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Abstract. Pancreatic adenocarcinoma (PAAD) is a type of 
malignant tumor with the highest mortality rate among all 
neoplasms worldwide, and its exact pathogenesis is still poorly 
understood. Timely diagnosis and treatment are of great 
importance in order to decrease the mortality rate of PAAD. 
Therefore, identifying new biomarkers for diagnosis and 
prognosis is essential to enable early detection of PAAD and 
to improve the overall survival (OS) rate. In order to screen and 
integrate differentially expressed genes (DEGs) between PAAD 
and normal tissues, a total of seven datasets were downloaded 
from the Gene Expression Omnibus database and the ‘limma’ 
and ‘robustrankggreg’ packages in R software were used. The 
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes 
analysis of the DEGs was performed using the Database for 
Annotation, Visualization and Integrated Discovery website, 
and the protein‑protein interaction network analysis was 
performed using the Search Tool for the Retrieval of Interacting 
Genes/Proteins database. A gene prognostic signature was 
constructed using the Cox regression model. A total of 10 genes 
(CDK1, CCNB1, CDC20, ASPM, UBE2C, TPX2, TOP2A, 
NUSAP1, KIF20A and DLGAP5) that may be associated 
with pancreatic adenocarcinoma were identified. According 
to the differentially expressed genes in The Cancer Genome 
Atlas, the present study set up four prognostic signatures 
(matrix metalloproteinase 12, sodium voltage‑gated channel α 
subunit 11, tetraspanin 1 and SH3 domain and tetratricopeptide 
repeats‑containing 2), which effectively predicted OS. The hub 
genes that were highly associated with the occurrence, develop‑
ment and prognosis of PAAD were identified, which may be 
helpful to further understand the molecular basis of pancreatic 
cancer and guide the synthesis of drugs for PPAD.

Introduction

Pancreatic adenocarcinoma (PAAD) is a type of malignant 
tumor that primarily originates from ductal adenocarcinomas 
of the glandular epithelium, and causes 331,000 deaths world‑
wide every year due to there being few symptoms before the 
disease reaches an advanced stage. Therefore, PAAD has 
a poor prognosis and a high relative incidence rate (1). Data 
between 1974 and 2013 has demonstrated that the overall 
increase in the incidence of PAAD is associated with risk 
factors such as smoking, obesity and diabetes in the USA (2). 
In recent decades the proportion of patients with metastatic 
PAAD with survival time >1 year has increased significantly, 
but the proportion of deaths within 2 months is still consider‑
able (50.6%; P<0.001) (3). The median overall survival (OS) 
is ~16 months after resection in patients with non‑metastatic 
pancreatic ductal adenocarcinoma, but the resectability rate is 
also low, <10% (4). Despite the common use of surgical resec‑
tion and adjuvant or palliative chemotherapy, improvements 
in OS are negligible among all patients, as the majority of 
patients only receive supportive treatment, and most preopera‑
tive chemoradiotherapy is associated with high postoperative 
morbidity and mortality (5,6). Therefore, novel effective diag‑
nosis and treatment options are still required.

Previous studies have demonstrated that drugs that inhibit 
specific targets may improve the therapeutic effectiveness and 
overcome the resistance of pancreatic cancer to the majority 
of standard therapies (7‑9). The expression of RNA binding 
protein in PAAD cells has been demonstrated to change 
the expression of mRNA, subsequently altering the entire 
transcriptome and proteome, which suggests that the gene 
regulatory mechanism monitors the proto‑oncogenic signaling 
pathway (10,11). As the currently published research is limited 
by small sample sizes, application of different technology 
platforms, constant discovery of novel mRNAs and different 
methods of processing and analyzing data, the common 
disadvantage in mRNA expression profiling research is a 
lack of consistency, resulting in non‑specific and insensitive 
biomarkers. Thus, there is an urgent requirement for the iden‑
tification of differential genes that may provide clues to detect 
PAAD early and improve the OS time of the patients.

The Cancer Genome Atlas (TCGA; https://www.cancer.
gov/) and Gene Expression Omnibus (GEO; https://www.
ncbi.nlm.nih.gov/pmc/) are open access databases, which can 
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be used to analyze the whole genome and epigenome of the 
selected pancreatic cancer types. Using large‑scale parallel 
sequencing technology, it is possible to reveal the previously 
unclear molecular mechanisms, determine the tissue‑specific 
changes and provide clues for PAAD staging, pathological 
grading and drug target determination of the disease in order 
to improve the current understanding of PAAD and enable 
effective treatment decisions  (12‑14). However, to the best 
of our knowledge, previous studies on PAAD diagnostic 
markers have not been comprehensive or only analyzed the 
genes associated with a poor prognosis (15,16). Traditional 
experimental methods can only recognize a single gene or a 
limited number of genes at the same time; thus, the previous 
research progress on biomarkers of pancreatic cancer has not 
yet been translated into a significant improvement in OS rates 
or a reduction in mortality. For example, previous studies have 
demonstrated that KRAS is the most common mutated gene in 
pancreatic ductal adenocarcinoma (17), and KRAS mutation 
can be used as a marker of pancreatic cancer (18). However, 
inhibitors targeting KRAS gene have not been successful in 
treatment (19).

The present study aimed to identify hub genes that were 
highly associated with PAAD development and prognosis in 
order to improve the current understanding of the molecular 
basis of PAAD and direct new therapeutic techniques.

Materials and methods

Microarray data. The present study downloaded seven 
publicly available gene expression profiles (GSE15471, 
GSE16515, GSE28735, GSE32676, GSE55643, GSE62165 
and GSE62452) (20‑26) from the GEO database, which met 
the following criteria: i) Included human pancreas samples; 
ii) Contained both pancreatic cancer and normal (or adjacent) 
samples; iii) The sample size was ≥30; iv) The sample size 
of the case and control group was >15 samples/group. Table I 
presents the details of the seven datasets. In total, 566 samples 
were analyzed in the present study.

Integration of the microarray data. The present study used 
the ‘limma’ package (limma: Data analysis, linear models and 
differential expression for microarray data. URL http://bioinf.
wehi.edu.au/limma) of R 3.6.1 software http://www.R‑project.
org/) to normalize and log2 transform the matrix files of each 
GEO dataset, and identify the GEO‑DEGs between normal 
pancreatic tissue and pancreatic cancer tissue in each GEO 
dataset. ‘RobustRankAggreg’ (RRA; https://CRAN.R‑project.
org/package=RobustRankAggreg) was used to integrate the 
GEO‑DEGs from each dataset. |log fold‑change (FC)|>1, 
P‑value <0.05 and adjusted P‑value <0.05 were used as the 
thresholds of statistical significance for the GEO‑DEGs.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis of the DEGs. 
In order to further investigate the roles of GEO‑DEGs in the 
development of PAAD, the present study used the Database for 
Annotation, Visualization and Integrated Discovery (DAVID; 
https://david.ncifcrf.gov/) to annotate and analyze the func‑
tions of GEO‑DEGs to determine the biological processes, 
molecular functions, cellular components and signaling 

pathways associated with these GEO‑DEGs. A false discovery 
rate (FDR) <0.05 was considered to indicate a statistically 
significant difference.

Protein-protein interaction (PPI) and modular analysis. A 
gene network can be used to analyze the association between 
proteins and genes, and further clarify the specific association 
between genes and diseases (27). The present study used the 
Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING; https://string‑db.org/) database, which is an online 
tool for assessing PPI information, to analyze the potential 
association between proteins encoded by the GEO‑DEGs; the 
GEO‑DEGs with a minimum required interaction score >0.9 
were selected, and disconnected nodes were removed from 
the network. Cytoscape 3.7.2 (https://cytoscape.org/) is a type 
of software that can graphically display, analyze and edit the 
network, as well as add annotation information, and it was 
used in the present study to complete the visualization of the 
PPI network and calculate the correlation degrees of DEGs. the 
top 10 genes with the highest degrees in the PPI network were 
regarded as key genes. Molecular complex detection (MCODE) 
is a plug‑in of Cytoscape 3.7.2 that uses the inherent associa‑
tions between proteins in the network in order to identify gene 
clusters (highly interconnected regions); module analysis of the 
PPI network was performed using MCODE (degree cutoff=2; 
node score cutoff=0.2; k‑core=2 and Max. Depth=100). The 
functional enrichment analysis of each module was performed 
using DAVID. The expression of the 10 hub genes in PAAD 
and adjacent normal pancreatic tissues can be downloaded from 
GEPIA database (http://gepia.cancer‑pku.cn), which integrates 
the relevant information of TCGA database and GTEx database 
(http://commonfund.nih.gov/GTEx/).

Prognostic gene signature construction. The survival time, 
OS data and status of patients with PAAD were obtained 
from TCGA. In the repository group of TCGA data portal, 
the following steps were carried out: selection of ‘Pancreatic 
Ductal Adenocarcinoma’; choosing the TCGA‑PAAD project 
and ‘transcribe profiling’ in the ‘data category’; ‘gene expres‑
sion quantification’ in the ‘data type’ and ‘HTSeq‑counts’ in 
the ‘workflow type’. Data were downloaded on 18th December 
2019. The data of 171 patients with PAAD were used to build 
a prognostic signature by integrating gene expression and 
survival information. TCGA‑PAAD dataset was normalized 
and analyzed with the ‘edgeR’ package (https://bioconductor.
org/packages/edgeR/) of the R software. FDR<0.05 and 
|logFC|>2 were used as the criteria to screen TCGA‑DEGs. 
The expression values of DEGs in TCGA were analyzed by 
univariate Cox regression, and the genes associated with OS 
were determined. To further evaluate the relative contribution 
of these prognostic gene markers to the survival prediction of 
patients, multivariate Cox regression analysis was constructed 
with the top 12 genes with P<0.05 in the univariate analysis. 
A risk score model was constructed by linear combination 
of the prognostic gene expression markers and their regres‑
sion coefficients (β) from the multivariate Cox proportional 
hazards regression analysis as previously described  (28). 
According to the median risk score (1.069), patients were 
divided into high‑risk (median risk score ≥1.069) and a 
low‑risk (median risk score <1.069) groups. The ‘survival’ 
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package (https://www.rdocumentation.org/packages/survival/) 
of R software was used to analyze the survival of the patients 
in the high‑ and low‑risk groups. A time‑dependent receiver 
operating characteristic (ROC) curve was constructed 
using the ‘survivalROC’ package (https://cran.r‑project.
org/web/packages/survivalROC/index.html) to analyze the 
predictive accuracy of patient OS obtained using the risk score 
model.

Statistical analysis. Data are presented as mean ± SD unless 
otherwise shown. The associations between gene expression 
levels and clinicopathological features were analyzed by 
two‑sided Pearson's χ2 test using IBM SPSS version 20.0 (IBM, 
Corp.). The regression analysis of univariate and multivariate 
Cox proportional hazards analysis was completed using the 
‘survival’ package of R software. The Kaplan‑Meier method 
was used to calculate the survival rates of the patients in the 
low‑ and high‑risk groups. The P‑value between two groups 
was obtained by log‑rank test and P<0.05 was considered to 
indicate a statistically significant difference.

Results

Identification of DEGs. The present study downloaded the raw 
data and platform information from the GEO database and rean‑
notated them, then normalized. The raw and normalized data are 
presented in Fig. 1. Under the criteria of |logFC| >1, P‑value <0.05 
and adjusted P‑value <0.05, the ‘limma’ package was used to 
screen GEO‑DEGs, and the DEGs in each dataset were obtained. 
The number of DEGs identified from each dataset are presented 
in Fig. 2; a total of 622 integrated GEO‑DEGs were obtained 
through RRA rank analysis, including 387 upregulated genes 
and 235 downregulated genes (Table SI). The top 20 upregulated 
genes and the top 20 downregulated genes are presented in Fig. 3.

Functional enrichment analysis of the DEGs. In order to inves‑
tigate the potential biological functions of the GEO‑DEGs, 

GO term and KEGG pathway analysis was performed (Fig. 4). 
The results revealed that the 387 upregulated genes were 
primarily associated with extracellular structure and composi‑
tion (‘extracellular space’, ‘proteinaceous extracellular matrix’, 
‘extracellular region’, ‘extracellular exosome’, ‘extracellular 
matrix organization’, ‘extracellular matrix’ and ‘extracel‑
lular matrix disassembly’) and collagen (‘collagen catabolic 
process’, ‘collagen fibril organization’, ‘collagen binding and 
collagen trimer’; Fig.  4A). The 235 downregulated genes 
were primarily associated with extracellular structure and 
composition (‘extracellular space’, ‘extracellular exosome’ and 
‘extracellular region’) and the membrane (‘transport vesicle 
membrane’, ‘integral component of plasma membrane’ and 
‘basolateral plasma membrane’; Fig. 4B). All GO items of the 
GEO‑DEGs are presented in Table SII. The KEGG pathway 
analysis revealed that the upregulated GEO‑DEGs were 
mainly enriched in ‘ECM‑receptor interaction’, ‘Focal adhe‑
sion’, ‘Pathways in cancer’, ‘PI3K‑Akt signaling pathway’ and 
‘p53 signaling pathway’ (Fig. 4C), whereas the downregulated 
GEO‑DEGs were associated with absorption and metabolism 
(‘Pancreatic secretion’, ‘Protein digestion and absorption’, 
‘Glycine, serine and threonine metabolism’, ‘Fat digestion and 
absorption’; Fig. 4D and Table SIII).

PPI network analysis. Using the STRING database, the 
present study analyzed the PPI of the GEO‑DEGs, and visu‑
alized the PPI network using Cytoscape software. The PPI 
network included 291 nodes and 986 edges (Fig. 5A), and 
the top 10 nodes by degree were cyclin‑dependent kinase 1 
(CDK1), cyclin B1 (CCNB1), cell division cycle 20 homolog 
(CDC20), abnormal spindle microtubule assembly (ASPM), 
ubiquitin‑conjugating enzyme E2 C (UBE2C), TPX2 
microtubule nucleation factor (TPX2), DNA topoisomerase 
IIα (TOP2A), nucleolar and spindle‑associated protein 1 
(NUSAP1), kinesin family member 20A (KIF20A) and discs 
large homolog‑associated protein 5 (DLGAP5), which were 
considered to be hub genes. Subsequently, the present study 

Table I. Details of pancreatic cancer studies and associated microarray data sets from the Gene Expression Omnibus database.

Author, year	 Dataset	 Platform	 Samples, n (tumor/control)	 (Refs.)

Badea et al, 2008	 GSE15471	 [HG‑U133_Plus_2] Affymetrix Human	 78 (39/39)	 (20)
		  Genome U133 Plus 2.0 Array
Pei et al, 2009	 GSE16515	 [HG‑U133_Plus_2] Affymetrix Human	 52 (16/36)	 (21)
		  Genome U133 Plus 2.0 Array
Zhang et al, 2012	 GSE28735	 [HuGene‑1_0‑st] Affymetrix Human Gene	 90 (45/45)	 (22)
		  1.0 ST Array [transcript (gene) version]
Donahue et al, 2012	 GSE32676	 [HG‑U133_Plus_2] Affymetrix Human	 32 (25/7)	 (23)
		  Genome U133 Plus 2.0 Array
Lunardi et al, 2014	 GSE55643	 Agilent‑014850 Whole Human Genome	 53 (45/8)	 (24)
		  Microarray 4x44K G4112F
Janky et al, 2016	 GSE62165	 [HG‑U219] Affymetrix Human Genome	 131 (118/13)	 (25)
		  U219 Array
Yang et al 2016	 GSE62452	 [HuGene‑1_0‑st] Affymetrix Human Gene	 130 (69/61)	 (26)
		  1.0 ST Array
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identified the two top‑ranking modules with scores of 20.875 
and 14.000 in MCODE. Module 1 contained 22 nodes and 
219 edges, and module 2 contained 14 nodes and 91 edges 
(Fig. 5B and C). As presented in Fig. 6, compared with normal 
tissues, the expression levels of the 10 hub genes were signifi‑
cantly increased in PAAD compared with normal tissues in 
TCGA cohort. Of note, all the hub genes were in module 1, 
which suggested that module 1 may serve an important role 
in the PPI network. The KEGG analysis demonstrated that 
module 1 was mainly associated with the ‘Cell cycle’ and ‘p53 
signaling pathway’ (Table SIV).

Prognostic gene signature. The present study identified 446 
TCGA‑DEGs from TCGA dataset, including 26 upregulated 
genes and 420 downregulated genes (Table SV). A total of 

281 genes identified using the univariate Cox regression model 
were significantly associated with survival time (P<0.05; 
Table  SVI). In addition, a prognostic gene characteristic 
comprising six genes was detected through multivariate Cox 
regression analysis, containing matrix metalloproteinase 
12 (MMP12), sodium voltage‑gated channel α subunit 11 
(SCN11A), tetraspanin 1 (TSPAN1) and SH3 domain and 
tetratricopeptide repeats‑containing 2 (SH3TC2). Among them, 
MMP12, TSPAN1 and SH3TC2 with hazard ratios (HRs) >1 
were identified as risk prognostic genes, whereas SCN1A 
with an HR <1 was considered as a protective prognostic gene 
(Table II). According to the risk score model, 86 patients were 
assigned into the high‑risk group, and 85 patients were assigned 
into the low‑risk group (Fig.  7A‑C). The survival analysis 
demonstrated that the OS rate of the high‑risk group was 

Figure 1. Normalization of raw data in the Gene Expression Omnibus database.



ONCOLOGY LETTERS  20:  60,  2020 5

significantly lower compared with that of the low‑risk group 
(P=6.335x105; Fig. 7D). In addition, the 1‑, 3‑ and 5‑year OS 

rates in the high‑risk group were significantly lower than those 
in the low‑risk group (Table III). Time‑dependent ROC analysis 

Figure 2. Volcano plots of differentially expressed genes in the Gene Expression Omnibus database. The red dots represent the upregulated genes, the green 
dots represent the downregulated genes and the black spots represent genes with no significant difference in expression. FC, fold‑change; adj P Val, adjusted 
P‑value.

Figure 3. The heat map of top 20 down‑ and upregulated differentially expressed genes in the integrated microarray analysis. Each column represents one 
dataset and each row represents one gene. The number in each rectangle represents the value of log2(FC). The red column represents the upregulated genes and 
the green column represents the downregulated genes.
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Figure 4. Functional enrichment analysis of the differentially expressed genes. (A) GO enrichment analysis of the overlapping upregulated DEGs. (B) GO 
enrichment analysis of the overlapping downregulated DEGs. (C) KEGG pathway enrichment analysis of the overlapping upregulated DEGs. (D) KEGG 
pathway enrichment analysis of the overlapping downregulated DEGs. GO, Gene Ontology; ECM, extracellular matrix; KEGG, Kyoto Encyclopaedia of Genes 
and Genomes; DEGs, differentially expressed genes.

Figure 5. PPI network and the top two clustering modules. (A) PPI network of overlapping DEGs. (B) Module 1. (C) Module 2. Yellow circles represent 
downregulated genes and green circles represent upregulated genes. PPI, protein‑protein interaction; DEGs, differentially expressed genes.
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based on the risk score model demonstrated good efficiency in 
predicting patient survival (area under the curve, 0.718; Fig. 7E).

Discussion

The present study obtained 622 GEO‑DEGs (387 upregulated 
and 235 downregulated) from seven datasets on GEO and 
identified 10 hub genes from the PPI network, including CDK1, 
CCNB1, CDC20, ASPM, UBE2C, TPX2, TOP2A, NUSAP1, 
KIF20A and DLGAP5. However, as the GEO datasets did not 
provide survival data, these genes were not incorporated into 
the prognostic risk signature.

CDK1, also termed cell division control protein 2, which 
is highly expressed in cancer cells, exhibits a vital func‑
tion in the transition from G2 stage in mitosis (29). It is one 
of the potential radiosensitization targets to inhibit the cell 
cycle‑dependent sensitization of PAAD cells, but it may also 
aggravate the toxicity of normal tissues; thus, the mecha‑
nism of CDK1 in cancer cells requires further study (29,30). 
CCNB1/CDK1‑mediated phosphorylation of the mitochondrial 
substrate provides effective biological energy for cell G2/M 
transformation and upregulates mitochondrial respiration to 
promote successful cell cycle progression (31). CDK1 plays an 
important role in cell cycle progression and antitumor activity. 
Its dysfunction or hyperactivity leads to cell different transfor‑
mation, tumor invasion and other pathological states (31,32).

CDC20 is a cell cycle regulator that coordinates the mitotic 
process by promoting the orderly degradation of mitotic the 
anaphase‑promoting complex/cyclosome substrates (33). The 
average level of CDC20 in PDAC was 20 times higher than 
that in normal pancreas and pancreatitis. The high expression 
of CDC20 was associated with poor differentiation, and the 
high expression of CDC20 significantly reduced the 5‑year 
recurrence‑free survival rate, and had the trend of shortening 
the total survival period (34).

ASPM is a novel Wnt and stemness regulatory factor in 
PAAD (35). Mechanistically, its protein subtype ASPM‑iI, 
which colocalizes with disheveled‑2 and active β‑catenin as 
well as the stemness marker aldehyde dehydrogenase‑1, is 
indispensable for the Wnt activity, stemness and the tumori‑
genicity of PAAD cells (36). Therefore, ASPM‑iI staining as a 
novel Wnt‑associated marker of cancer stemness can not only 
predict the outcome and survival time of patients with resected 
PAAD, but also may guide future targeted therapies (36).

UBE2C is involved in tumorigenesis by regulating cell 
cycle, apoptosis, metastasis and transcription (37). UBE2C 
gene knockdown downregulated the expression of vimentin, 
an mesenchymal marker, and up‑regulated the expression of 
E‑cadherin, an epithelial marker, to promote EMT in lung 
cancer cells (38). In addition, mouse experiments have demon‑
strated that UBE2C gene knockout can significantly inhibit 
tumor growth in vivo (39).

Figure 6. Expression of the ten differentially expressed hub genes in PAAD and normal pancreatic tissues from The Cancer Genome Atlas and Genotype‑Tissue 
Expression datasets. Expression values of genes are log2‑transformed. Expression of (A) CDK1, (B) CCNB1, (C) CDC20, (D) ASPM, (E) UBE2C, (F) TPX2, 
(G) TOP2A, (H) NUSAP1, (I) KIF20A and (J) DLGAP5. PAAD, pancreatic adenocarcinoma; T, tumour; N, normal. The red boxplot represents pancreatic 
tumour tissue, and the black boxplot represents normal pancreatic tissue. *P<0.05.
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Table II. Prognostic values of the four genes in patients with pancreatic adenocarcinoma in The Cancer Genome Atlas cohort.

	 Univariate analysis	 Multivariate analysis
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Gene symbol	 HR (95% CI)	 P‑value	 HR (95% CI)	 P‑value	 Coefficient

MMP12	 1.180 (1.062‑1.310)	 0.00199	 1.134 (1.014‑1.270)	 0.028	 0.126
SCN11A	 0.703 (0.586‑0.845)	 0.00017	 0.776 (0.638‑0.945)	 0.011	 ‑0.253
TSPAN1	 1.346 (1.140‑1.589)	 0.00046	 1.189 (1.002‑1.412)	 0.048	 0.173
SH3TC2	 1.299 (1.106‑1.524)	 0.00137	 1.177 (0.981‑1.411)	 0.079	 0.163

HR, hazard ratio; CI, confidence interval; MMP12, matrix metalloproteinase 12; SCN11A, sodium voltage‑gated channel α subunit 11; 
TSPAN1, tetraspanin 1; SH3TC2, SH3 domain and tetratricopeptide repeats‑containing 2.

Figure 7. Prognostic gene signature of the four genes in patients with pancreatic adenocarcinoma from The Cancer Genome Atlas dataset. (A) distribution of 
risk scores in low‑risk and high‑risk groups, (B) Survival status distribution, (C) The heatmap of the four genes for low‑ and high‑risk group, (D) Kaplan‑Meier 
curves for low‑and high‑risk groups, (E) ROC curve of OS in PAAD patients was predicted according to risk score. ROC, receiver operating characteristic; 
AUC, area under the curve; OS, overall survival.
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A previous study has demonstrated that TPX2 expres‑
sion in pancreatic tumors is higher than that in their normal 
counterparts  (40). Targeting TPX2 using small interfering 
(si)RNAs can effectively inhibit the proliferation of pancreatic 
cancer cells in tissue culture, induce apoptosis, and inhibit the 
growth of pancreatic tumors in nude mice (41). TPX2 gene 
knockout also increases the sensitivity of pancreatic cancer 
cells to paclitaxel therapy (41).

A high amplification rate of TOP2A is present in multiple 
different types of malignancy, including PAAD (42). As a 
co‑activator of β‑catenin, TOP2A can activate the EMT 
process and directly target microRNA‑139 to drive the malig‑
nant progress of pancreatic cancer (43).

Nucleolar and spindle associated protein 1(NUSAP1) is 
located in dynamic spindle microtubules at metaphase and 
anaphase of mitosis with a unique chromosomal central pattern. 
It interacts with SUMO E3 ligase complex in the process of chro‑
mosome separation near overlapping microtubules (44). NUSAP1 
siRNA (L‑004754‑00) inhibited the drug resistance of human 
prostate cancer cells induced by NUSAP1, which suggested that 
NUSAP1 may be used as a biomarker of the antitumor activity of 
galiellalactone (45); however, to the best of our knowledge, there 
are currently few studies that focus on NUSAP1 in PAAD.

KIF20A, which is highly expressed in pancreatic cancer 
and other malignant tumors, but not expressed in non‑cancerous 
tissues, is a tumor‑associated antigen and a potential target for 
tumor immunotherapy (46,47). It has been reported that kif20a‑66 
is well‑tolerated as an immunotherapy for advanced pancreatic 
cancer and can effectively induce cytotoxic T lymphocytes (48).

DLGAP5 has the unique function of stabilizing spindle 
formation and surviving microtubule attack caused by 
docetaxel in androgen‑regulated prostate cancer cell (LNCaP) 
cycle system (49). Thus, DLGAP5 may be involved in spindle 
stability in other malignant tumors.

KEGG analysis in the present study revealed that these 
10 genes were mainly associated with the ‘Cell cycle’ and 
‘p53 signaling pathway’. P53‑protein tyrosine phosphatase 
non‑receptor type 14 (PTPN14)‑Yap pathway is a tumor 
suppressor mechanism mediated by p53. The p53 transcription 
activation domain 2 mutant is a ‘super tumor suppressor’, with 
an enhanced ability to restrain pancreatic cancer cell prolif‑
eration and to transactivate select p53 target genes (including 
ptpn14)  (50). With the successive inactivation of tumor 
suppressor genes, the proliferation of tumor cells is increased, 
and remains at high levels in metastatic tumors, which may 

be caused by cell cycle regulatory gene variants. This leads to 
cell cycle disorder, which is characteristic of various cancer 
subtypes (51). Various target genes affect the cycle, senescence 
and apoptosis of pancreatic cancer cells through the p53 
pathway (52,53), which is consistent with the results of the 
present study in the biological function analysis.

The aforementioned results indicated that these 10 hub 
genes may serve a role in PAAD development. Focusing 
on these 10 hub genes may provide ideas and directions for 
revealing the molecular mechanism of pancreatic cancer and 
developing the corresponding therapeutic drugs.

The present study also identified four genes associated with 
PAAD prognosis (MMP12, SCN11A, TSPAN1 and SH3TC2), 
which were used to construct a prognostic gene signature. It has 
been reported that SCN11A is upregulated in breast and prostate 
cancer compared with adjacent normal tissues (54,55), but its 
molecular nature and association with pancreatic cancer func‑
tion have remained elusive. In the present study, SCN1A was 
considered to be a protective prognostic gene; thus, its role in 
pancreatic cancer requires further investigation. The other three 
prognostic genes MMP12, TSPAN1 and SH3TC2 were consid‑
ered to be risk prognostic genes, implying malignant phenotypes. 
MMPs are associated with the invasion and metastasis of tumor 
cells. It promotes tumor cells to degrade the components of the 
extracellular matrix, separate from the primary site, migrate 
to the distal site and invade the surrounding tissue to induce 
metastasis (56). When MMP12, a member of MMP family, 
is inhibited, the invasion and metastasis of human pancreatic 
cancer is inhibited, which prolongs the survival period and 
exhibits antimetastatic effects in situ in a mouse model (57). 
However, to the best of our knowledge, the physiological func‑
tion of MMP12 has not yet been described completely.

A previous study demonstrated that the increased 
TSPAN1 in pancreatic cancer tissues was associated with the 
clinicopathological features and survival rate of patients with 
PAAD (52). siRNA targeting TSPAN1 significantly inhibits 
the proliferation of PAAD cells, increases apoptosis, and 
decreases cell migration and invasion, therefore this may be 
a potential strategy for the treatment of human PAAD (58,59). 
Previous studies have suggested that an SH3TC2 variant 
allele is associated with the cause of Charcot‑Marie‑Tooth 
neuropathy (60,61). Although the expression and functions 
of SH3TC2 in cancer have rarely been described, it remains 
reasonable to identify it as a prognostic biomarker due to its 
significance in the present signature model.

The results of the present study demonstrated that 10 hub 
genes may be involved in the occurrence and progression of 
PAAD, and these 10 hub genes were highly expressed in PAAD 
tissues. Therefore, further research may focus on the reasons 
for the high expression of these genes to develop corresponding 
drugs to reduce or inhibit the expression of these genes, which 
may improve the treatment of PAAD. In addition, according 
to the survival information of patients with PAAD in TCGA 
database, four prognostic signature genes were identified. By 
detecting the expression of these four genes, the risk of PAAD 
could be predicted in advance. These results may provide 
clues for further investigating the pathogenesis of PAAD and 
to establish a new risk classification and prognosis assessment 
model. However, there are limitations to the present study, as 
it was performed based on data analysis, experimental results 

Table  III. The OS rates in the high‑risk group and low‑risk 
group.

	 OS (95% CI)
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Years	 High‑risk group (%)	 Low‑risk group (%)

1	 62.9 (53.3‑74.2)	 88.7 (82.0‑96.0)
3	 21.1 (11.8‑37.7)	 48.9 (37.4‑63.8)
5	 16.9 (8.2‑35.0)	 39.5 (26.6‑58.9)

OS, overall survival; CI, confidence interval.



SHI et al:  BIOINFORMATICS ANALYSIS OF PAAD10

of this prediction in PAAD are required. As the present study 
identified hub genes in a public database, further experimental 
research is required to demonstrate the molecular pathogenesis 
and signal transduction mechanism of these genes in PAAD.

In conclusion, using the datasets of multi‑gene expression 
profiles and the comprehensive bioinformatics analysis, the 
present study identified 10 hub genes that may be responsible for 
the pathogenesis of PAAD. In addition, the present study also 
constructed a four‑gene prediction model that performed well 
in predicting 1‑, 3‑ and 5‑year OS, and thus may be used as a 
prognosis marker for patients with PAAD. The present study may 
be helpful to improve the current understanding of the potential 
carcinogenesis or progress of PAAD, as well as for the prognostic 
prediction and molecular targeted management of PAAD.
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