeneration; downregulation or
pharmacological blockage of mGluR5 in 2XTgα-syn/APP mice
and in neuronal cultures was protective against the neurotoxic
effects of α-syn and Aβ (Overk et al., 2014). In corroboration,
antagonists of mGluR5 prevented Aβo-induced dendritic spine
loss and AD transgene learning and memory deficits (Um
et al., 2013). A couple of studies also showed that Aβo from
synthetic, cellular and human AD brain sources suppresses LTP
and enhances LTD. These actions are mimicked by mGluR5
agonists and inhibited by mGluR5 antagonists (Wang et al.,
2004; Shankar et al., 2008; Rammes et al., 2011; Hu et al., 2014).
However, controversies over the mGluR5 acting as a receptor
or co-receptor for Aβo remain unresolved. In a study, Lauren
et al. (2009) demonstrated that Aβo could suppress LTP in
hippocampal slices from normal mice, but not in hippocampal
slices from mice lacking cellular prion protein (PrPC). In
addition, many other studies also indicate that PrPC is required
for the actions of Aßto alter mGluR5 regulation of synaptic
plasticity (Freir et al., 2011; Nicoll et al., 2013; Um et al., 2013;
Hu et al., 2014; Hamilton et al., 2015), suggesting the role of
mGluR5 as a co-receptor. Though, the high-affinity binding
between Aβo and PrPC may indicate a functional link between
the two proteins, the involvement of other surface receptors
cannot be ruled out as PrP ablation reduced the binding of
Aβo to neurons by only 50% (Lauren et al., 2009). However, a
successive study ruled out the PrPC mediated oligomer induced
memory impairment and cytotoxicity (Balducci et al., 2010).
Concurrently, Kessels et al. (2010) also showed that Aβ42 blocked
LTP irrespective of the presence of PrPC. Therefore, it becomes
pertinent to critically evaluate the interaction of Aβo-PrPC-
mGlu5R proteins and their involvement in synaptic dysfunction
and memory loss.

mGluR5 in Non-neuronal Cells
Glial cells constitute the majority of the brain cells and are
emerging as major regulators of nervous system development,
function, and health. Extensive investigations in the recent
past have led to a better understanding of glial functions in
health and disease, in view of their ability to not only support
the neurons, but also defend and protect them from injury
(Ransom and Sontheimer, 1992; Tsacopoulos and Magistretti,
1996; Verkhratsky et al., 1998; Boucsein et al., 2003; Rakic, 2003).
Glial cells have the impressive ability to sense any neural injury
and respond by undergoing “reactive gliosis,” a process whereby
glia exhibit dramatic changes inmorphology and gene expression
patterns, migrate to the injury site, and manage brain responses
to any damage. Reactive gliosis has been a major topic of study
in the field of glial cell biology for over a decade, but molecular
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pathways mediating the pathological neuron-glia signaling have
remained largely undefined.

Interestingly, mGlu5 receptors, like neurons are also expressed
in non-neuronal cells, including microglia and astrocytes, where
their activation exerts numerous effects that are crucial for glial
cell function and glial-neuronal interaction under physiological
and pathological conditions (Verkhratsky and Kettenmann,
1996; Verkhratsky et al., 1998). In healthy brain, microglia
is known to illustrate defensive immune system (Zabel and
Kirsch, 2013). However, in response to prolonged inflammatory
stimulus under pathological conditions, the chronically activated
microglia can lead to neurodegeneration by releasing a plethora
of pro-inflammatory cytokines (Block et al., 2007; Holmes et al.,
2009; Mosher and Wyss-Coray, 2014; Streit and Xue, 2014)
and reactive oxygen species (Wilkinson and Landreth, 2006;
Dewapriya et al., 2013). Consistent with several observations
in neurodegenration, microglial activation was observed in
brains of AD patients (McGeer et al., 1987; Shimohama
et al., 2000) as well as in animals model of AD (Kim
et al., 2014), suggesting the inflammatory role of these cells
in the pathophysiology of AD. Moreover, Paranjape et al.
(2012) described that small, soluble Aβ42 protofibrils induce
much greater microglial activation than monomers or mature
insoluble fibrils. Epidemiological studies also indicate that anti-
inflammatory drugs may reduce AD incidence (McGeer and
McGeer, 2007). However, clinical observations reported that the
non-steroidal anti-inflammatory therapy did not slow down the
cognitive decline associated with AD (Martin et al., 2008). Thus,
preventing the prolonged microglial activation, rather than the
counteracting the inflammation at later stages can be a better
protective strategy in AD and other related neurodegenerative
diseases. Although mGluR5 mRNA has been found to be
expressed predominantly inmicroglial cultures (Biber et al., 1999;
Byrnes et al., 2009), very few studies demonstrate its role in the
microglial activation and neuroinflammation. The activation of
microglia in AD can be speculated to be caused by Aβo in the
extracellular compartment through the stimulation of mGlu5
receptors. Surprisingly, mGlu5 receptor was found to negatively
regulate the release of microglia associated inflammatory factors
and related neurotoxicity (Byrnes et al., 2009). Further, Liu
et al. (2014) demonstrated that mGluR5 was involved in
LPS-induced innate immune response in microglia. It has
been shown that activated microglia can acquire either a
neurotoxic M1 (proinflammatory), or a neuroprotective M2
(anti-inflammatory) phenotype (Kigerl et al., 2009; Liao et al.,
2012; Cherry et al., 2014; Moehle and West, 2014; McGeer
and McGeer, 2015) which are thought to be dependent on
the intensity of insult (acute or chronic), type of stimuli (Aβ,
TNF-β, IL1β or other toxic agents) and the stage of disease
progression (early or late stage). Thus, investigating mGluR5
protein expression and their role in Aβ-induced microgliosis,
will open new avenues in understanding the AD pathogenesis
and possibly will provide potential therapeutic approach in the
future.

Moreover, activated microglia can also potentially induce
the activation of astrocytes (Liu et al., 2011). It was previously
believed that astrogliosis appears in the late stages of AD.

However, recent findings depict their involvement even in
early stage of disease progression as reported in animal model
of AD (Kuchibhotla et al., 2009; Verkhratsky et al., 2010;
Yeh et al., 2011; Kulijewicz-Nawrot et al., 2012). Soluble Aβo
may trigger astroglial remodeling that in turn might have
indirect consequence on adjacent neurons. More recent studies
demonstrated a direct implication of glial activation in the
induction of neuronal death by Aβo (Abeti et al., 2011; Orellana
et al., 2011). They showed that microglia instigates the Aβ

mediated toxic effect by promoting the release of glutamate
and ATP through glial cells that further leads to neuronal
death. However, there is a missing link between the Aβ and the
glial activation, understanding which can solve the complexity
of AD pathology. mGlu5 receptors are expressed largely in
cortical and hippocampal astrocytes (Biber et al., 1999). Recent
studies showed that mGluR5 mRNA and the protein level are
upregulated in cultured astrocytes following 2 days of treatment
with Aβo (Casley et al., 2009; Lim et al., 2013), whereas pro-
inflammatory agents, like TNF-α, IL-1β & LPS downregulate
their expression level in astrocyte cultures (Aronica et al.,
2005; Berger et al., 2012). In prospect of these findings, it
can be assumed that astrocytes behave differently based on
the type of stimuli received from the extracellular milieu, and
the binding receptor. Indeed, very little is known about the
functional consequences of elevated mGluR5 expression in the
patho-mechanism of AD. Shrivastava et al. (2013), reported a
strong enrichment of mGlu5 receptors on reactive astrocytes
surrounding Aβ plaques. Furthermore, they also observed a
rapid binding and clustering of Aβo over the astrocytic cell
surface resulting in a diffusional trapping and clustering of
mGlu5 receptors within Aβ clusters which in turn led to an
increased ATP release. This observation further strengthens the
emerging concept that mGluR5 play a major role in Aβ-mediated
neurodegeneration and plausibly through the glial-neuronal
interaction.

In summary, the interaction of Aβo with transmembrane
mGluR5 might be the triggering factor for the pathogenesis of
Alzheimer’s disease, as depicted in Figure 1.

Conclusion

Pathways of neurodegeneration in AD remain elusive, and so
does the cure. Growing evidences hint toward Aβ mediated
neurotoxicity to be central to the pathophysiology of the
disease, possibly through the NMDA receptor dysfunction.
However, targeting the ionotropic glutamate receptors also
results in perturbation of other physiological processes linked
with glutamatergic synaptic transmission, and hence presents as
an ineffective treatment strategy. Consequently, it shifts the focus
toward the metabotropic glutamate receptors, a family of G-
protein coupled receptors, which canmodulate, rather than block
the glutamatergic pathways. Much of the observations on the role
of mGluR5 using specific non-competitive antagonists likeMPEP
suggest the role of the receptor in certain physiological as well as
pathological events along with the NMDA receptors. The ability
of Aβo to actively interact with mGluR5 indicate the possible
role of the receptor in neurodegeneration associated with Aβ
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FIGURE 1 | Hypothetical illustration showing the

sAβo-PrPC-mGluR5 interaction mediated pathological events in

AD. (A) Interaction of sAβo with mGluR5 either directly or through PrP

at post-synaptic neurons, which either modulates the NMDA-R activity

or triggers downstream second messenger cascades, (B) Astrocytic

mGluR5 activation by sAβo generates sustained Ca2+ oscillations inside

the reactive astrocytes which triggers the release of stored intracellular

glutamate, thus enhancing the neuronal excitability leading to

excitotoxicity followed by synaptic loss, (C) Interaction of sAβo to

microglial mGluR5 triggers microglia activation followed by the release of

proinflammatory cytokines leading to neuroinflammation. sAβo, soluble

amyloid-β oligomer.

proteinopathies. The neuroprotective effects of downregulation
or pharmacological blockage of mGluR5 emphasize toward
the potential of the therapeutic interventions targeting these
receptors. Further, enhanced expression of mGluR5 observed
in glial cells upon activation, its ability to curb inflammation
and modulate immune response, along with its synergistic
contribution in the Aβ mediated activation of glial cells
renders it the status of potential candidate for delineating

the neurodegenerative mechanisms as well as therapeutic
interventions.
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