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Abstract: Falling is a common incident that affects the health of elder adults worldwide. Postural
instability is one of the major contributors to this problem. In this study, we propose a supplementary
method for measuring postural stability that reduces doctor intervention. We used simple clinical
tests, including the timed-up and go test (TUG), short form berg balance scale (SFBBS), and short
portable mental status questionnaire (SPMSQ) to measure different factors related to postural stability
that have been found to increase the risk of falling. We attached an inertial sensor to the lower back
of a group of elderly subjects while they performed the TUG test, providing us with a tri-axial
acceleration signal, which we used to extract a set of features, including multi-scale entropy (MSE),
permutation entropy (PE), and statistical features. Using the score for each clinical test, we classified
our participants into fallers or non-fallers in order to (1) compare the features calculated from
the inertial sensor data, and (2) compare the screening capabilities of the multifactor clinical test
against each individual test. We use random forest to select features and classify subjects across all
scenarios. The results show that the combination of MSE and statistic features overall provide the
best classification results. Meanwhile, PE is not an important feature in any scenario in our study. In
addition, a t-test shows that the multifactor test of TUG and BBS is a better classifier of subjects in
this study.

Keywords: multiscale entropy; permutation entropy; timed up and go (TUG); inertial sensor; short
form berg balance scale (SFBBS); features; random forest; fall risk; community-dwelling elderly

1. Introduction

Almost 30% of adults over 65 years old worldwide experience falls [1,2], and falls
represent the main cause of their injuries, which include movement impairment, fractures,
long-term or permanent disabilities, and death [3]. Suffering from a fall represents not only
a great health risk, but is also associated with important economic costs which can range
from hospitalizations to long-term home care [4]. Furthermore, adults who have suffered
from a traumatic fall can be affected by the fear of suffering from a second fall (FOF), which
increases the probability of experiencing recurrent episodes [5]. Approximately 50% of
adults who have suffered from a fall are considered potential recurrent fallers [6].

Falls are a multifactorial problem that can mainly be attributed to intrinsic (behavioral,
physical, and cognitive) and environmental reasons [7]. Among the intrinsic factors,
poor balance and gait abnormalities are estimated to be related to 10–25% of falls [8].
Moreover, previous studies have proven that suffering problems with balance [9–12] and
mobility [5,13–16] can greatly increase the probabilities of experiencing a fall. The abundant
health implications associated with falling has fostered a substantial number of studies
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that focus on fall risk assessment, as it will become essential in the creation of specialized
healthcare programs for aging groups [17].

A key aspect of fall risk assessment is detecting persons at risk to prevent occurrences
and the consequent medical complications that can affect health. Common clinical tools
used by medical professionals to assess fall risk include questionnaires, gait analysis, and
physical tests [18]. Unfortunately, continuous monitoring of fall-related factors such as
mobility or balance is a challenging task, as professional resources such as physiotherapists,
nurses, or doctors are limited when compared to the size of the population at risk of
falling. In addition, any prolonged use of these tools represents elevated economic costs
to hospitals, healthcare systems, and patients. Nevertheless, these drawbacks present an
opportunity for the implementation of inertial sensors, which are a more commercially
available, non-intrusive, lightweight, and affordable means of facilitating the assessment of
mobility and balance. Additionally, data from inertial sensors has the sensitivity required
to be used for clinical studies [19], for example, assisting doctors in screening fall-risk
subjects [20].

In order to obtain valuable information using inertial sensors, subjects must perform
tasks that can allow researchers to study factors such as mobility or balance which are
associated with falls. Recent studies have focused on analyzing gait-related features
extracted from the inertial sensor data of subjects walking or performing a clinical test in
order to predict falls. Over a period of 12 months, Wang et al. [21] extracted step rate and
movement vigor from subjects walking on stairs and a flat surface to estimate their risk of
falling. Ponti et al. [22] combined gait features with statistical features to screen a group of
41 community-dwelling elderly patients into fallers and non-fallers. Howcroft et al. [23]
used a set of inertial and pressure sensors located in different parts of the subjects’ bodies
in order to calculate gait and statistic features from the data collected from participants
performing single (walking) and dual tasks (walking with an additional cognitive load). An
important shortcoming of these studies is the fact that using gait-related features requires
further processing, segmentation, or signal analysis. These generally need to be conducted
prior to estimating fall risk, a time-consuming procedure that further complicates analysis.
A recent study focuses on using statistical features calculated from the TUG acceleration
data from a group of stroke patients in order to classify them into fallers or non-fallers [24].
However, they segmented the TUG inertial sensor data prior to calculating the statistical
features, which requires special knowledge and extensive analysis of the signals captured
by the sensor, and represents an obstacle when calculating real-world situations where
resources are limited. Therefore, our study aims to address this problem as the method
proposed focuses on calculating features from the inertial sensor data automatically, no
processing required.

With the importance that Deep Learning (DL) has gathered within the research com-
munity, recent studies have proven that DL can be used for making meaningful and
explainable predictions on medical time series data [25,26]. However, while ConvNets can
be used to extract features from inertial sensor data for fall risk classification [27–30], prior
to the feature extraction, the CNN algorithm needs large amounts of data to be trained.
This can be challenging to obtain in a healthcare-related scenario, where the availability
of medical personnel and willingness of subjects to participate are limited. Moreover,
calculating spatio-temporal features using a CNN would require manual labeling of data,
which is a time-consuming process. Finally, studies that use ConvNets to calculate features
to classify subjects into fall risk fail to discuss feature importance. Our proposed method
addresses these aspects by requiring no training to calculate the features, using simple
algorithms (such as peak detection) to automatically calculate the spatio-temporal features,
and presenting the reader with a set of features that can be used to classify subjects with
fall risk.

The TUG acceleration signal measured by an inertial sensor is highly complex, which
makes screening fallers challenging. Computing the complexity of a signal provides
useful information for the analysis of physical time series [31], such as the gait signal
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captured by our sensor. Multiscale Entropy (MSE) is a variation of traditional entropy,
which facilitates the quantization of complexity of physical and physiological time series.
MSE has been implemented to assess differences in balance by evaluating the complexity
between different groups of subjects [32]. Costa [33] analyzed the complexity of the gait
signal of subjects while performing a free or paced walk, and concluded that MSE was
capable of detecting characteristics of the signal that other statistic tools could not. Riva
et al. [34] found MSE to have a positive relationship with fall history, making it a useful
instrument to identify individuals at risk of falling. In a similar study, Lee et al. [35]
concluded that MSE can be used as a tool to screen falling behavior among elder adults in
a community-dwelling setting. The computation of MSE, however, requires the calculation
of multiple time series under different scales, which can be time consuming, making it
difficult to use when performing immediate decisions. Therefore, Band and Pompe [36]
proposed the use of Permutation Entropy (PE), as it is computationally simple, making it
ideal for larger time series or databases. The implementation of PE for gait analysis was
studied by Lee et al. [37], where an inertial sensor was used to measure the gait information
from a subject performing the TUG test. Subjects also performed a short-form berg balance
scale test (SFBBS) as a means to measure balance. They used a set of statistical, PE, and
weighted permutation entropy (WPE) features to successfully estimate the SFBBS score,
which can provide doctors with information on the fall risk of patients. Despite promising
results, this study failed to implement a multifactorial assessment test which has been
proven to be more effective than a single clinical tool at capturing the complex nature
of falls [38,39]. Furthermore, the study did not compare the PE and MSE, as both tools
were designed to measure the complexity of a signal. This encouraged us to compare
the importance that MSE and PE features can have in the analysis of gait signals while
predicting scores for multiple clinical tests.

Our research focuses on studying the application of combined inertial sensors with
multifactor assessments, namely (i) the Timed-up and Go test, (ii) Short-Form Berg Balance
Scale, and (iii) Short Portable Mental Status Questionnaire to develop an auxiliary tool for
medical professionals to assess mobility and balance. The main highlights of this research
are: first, we use features that can be automatically extracted or calculated from data
collected by inertial sensors without any processing or segmentation, thereby reducing the
burden on medical staff and creating a tool that provides data that can be easily interpreted
by the doctors or physicians across hospitals. Second, we also compare the performance of
our method across different clinical tests in order to increase the robustness of our model
by estimating multiple factors that can cause falls among the elder population. Finally, we
use MSE features as a means to measure the complexity of the TUG signals and compare
their impact to the classification performance against permutation entropy.

2. Materials and Methods
2.1. General Approach

Wearing an inertial sensor capable of measuring acceleration in three directions,
subjects performed a series of balance and mobility tests. With the data collected by the
sensor, we calculated a set of features, which included statistic, MSE, and PE. We used
these features to train a Random Forest classifier in order to predict the subject’s scores
in the multifactor assessment. From these results, we estimated feature importance and
compared the model performance when using the most important features for each clinical
test. By doing this, we were able to determine a set of features that can best predict the
mobility and stability scores of the participants in our study.

2.2. Subjects

Assisted by a team of medical professionals, which included physiotherapists, func-
tional therapists, and rehabilitation physicians, we performed a series of clinical tests
between April 2014 and May 2015 in a hospital in central Taiwan to assess fall risk among
the elderly population. Subjects who participated in the study wore a belt around their
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waist with a tri-axial inertial sensor attached to it, which was located at their lower back
while they performed a series of tests (which we discuss in more detail in Section 2.3).
At the end of the study, we collected inertial acceleration data from 65 different elderly
adults (average age 76.12 ± 6.99 years). The recruitment criteria for the participants stated
that they must not have previously suffered from any musculoskeletal injuries, they must
not have any history of central nervous system injuries, and they had to be able to walk
independently in order to perform the clinical tests. Despite being collected almost seven
years ago, this dataset remains relevant as it is focused on a problem that continues to affect
the health of a growing elderly population. Moreover, as it was collected using a sensitive
sensor, following a careful and scientific methodology from a wide range of elder subjects,
and with the support and supervision of professional medical staff, it has allowed our team
to continue to develop different methodologies to study it. A summary of the demographic
data from the subjects who participated in the study is included in Table 1. This study was
approved on 19 May 2015 by the Institutional Review Board of Tsaotun Psychiatric Center,
Ministry of Health and Welfare’s research ethics board (approval number 104013).

Table 1. Demographic data of the subjects who participated in this study.

Number Mean ± STD

Gender
Female 49 77 ± 6.60
Male 16 73 ± 6.00

Age

65–70 12 69 ± 1.72
71–75 25 73 ± 1.53
76–80 12 78 ± 1.48
80+ 16 85 ± 4.60

2.3. Clinical Tests

Due to the demography of our subject population, we implemented quick and simple
clinical assessment tests to study mobility and balance, which the participants performed
under the supervision of our medical team. This set of tests included:

• The Timed Up and Go test (TUG) [40] is a common clinical test of gait and mobility.
Different geriatric institutions recommend its implementation for fall-risk screen-
ing [41]. Previous studies have determined the effectiveness of using an inertial sensor
during a TUG test to measure mobility [42], as well as to detect frailty [43] which could
potentially result in a fall. It has also been proven to be an accurate measurement
tool for predicting falls among community-dwelling elder adults [44]. Physicians
commonly employ this clinical test in community settings due to its ease of implemen-
tation. Before starting the TUG test, subjects sit on a chair in a comfortable position,
facing an object on a floor, which is located 3 m in front of them. When the test starts,
subjects are asked to stand up, walk naturally towards the object, then return to the
chair at their natural pace and sit down. The total time the subjects require to perform
this test is recorded and used to label the subjects that performed the test in over
12.47 s as having mobility problems [44]. A summary of the label distribution for each
clinical test can be observed in Table 2.

• The Short-Form Berg Balance Scale (SFBBS) [45] is the simplified version of the Berg
Balance Scale (BBS) [46] which is used to assess balance. It is easier to perform as
it has half the number of activities, greatly reducing the time required to assess a
subject. These activities include (i) bending your back forward with outstretched arms,
(ii) standing with both feet while keeping eyes closed, (iii) standing with one foot in
front of the other, (iv) turning the back and neck to look backwards without moving
the feet or knees, (v) bending down to pick up an object from the floor, (vi) standing on
one foot while having the other foot in the air, and (vii) standing up from a chair and
sitting down again. While subjects perform a SFBBS test, a medical expert evaluates
their performance by assigning scores to each activity. The performance criteria states
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that a score between zero points (subject was unable to perform the activity) and four
points (subject completed the activity without problems) is assigned based on the
expert’s observations. Therefore, in this study, subjects who scored 28 points were
considered to have correct balance since they were able to perform all seven tasks
without problems. Meanwhile, subjects with a score below 23 were labeled as having
balance problems [47,48].

Table 2. Label distribution of all subjects for each clinical test.

BBS TUG TUG +
BBS SPMSQ TUG +

SPMSQ
BBS +

SPMSQ

Healthy 61 57 64 68 69 70
Fall Risk 13 17 10 6 5 4

The Short Portable Mental Status Questionnaire (SPMSQ) [49] is as a sensitive clinical
tool to detect brain syndromes such as dementia in elderly adults [50]. Elderly patients
diagnosed with dementia have two to three times higher risk of suffering from a fall when
compared to patients with healthy cognition [51–55], which makes detecting dementia an
important step towards fall risk assessment. A previous study included SPMSQ among the
clinical tools used to assess fall-risk factors in a community-dwelling environment [56]. The
SPMSQ consists of a set of 10 questions which patients can choose to answer independently
or with the help of their family members at home. These questions focus on evaluating
cognitive functions such as memory, attention, thinking process, consciousness, general
knowledge, and orientation. This provides a preliminary insight on the mental health status
of elder adults. Granger et al. [57] determined that a score in the SMPSQ of 60 provides
crucial information as patients are transitioning from assisted independence to dependence.
In addition, subjects are considered to be at risk of suffering from dementia if they answer
three or more questions incorrectly. We used this criterion to label subjects as not having
normal brain functionality.

2.4. Wearable Accelerometer

We collected the TUG accelerometer data using a wireless tri-axial accelerometer sys-
tem (comprised of the Freescale RD3152MMA7260Q accelerometer, a Bluetooth transmitter,
a battery as the power source, and an Arduino as the data-processing device). While the
subjects performed their clinical tests, the sensor was located at the lower back of the
subjects, around the area between the L3 to L5 vertebrae, since previous studies have
concluded that this location approximates the center of mass of the human body [58],
making this the most common location for similar studies published within the last two
decades [59]. This sensor recorded TUG acceleration data in the mediolateral (ML), vertical
(V), and anterior–posterior (AP) directions. An illustration of the sensor system with an
overview of the axis directions is included in Figure 1.
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2.5. Data Analysis

We used Python to automatically calculate the set of features, perform the analysis,
and train the classification model. Table 3 summarizes the set of features we used in this
study, which we calculated from the unprocessed TUG acceleration signal captured by
the inertial sensor. We divided them into statistic, MSE, and PE groups. We selected
these features as calculating them requires no signal processing or analysis. Among the
statistic set, we calculated the mean, standard deviation, maximum value, minimum value,
and zero-crossing rate (ZCR) for each axis. Lee and Sun [60] included ZCR among their
feature set, which they used in order to screen fallers from non-fallers. In our study, ZCR
measures the frequency at which the gait signal crosses through zero acceleration. The
MSE feature set included the average and standard deviation across all time scales and the
complexity index.

Table 3. List of features extracted from the inertial sensor data.

Feature Type Feature Name Direction

Statistic Features

Mean (MEAN) (1–3) ML,V,AP
Standard deviation (STD) (4–6) ML,V,AP
Maximum value (MAX) (7–9) ML,V,AP

Minimum value (MIN) (10–12) ML,V,AP
Zero-crossing rate (ZCR) (13–15) ML,V,AP

Multi Scale Entropy Features

Mean (MSEM) (16–18) ML,V,AP

Standard Deviation (MSTD) (19–21) ML,V,AP

Complexity Index (CI) (22–24) ML,V,AP

Permutation Entropy Features Entropy (PE) (25–27) ML,V,AP

2.5.1. MSE Calculation

MSE is an effective tool to measure a physiologic time series’ complexity [61]. Costa
et al. [33] found that MSE is capable of detecting differences in gait of subjects under
pathologic conditions. In our study, we calculated MSE for the entire TUG signal in order
to obtain information of the gait of our subjects. A flowchart detailing the steps needed to
calculate MSE is illustrated in Figure 2.
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As part of the first step, multiple overlapping segment windows with a length equal
to the current scale factor are extracted from a given time series. For each window, the
average value for all the data points is calculated, creating a new time series known as
coarse-grained time series. The formula used to calculate this is shown in Equation (1),
where τ is the scale factor, N is the length of the original time series, and xi is a single data
point from the original time series.

y(τ)j =
1
τ

jτ

∑
i=(j−1)τ+1

xi; 1 ≤ j ≤ N
τ

(1)

The next step involves calculating sample entropy (SampEn) for each coarse-grained
series. SampEn was developed in order to analyze the complexity of biological time
series [62]. SampEn is defined as the negative logarithmic probability of a series having
two sets of consecutive data points (of size m + 1) with distance < r, given that the same
series contains two sets of consecutive data points (of size m) with distance < r. This is
expressed in mathematical notation in Equation (2), where N represents the input time
series. For our study, we defined these parameters as m = 2 and = 0.15.

SampEn(N, m, r) = −log
d[Xm+1(i), Xm+1(j)] < r

d[Xm(i), Xm(j)] < r
(2)

Finally, Costa et al. [61] proposed the use of the complexity index to evaluate fall
behavior, which is defined as the summation of the sample entropy values for all scale
factors τ. This measurement has been proven to be an effective tool to screen community-
dwelling elderly people for falling behavior [35]. The formula used to calculate CI can
be observed in Equation (3), where τ represents the scale factor. In our study, we defined
τ = 10.

n

∑
τ=1

SampEn(τ) (3)

2.5.2. Permutation Entropy Calculation

PE quantifies complexity by estimating the frequency of sequence patterns within a
time series. In order to achieve this, at the first step, it converts a one-dimensional time
series into a T − (D− 1)τ matrix, where D represents the embedding dimension which
defines the size of each column vector in the matrix, and τ represents the embedding time
delay which determines the number of time periods that separate the elements of every
consecutive pair of columns in the matrix.

The next step involves converting a one-dimensional time series into a T − (D− 1)τ
matrix, where D represents the embedding dimension which defines the size of each
column vector in the matrix, and τ represents the embedding time delay, which determines
the number of time periods that separate the elements of every consecutive pair of columns
in our matrix.

As part of the third step, every column in the matrix is mapped into D! unique
permutations. These permutations are then sorted in ascending order, which allows the
user to obtain the ordinal rankings of the data and their corresponding ordinal patterns.
These ordinal patterns are labeled as πi,= {r0, r1, r2, . . . , rD!−1,}.

Using the ordinal patterns πi for each permutation, their relative frequency (defined
as the number of times such permutation is present in the time series divided by the total
number of sequences) is calculated. This result can be interpreted as the probability of
finding each permutation in the time series pi.

Finally, using the previously calculated probabilities, the PE value can be calculated
following Equation (4). As pointed out by [63], a more regular time series is characterized
by having a lower PE value.
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PED =
D!

∑
i=1

pilog2 pi (4)

2.6. Random Forest for Feature Importance and Classification

In our study, we trained a Random Forest [64] classifier to estimate feature importance.
Random Forest for feature selection has been used in problems such as power generation
forecasting [65], network intrusion detection [66], and leukemia and cervical cancer classifi-
cation [67]. To reduce the bias of our model towards the samples in the training set, we
employed a 50-fold cross-validation approach. We repeated this process for each clinical
test in order to determine the relationship between features to clinical tests. We estimated
the importance of each feature by calculating the mean coefficient value for every feature
across folds. Once the feature importance for all features was estimated, we proceeded
to compare the classification performance of our model by re-training it using the top 5,
top 10, and top 15 features. A similar approach was employed in previous research [68]
where the authors calculated the mean coefficient scores for each feature, then selected the
top 30, 20, 10, and 5 features to test their Random Forest model’s performance. We repeated
the 50-fold cross-validation approach to obtain a mean AUC score for each scenario.

3. Results and Discussion

We begin our analysis by classifying every subject with either fall risk or non-fall
risk using the scores and the special criteria for each clinical test. Next, we calculated the
features from the TUG acceleration data collected by the inertial sensor. Using Python’s
library Scikit-Learn [69], we estimated feature importance with a Random Forest (RF)
classifier, and compared it across clinical tests. We re-trained the RF classifier using the
top 5, 10, and 15 features and tested the model’s performance for each clinical test. We
proceeded to compare the impact of including and excluding MSE from the feature set
as to estimate its effect in measuring balance and mobility, two key factors in fall-risk
classification. Finally, we compare the model’s performance across the multifactor clinical
tests, in order to determine which assessment tool has the best screening capabilities for
fall risk among the community-dwelling elderly subjects who participated in our study.
The discussion of our results is divided into three main segments: (a) feature selection for
each clinical test, (b) classification performance for each clinical test under multiple criteria
for feature selection, and (c) comparison between the classification performance with and
without MSE features.

3.1. Feature Selection for Each Clinical Test

The top 5, 10, and 15 features that our model determined to be the most important
for each clinical test are summarized in Table 4. The results show that Standard Deviation
(for all three directions), Maximum Value (for ML, and V directions), Minimum Value (V),
Zero-Crossing Rate (ML), and MSE Mean (ML) are present within these features for all
clinical tests. This is consistent with [37], as the author found multiple of these features
to have an impact on the screening performance of the model. Additionally, these results
indicate that from an axis point of view, ML and V are critical in the classification of the
subjects. Furthermore, the selection of MSE features as important for the screening of fall-
risk subjects is also consistent with previous studies [35], indicating that the measurement
of signal complexity can help to detect differences in balance and mobility. The remaining
features are different for each case since every clinical test measures different characteristics
of the subject’s posture. Additionally, PE was selected to be among the top features for
two clinical tests; however, its importance is clearly lower than MSE. We attribute this to
PE’s focus on sample order without considering amplitude. Moreover, having multiple
parameters pairs can also lead to testing problems since the values of PE are directly
dependent to the parameter setting, as was discovered by [70].



Sensors 2021, 21, 5930 9 of 15

Table 4. Feature importance selection results, with the average feature importance coefficient in parenthesis.

Top Features BBS TUG SPMSQ TUG + BBS TUG + SPMSQ BBS + SPMSQ

STD (AP) (0.087) MAX (V) (0.098) STD (V) (0.078) CI (ML) (0.079) STD (V) (0.099) STD (AP) (0.086)
ZCR (ML) (0.078) STD (ML) (0.096) STD (AP) (0.074) MSEM (ML) (0.078) MAX (V) (0.067) STD (V) (0.081)
MIN (V) (0.071) CI (ML) (0.093) MAX (ML) (0.061) ZCR (ML) (0.076) MAX (ML) (065) MAX (ML) (0.077)

MSEM (ML) (0.062) MSEM (ML) (0.085) STD (ML) (0.049) STD (AP) (0.068) MIN (V) (0.063) MIN (V) (0.067)
TOP 5 CI (ML) (0.060) STD (V) (0.071) MAX (V) (0.045) MAX (V) (0.067) STD (ML) (0.062) ZCR (ML) (0.063)

STD (V) (0.058) MIN (AP) (0.05) MIN (V) (0.045) STD (V) (0.065) CI (ML) (0.061) PE (AP) (0.062)
MAX (V) (0.052) ZCR (ML) (0.048) MSEM (AP) (0.044) MAX (ML) (0.063) MSEM (ML) (0.054) STD (ML) (0.053)
STD (ML) (0.048) MAX (ML) (0.046) CI (AP) (0.043) STD (ML) (0.044) STD (AP) (0.050) CI (ML) (0.045)

MSTD (AP) (0.044) MIN (V) (0.039) MAX (AP) (0.043) MIN (AP) (0.040) PE (ML) (0.046) MAX (V) (0.041)
TOP 10 MAX (ML) (0.040) MIN (ML) (0.037) MSEM (ML) (0.043) MIN (V) (0.038) ZCR (ML) (0.042) MSEM (ML) (0.038)

MEAN (V) (0.034) STD (AP) (0.035) CI (ML) (0.040) CI (V) (0.034) ZCR (AP) (0.040) MAX (AP) (0.035)
CI (V) (0.034) CI (V) (0.027) MSTD (ML) (0.036) MSEM (V) (0.034) MAX (AP) (0.035) MEAN (V) (0.035)

MIN (AP) (0.034) MSEM (AP) (0.025) MSTD (AP) (0.035) MAX (AP) (0.033) PE (AP) (0.031) CI (AP) (0.034)
MSEM (V) (0.03) MSEM (V) (0.024) ZCR (AP) (0.034) CI (AP) (0.030) MIN (AP) (0.029) MEAN (ML) (0.028)

TOP 15 MEAN (ML) (0.029) CI (AP) (0.024) ZCR (ML) (0.033) MSEM (AP) (0.029) MSTD (ML) (0.026) ZCR (V) (0.028)



Sensors 2021, 21, 5930 10 of 15

3.2. Classification Performance for Each Clinical Test under Multiple Criteria for Feature Selection

After training Random Forest with 50-fold cross validation for multiple criteria of
feature selection, we tested each model’s performance by analyzing the mean AUC scores
summarized in Table 5. As is evident from the results, the model can classify the subjects
according to their respective clinical test scores with high accuracy in most cases. This
indicates that the set of features we calculated from the TUG signal are sensitive enough
to be used in our study, which is consistent with the findings of [20] who concluded that
inertial sensors can be used in fall-risk assessment studies. From the results, it can also be
observed that combining SPMSQ with other clinical tests yields the worst performance as
it results in the lowest AUC scores. We attribute this to the nature of the SPMSQ, where
the score is based on the answers of a written questionnaire, which are highly subjective.
Moreover, this test does not measure any balance or motion from the subject, making it
more difficult for the set of features we calculated from the TUG data to estimate its score.
In addition, PE features were only present on SPMSQ tests, which clearly indicate that
other features such as MSE have a higher importance for the clinical tests that directly
test mobility and balance. This table also shows that the best results are obtained when
selecting the top five features. Considering that such groups include MSE features, we
tested the impact to the model’s performance when removing MSE, and discuss the results
in Section 3.3 Classification performance with and without MSE.

In such a comparison, we removed SPMSQ and its combinations as it has the worst
screening results, as previously discussed.

Table 5. RF mean AUC scores for each clinical test.

Clinical Test Top 15 Features Top 10 Features Top 5 Features

BBS 0.828 0.856 0.866
TUG 0.899 0.913 0.921

TUG + BBS 0.883 0.910 0.922
SPMSQ 0.722 0.747 0.680

TUG + SPMSQ 0.814 0.808 0.783
BBS + SPMSQ 0.781 0.801 0.774

3.3. Classification Performance with and without MSE

Table 6 summarizes the comparison in mean AUC scores of the model when MSE
is excluded from the feature set. The results summarized in this table show an overall
reduction in the model’s performance, emphasizing the importance of MSE to analyze the
complex TUG acceleration signal. The importance of MSE in our model goes in accordance
with [34], where it was concluded that MSE can help to identify subjects in risk of suffering
from a fall. It can also be observed that including MSE will improve the classification
accuracy of the model across clinical tests, independent of the percentage of features
selected. In addition, the multifactor test outperforms the single BBS assessment in all
scenarios, which is consistent with previous studies which determined that a multifactor
test is better at capturing the complex nature of falls [38,39]. Despite TUG having a
higher AUC score than the multifactor test, it is important to point out that the latter is
simultaneously assessing both mobility and balance, which are two of the main factors that
affect falls.

Table 6. Average AUC classification scores with and without MSE.

With MSE Features Without MSE Features

Clinical Test Top 15 Top 10 Top 5 Top 15 Top 10 Top 5

BBS 0.828 0.856 0.866 0.785 0.793 0.782
Tug 0.899 0.913 0.921 0.881 0.875 0.866

TUG + BBS 0.883 0.910 0.922 0.799 0.812 0.860
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A similar tendency is observed on Table 7, where the average precision and average
recall values for the classifiers clearly decrease after removing MSE from the feature set.
It can also be observed that the highest precision and recall values can be found when
using the TOP 10 and TOP 5 features on the multifactor test. This further indicates the
importance of using a multifactor test. In addition, the values presented on such table
indicate the models are robust and have high classification accuracy.

Table 7. Comparing the effect of including or excluding MSE features on the average precision and
average recall values for the relevant clinical scores.

With MSE Features Without MSE Features

Clinical Test Top 15 Top 10 Top 5 Top 15 Top 10 Top 5

BBS
Precision 0.829 0.855 0.83 0.7562 0.7875 0.809

Recall 0.841 0.862 0.846 0.816 0.832 0.826

TUG
Precision 0.869 0.861 0.866 0.841 0.848 0.861

Recall 0.863 0.861 0.861 0.842 0.845 0.861

BBS + TUG
Precision 0.843 0.88 0.913 0.814 0.855 0.87

Recall 0.869 0.899 0.915 0.864 0.877 0.891

We also tested the normality of our results from Table 6 using the Kolgomorov–Smirnov
test, and compiled the results on Table 8. The results of each condition’s p-value are > 0.05,
showing that the data follows a normal distribution.

Table 8. Results for the Kolgomorov–Smirnov test for normality.

With MSE Without MSE

Clinical
Test Top 15 Top 10 Top 5 BBS TUG BBS +

TUG Top 15 Top 10 Top 5 BBS TUG BBS +
TUG

KS 0.332 0.409 0.421 0.312 0.255 0.297 0.370 0.332 0.401 0.331 0.234 0.338
p-value 0.782 0.571 0.537 0.852 0.967 0.893 0.677 0.783 0.591 0.787 0.985 0.764

Finally, in Table 9 we included the results of our t-test, which we performed in order to
determine whether including or excluding MSE has any statistical impact in the accuracy
of each scenario. We found that the “Top 10” and “Top 5” combinations of features have
significant statistical differences. Looking back at 4, we can find that the features after
T10 indeed do not appear in each combination. Especially after comparing the results in
Table 6, it can be found that among the top 10 features, MSE has relative discriminative
power. The results from our statistical analysis are consistent with [29]. Additionally, in
the t-test we also included the different clinical tools we used for our study. From the
results, we can also observe a statistical difference, further highlighting the discrimination
capability of MSE.

Table 9. t-test p-values for the comparison of including or excluding MSE from the feature set.

Top 15 Top 10 Top 5 BBS TUG TUG + BBS

t-Test 0.064 0.031 0.008 0.017 0.037 0.008

4. Conclusions

This study analyzed the application of statistical, MSE, and PE features calculated
from the inertial sensor data of elder subjects to estimate their scores from multiple clinical
tests, as these tests can support medical professionals to screen elder adults for fall risk. We
proved that using automatically extracted features from inertial sensor data can provide
good screening performance as our model was capable of estimating the multifactor score
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of the different tests with high accuracy. By analyzing the feature selection, we found that
the important features belonged to a combination of statistic and MSE features, indicating
that PE was less important when predicting clinical scores. Furthermore, MSE features
were present among the top features for all clinical tests. This led to a comparison of
the impact in classification AUC score when including and excluding MSE from the set
of features to be used in the model. The results for such a test showed that including
MSE features increases the performance of the model when estimating BBS, TUG, and
TUG + BBS medical scores. We also found the utilization of a multifactor assessment to
not only provide better results than the single BBS clinical tool, but also categorize subjects
based on mobility and stability, two factors that have been found to be related to falls. In
the future, we plan to compare the impact that MSE has in fall risk assessment when two
different group of subjects participate in the study. Furthermore, we plan to investigate if
the same set of features are selected as important when different sensors are used to collect
the data.
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