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Blood Pressure Estimation Using 
On-body Continuous Wave Radar 
and Photoplethysmogram in 
Various Posture and Exercise 
Conditions
Malikeh Pour Ebrahim1, Fatemeh Heydari1, Taiyang Wu1, Katherine Walker   2, Keith Joe   2, 
Jean-Michel Redoute   1 & Mehmet Rasit Yuce1*

The pulse arrival time (PAT), pre-ejection period (PEP) and pulse transit time (PTT) are calculated using 
on-body continuous wave radar (CWR), Photoplethysmogram (PPG) and Electrocardiogram (ECG) 
sensors for wearable continuous systolic blood pressure (SBP) measurements. The CWR and PPG 
sensors are placed on the sternum and left earlobe respectively. This paper presents a signal processing 
method based on wavelet transform and adaptive filtering to remove noise from CWR signals. 
Experimental data are collected from 43 subjects in various static postures and 26 subjects doing 6 
different exercise tasks. Two mathematical models are used to calculate SBPs from PTTs/PATs. For 38 
subjects participating in posture tasks, the best cumulative error percentage (CEP) is 92.28% and for 21 
subjects participating in exercise tasks, the best CEP is 82.61%. The results show the proposed method 
is promising in estimating SBP using PTT. Additionally, removing PEP from PAT leads to improving 
results by around 9%. The CWR sensors present a low-power, continuous and potentially wearable 
system with minimal body contact to monitor aortic valve mechanical activities directly. Results of this 
study, of wearable radar sensors, demonstrate the potential superiority of CWR-based PEP extraction 
for various medical monitoring applications, including BP measurement.

Blood Pressure (BP) abnormalities, such as hypotension and hypertension, are important risk factors for many 
short- and long-term critical illnesses, with a global disease burden of about 1.25 billion people1. The gold stand-
ard for BP measurement is the use of a cuffed sphygmomanometer2. However, cuff measurements are uncomfort-
able and create barriers to measuring BPs3 over time. In addition, BP measurement with sphygmomanometry can 
be inaccurate4. Sometimes continuous BP measurement is required. In ambulatory, community and domestic set-
tings, continuous BP measurement improves accuracy in diagnosis of chronic hypertension5. When continuous 
BP measurement is required in critically ill patients, more invasive methods of BP monitoring are used (arterial 
lines), which can cause infection and loss of limbs due to ischaemia6.

Several BP monitoring devices have been proposed, based on Pulse Arrival Time (PAT), Pulse Transit Time 
(PTT) and Pulse Wave Velocity (PWV). These all use different devices and data analysis methods. A photop-
lethysmograph (PPG) is one of the most popular sensors7. Ballistocardiography (BCG) and PPG8, mobile 
phone sensors9, microelectromechanical sensors10, magneto-plethysmographic sensors11, bio watches (a 
wrist-based BP monitor)12, wearable glasses13 and bio-impedance (BImp) sensors14 have also been considered. 
Continuous non-invasive devices have been developed in recent decades to measure systolic blood pressure (SBP) 
continuously15–18.

A novel measurement technique using radar sensor methodology, with continuous wave-doppler radar19 
and M-sequence ultra-wide band (UWB) sensor20 techniques, is being developed to measure several vital signs, 
including BP. One group21 uses an impulse-radio UWB radar to detect the heart-rate without requiring skin 
contact. However, this method is not able to measure BP without breath being held for 20 seconds during data 
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acquisition. Continuous wave radar (CWR)-based techniques have also been used to detect heart sounds and to 
calculate heart rate22. A recent study used a CWR sensor to measure the carotid pulse at the left common carotid 
artery by placing a wearable antenna device at the neck23. Placing the sensor at the neck was uncomfortable for 
subjects during testing so the researchers evaluated CWR data acquired from sternal placement of the antenna24 
(measuring aortic arch activity), allowing the device to be hidden under clothing. BImp was measured across the 
shoulders24.

One of the main goals of continuous ambulatory BP measurement is to investigate the effect of daily activities 
on BP. Many studies have been performed with the subjects in varied postures or undertaking exercise25,26. The 
PAT was measured as the time interval between Electrocardiography (ECG) R-Peak and the steepest slope of the 
corresponding upstroke in the PPG signal obtained from a finger during cardiopulmonary exercise tests27. The 
SBPs were also measured simultaneously to find the relation between PAT and SBP using different regression 
methods27. Another study tested dual-channel PPG signals from wrists and forearms to calculate the PTT and 
evaluated a method of removing motion artefacts from the SBP readings28.

Accurate data analysis to derive useful information is as important as the sensor devices in BP calculation. 
Signal processing methods are needed and can be effective29 in eliminating noise and motion artefacts. A discrete 
wavelet transform was employed to remove noise components of ECG signals30. Also, wavelet transform was 
used to monitor heart rate from non-contact CWR systems31,32 and to detect the heart rate from contact-CWR 
signals33.

In order to calculate the PTT, PAT and pre-ejection periods (PEP) need to be determined. As pre-load and 
after-load change in subjects, both PAT and PEP also vary but not always with the same magnitude or direction34. 
The PTT is calculated by subtracting the PEP from the PAT. The PAT is defined as the time interval between the 
ECG R-peak and the PPG peak. The PEP is the time between the opening of the aortic valve and the q-wave of the 
ECG35. Typically, the PEP is measured using pulsed doppler echocardiography (ECHO)36. Another technique is 
to measure the time between the B-point of the impedance cardiogram (ICG) (aortic valve opening) and the start 
of the Q-wave of the ECG37. The accuracy of the two techniques (particularly with respect to detecting aortic valve 
opening) has been compared using ECHO over the ascending aorta with subjects in either a supine position, or 
lying with their head up at 60 degrees36, showing that ECHO calculated a non-significantly lower PEP than ICG. 
When the CWR antenna is placed on the sternum, the foot of the CWR signal, compared to the ICG B-point, is 
validated to correspond to the opening of the aortic valve38–40.

Although ICG, BCG and PPG have been used as sensors to measure BP indirectly by peripheral or arterial 
readings, a pilot work shows that CWR can be a potential sensor to measure BP because the CWR sensor can be 
placed on the sternum to measure the opening of the aortic valve directly by targeting mechanical activity19,23,24,38. 
Peripheral arterial readings are affected by inaccuracies induced by vasomotion. This is particularly important for 
those patients who have long-term BP problems and require highly accurate measurements19,23,24,38. Conveniently, 
these sensors can be worn under clothing. In the CWR sensors, the relation between PTT (extracting PEP from 
PAT) and BP has not been established. Further investigation is required to determine whether CWR, which can 
target central aortic pressure, is worth being pursued as a potential wearable technology.

In this study, we evaluate a method of calculating SBP whilst using data acquired from a combination of a 
CWR sensor on the sternum, a PPG sensor on the left earlobe, and ECG electrodes on the chest. The signals from 
these locations are less affected by body motion, organ artefact and vasomotor changes than from sensors placed 
in other locations. By placing the CWR antennae on the sternum, the CWR signal is hypothesized to acquire the 
arterial distension of the ventral side of the aortic arch, which matches the PEP obtained by the CWR antenna. 
A signal processing method, based on wavelet transform and an adaptive filter, are further developed for radar 
signals to detect accurate data, and regression methods are used to estimate SBP from PTTs derived from the 
proposed sensors signals.

Methods and Materials
Monitoring setup.  The block diagram in Fig. 1a shows the setup used to record cardiac activities. It includes 
three main blocks to record CWR, PPG and ECG signals simultaneously. Figure 1a also shows the placements of 
two CWR antennae (the transmitter and receiver), on the aortic arch, two ECG electrodes on the chest and one 
PPG sensor on the left earlobe. The radar antennae’s positions, R and T, represent the receiver and transmitter 
antennae.

Continuous wave radar.  The CWR system, as shown in Fig. 1a, includes two main transmitter and receiver 
parts. The transmitter, which is a local oscillator, emits a high-frequency wave signal Tcw(t) through the body, 
described by (1), using the transmitter antenna as an on-body sensor. The carrier frequency of the setup is around 
900 MHz.

The received signal Rcw(t), defined by (2), includes the distance information d and periodic movement m(t) of 
a target organ in its phase, i.e. aorta or heart. The information is derived using a mixer and a demodulator as two 
in-phase (I) and quadrature (Q) base-band components given by (3) and (4)41. The base-band signals are ampli-
fied and low pass filtered before being recorded.

ω φ= +T t E cos t( ) ( ) (1)cw T

ω ω θ= − + +R t E t d m t( ) cos( ( ( )) ) (2)cw R 0

ω θ≈ +I t sin m t( ) ( ( ) ) (3)0 0
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ω θ≈ +Q t cos m t( ) ( ( ) ) (4)0 0

In Eqs 1–4, φ is the phase noise in the setup, θ is a mixture of setup, body movement and environment phase 
noise, and θ0 is an estimation of the combination of all phase noises.

Figure 1a shows the radar antennae placed at the sternum. Figure 1b shows the S parameter measurements for 
the antennae used. The S11 and S22 parameters are the ratio of the reflected power to the fed power at the trans-
mitter and receiver antennae input which should be less than −10 dB for proper antennae operation24. The S11 
and S22 measurements show that they are below −15 dB at 900 MHz, which means the antennae works properly 
around the system’s carrier frequency.

For any antenna used on or near the body, specified safety threshold values of the Specific Absorption Rate 
(1.6 W/kg for 1 g of tissue or 2.0 W/kg averaged over 10 g of tissue) must be obeyed24. The emitted power fed from 
the antenna to the body is around 2 dBm (less than 2 mW)24.

Photoplethysmogram and electrocardiogram.  PPG signal is recorded to measure PAT parameters 
using a sensor which is placed on the left earlobe. The reason that the earlobe is selected to measure PPG is that 
the signal quality is good in this area of the body, i.e. clear signals can be measured and, that the recorded signal 
from the earlobe is steady with most body movements.

The ECG signal is measured as a reference signal using two electrodes which are placed on the chest. ECGs are 
used to derive heart beats and each heart beat’s R-peak to measure time parameters, i.e. PAT and PEP.

All three different setups i.e. PPG, ECG and CWR are placed on the same device, and their outputs are 
recorded at the same time leading to synchronized data collection. Note that, to consider the hardware delay of 
each signal, a comparison is done with a reference device ECHO (i.e. ultra-sound M-mode wave) and the results 
show no considerable time shift in recorded waveforms.

The subjects wear a calibrated cuffed sphygmomanometer during tests to record their SBPs simultaneously. 
To synchronize the recorded signals with a BP measurement cuffed device, all data are labelled based on the same 
reference time information.

Signal processing.  The CWR, PPG and ECG signals are recorded simultaneously for all subjects. Figure 2a 
shows the block diagram of the proposed processing method to detect time parameters, i.e. PAT, PEP, and PTT.

Figure 1.  (a) The block diagram of the CWR setup and the placements of sensors on the body50. (b) 
S-parameters of the CWR antennae as on-body sensor. (c) The placement of CWR, ECG and PPG sensors on a 
participant seated on an exercise bike.
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For the first step, a Chebyshev type II band-pass filter (BPF) is used to remove the 50 Hz components as well 
as noise and artefacts. To avoid the time shift caused by filtering, a zero-phase filtering algorithm is applied which 
helps to preserve the features of unfiltered signals exactly at the same time as the filtered wave-forms.

The pass-band of the BPF is chosen individually and automatically for each subject using the heart rate fre-
quency (HRF) extracted from the individual subjects’ PPG signals, and is fed into the analyses of the ECG, PPG 
and CWR. The varying band-pass filtering cut-off frequency method is required because this type of signal is 
prone to interference from respiration and tissue vasomotion, and individual subjects have different best cut-offs. 
To calculate the HRF, the floor of the first harmonic of Fast Fourier transform (FFT) is used. Then the BPF cut-off 
frequencies are defined for each signal as follows:

= =

= = . × .

f HRF f

f HRF f HRF

, 30 ,

, 2 5 (5)

pass EGC pass ECG
Hz

pass CWR pass CWR

low high

low high

After filtering, a combination of I and Q, i.e. arctangent of Q/I, is also calculated as described in (6).

φ ω θ= = +−t tan Q t I t m t( ) ( )/ ( ) ( ) (6)1
0 0

Wavelet.  Sometimes using filtering alone may lead to a loss of some important timing information from a 
signal. In our study, utilizing BPFs may displace the foot of CWR signals, which leads to incorrect PEP measure-
ments. Therefore, a wavelet transform is used to preserve considerable information and to remove the remained 
noise from the signals. The wavelet transform decomposes the signal into a number of scales having different 
frequency components, and analyses each scale with a certain resolution to obtain accurate features of the sig-
nal33. The sum of the overall time of the signal multiplied by a scaled and shifted version of the wavelet function, 
addressed as H a b( , ), is given as (7) and (8):

Figure 2.  (a) The block diagram of used signal processing method to estimate BP from signals. (b) Proposed 
wavelet function design based on CWR signals waveform. (c) A sample of CWR signal (in-phase components) 
after BPF, wavelet transform and adaptive filtering for subject 1, standing position. (d) Samples of ECG, CWR, 
PPG, second derivative of CWRs, and first derivative of PPGs for subject 1 in standing position during the BP 
estimation. (e) A comparison between a sample of CWR signal (in-phase components) and M-mode signal of 
Ultra-sound.
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∫= Ψ
−∞

∞
H a b x t t dt( , ) ( ) ( ) (7)a b,

Ψ = √ Ψ −⁎t a t b a( ) (1/ ) (( )/ ) (8)a b,

where, x(t) is the original signal, * denotes the complex conjugation, Ψa,b(t) in the window function of the mother 
wavelet and Ψ*((t − b)/a) is its shifted and scaled version30.

The selection of a particular wavelet function that closely matches the morphology of the signal under consid-
eration is the most important factor for signal decomposition30. Since the CWR waveform is different from the 
known wavelet functions, a special mother wavelet function which matches our signals is designed and used as 
shown in Fig. 2b. The blood pulse volume pumping from heart to the arterial tree leads to the aorta movements. 
The blood volume applies pressure to the walls of the aorta and depends on its elasticity and resistance, move-
ments are generated. Hence, the movement pattern of the aorta is highly correlated (similar) to the aortic blood 
pressure (ABP)42. The aorta pressure waveform has two main peaks42 which can be used as the basic pattern to 
design the wavelet function. An algorithm is used to adapt a new wavelet to the discussed pattern by extract-
ing the similar waveform on the interval of [0,1], which is also quite close to each beat of the CWR signal. The 
algorithm uses a least squares polynomial approximation of degree 6 to create the wavelet function43. Using the 
designed wavelet function, the CWR signals are decomposed down to level 12. Comparing the decomposed ele-
ments shows that the wavelet coefficients at scales 8 to 12 are closely representative of the heart rate for the general 
population; therefore, only the mentioned scales are used for reconstruction. It also leads to elimination of high 
frequency and very low-frequency noise sources, including respiration.

Adaptive filter.  By selecting the wavelet coefficients at special scales, unwanted noise is eliminated and 
smooths the signal, which is not negligible, in most cases. This selection may also lead to loss of some important 
time interval information; in other words, PEP measurements which are related to the foot of each beat of CWR 
signals. Therefore, adaptive filtering is used; the characteristics of which change in a way to obtain the best pos-
sible signal quality in spite of changing signal conditions44. An adaptive filter designs itself based on the charac-
teristics of the input signal to the filter and a signal that represents the desired behavior of the filter on its input. 
Adaptive filters track the dynamic nature of a system and eliminate unwanted time-varying signals. Designing the 
filter does not require any other frequency response information or specification. An adaptive algorithm is used 
to reduce the error between the output signal and the desired signal45.

For CWR signal processing, the result of the wavelet transform is selected as the desired signal and the filtered 
signal is the input of the adaptive filter. In this case, those frequency components which are removed during wave-
let transform remain; yet, since the wavelet-filtered signal is the desired signal, incorrect foot of signals can be 
removed. For the current study, an adaptive finite impulse response (FIR) filter uses a least mean squares (LMS) 
algorithm. The FIR filter weights are calculated using the LMS algorithm to minimize the mean square error 
(MSE) between the output signal and the desired signal45. The output of the adaptive filter is then used as a signal 
to derive PEP parameters. Figure 2c shows a sample of CWR signal after different levels of signal processing.

Blood pressure estimation.  Figure 2d shows a sample of signals which are measured with the three sensors 
during the recording of heart activities. The PAT is selected as the time difference between the ECG R-peak (tp) 
and the maximum of the PPG signal (tm). It also can be assumed as the time difference between the ECG R-peak 
and the rising slope of the PPG signal (tr).

As previously mentioned, a comparison between measured PEP from CWR and ICG sensors was undertaken 
to validate the precision of the PEPs38–40. In this study, the PEP measured from CWR signals after different levels 
of processing is compared with PEP measured simultaneously using ECHO i.e. ultra-sound M-mode wave to 
validate the accuracy and precision of the parameters, as shown in Fig. 2e. This figure shows a high correlation 
between two measured PEPs and that the foot of the CWR signal is close to the foot of M-mode signal. In lit-
erature37, it was shown that the QR interval can be assumed to be fixed; therefore, PEP is measured as the time 
interval between R-peak of ECG and the foot of CWR (tf) signal.

Finally, the PTT—which is the difference between PAT and PEP—is measured to remove the effect of PEP 
from the PAT. After processing three ECG, PPG and CWR signals, the time parameters used for SBP estimation 
are calculated as following, and as highlighted in Fig. 2d:

= −PAT t t , (9)p m1

= −PAT t t , (10)p r2

= −PEP t t , (11)p f

= −PTT PAT PEP, (12)1 1

= − .PTT PAT PEP (13)2 2

To measure the time parameters, the location of the ECG R-peak is detected using Algorithm 1; then the 
boundaries of each heartbeat are measured.
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To calculate PEP values, the Algorithm 2 is determined. As can be seen, a comparison is done between meas-
ured Tf elements and predefined thresholds tfmin, and tfmax which are the reported ranges for PEP in37.

To calculate PAT parameters, the rising slope and maximum of corresponding PPGs are measured as the 
maximum of the first derivative and the first local maximum of the signal, respectively.

The SBP values are estimated from PTTs using different regressions as follows:

= +SBP a PTT b/ (15)est

= + +SBP a PTT b PTT c/ / (16)est 1
2

2
2

where for Eq. 15, PTT can be PTT1 or PTT2. To determine the coefficients of the equations, cuff-based SBPs were 
measured and used as the calibration points of the models. Then the measured SBPs and the whole PATs and 
PTTs recorded from subjects were used to calculate the coefficients in a way that the estimated SBPs have the min-
imum difference from the measured SBPs. The coefficients a, b and c are calculated using minimum least square 
(MLS) fitting method. Different mathematical models have been suggested in literature to calculate BP from 
PTT or PAT46,47. Equation 15 is one of the most common with very high accuracy and simplicity as reported by 
researchers46,47. Most suggested models are based on using a one-time parameter. This led us to employ two-time 
variables in a model as in Eq. 16 to improve accuracy of the results.

Although the SBP estimation is done for each subject separately, in other words the equation coefficients are 
calculated separately, an algorithm is designed and used for regressions based on the two mentioned equations 
which do not need any calibration for coefficients or any tuning for an individual subject. We are using each 
three-minute cuffed sphygmomanometer measurements as calibration points to increase the calculation accuracy 
of a, b and c, so the errors will be reduced and the BP can be measured by Eqs 15, and 16 continuously.

Experimental protocol.  Forty-three healthy volunteers participated in the experiments. Fifty two percent 
were male and 48% were female, between 40 and 65 years, (168 + 10) between 158 cm and 178 cm in height and 
weighed between 44 kg and 76 kg with no participants reported of any previous cardiovascular problems. A writ-
ten informed consent was required from each volunteer who participated in this study before starting the exper-
iments. A video displaying testing procedures was recorded during one participant’s test. Two written informed 
consents were obtained from the subject for study participation and for sharing any identifying image/video in 
an online open-access publication, respectively. Data collection was undertaken at Cabrini Hospital, Melbourne, 
Australia, (Oct. to Nov. 2017) and an in-room emergency physician ensured participants’ safety during testing. 
All experiments were performed in accordance with the relevant guidelines and regulations and the required 

Algorithm 1.  R-peak detection.

Algorithm 2.  PEP extraction.
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ethics permissions were obtained. (Cabrini Human Research Ethics Committee approval (07-19-06-17), ANZ 
clinical trial registration number ACTRN12617000774325.

ECG, PPG and CWR signals were measured simultaneously and the data from 43 participants were included 
in the analysis. The experiments were undertaken in two sessions. All volunteers participated in Session 1, while 
26 subjects from among them were selected randomly to take part in Session 2. All subjects were asked to breathe 
normally during tests. The CWR data from five subjects were corrupted during signal recording because of the 
hardware failure, hardware data loss, loose cable connection or interrupted data collection; therefore, they were 
omitted for this work. Figure 1c shows the placement of CWR and PPG sensors for a participant seated on the 
exercise bike. The figure also shows the cuff placement and the software interface used for data recording.

Session 1 consisted of measuring all signals for three different postures; six minutes of sitting, six minutes of 
standing and six minutes in the supine position. The procedures for Session 2 were as follows:

•	 Holding handgrip for two minutes followed by a one-minute rest.
•	 Cycling with a fixed speed in three different bike resistant settings of light, moderate and heavy. Each cycle 

lasted for two minutes with a one-minute rest.
•	 Two recovery stages after the cycling tasks, during which subjects sat on the bike without any activity.

All ECG, PPG and CWR signals were recorded continuously during tests. Also, the subjects were asked to 
wear a calibrated cuffed sphygmomanometer during tests and their BP values were recorded every three minutes. 
The timing of cuff measurements was set so that the BP measurement happened once for each test and started 
after the second minute. The error of the hydrostatic effect was removed by keeping the cuff around the arm at the 
same horizontal height of the heart during all measurements48.

Figure 3.  (a) Boxplots of PEP, PAT1, PTT1 and SBP median values for all participants, during three different 
posture tasks as sitting, standing and supine, and related measured SBPs using cuff. (b) Boxplots of PEP, PAT1, 
PTT1 and SBP median values for the participants, during six different exercise tasks as handgrip, light, medium 
and heavy exercise, recovery 1 and recovery 2.

Experimental 
conditions

PEP (ECG R-peak 
– CWR foot) Mean 
(SD) (ms)

PEP37, included 
QR Mean (SD) 
(ms)

Sitting 64.80 (21.63) 108 (18)

Standing 66.22 (27.72) 117 (16)

Supine 47.24 (24.56) 95 (19)

Hand Grip 60.94 (30.67) 112 (17)

Light Cycling 55.56 (30.00) 115 (17)

Moderate Cycling 52.37 (21.27) 77 (20)

Heavy Cycling 47.96 (15.10) 66 (17)

Recovery 1 59.42 (18.40) 90 (25)

Recovery 2 53.80 (20.75) NA

Table 1.  The means and SDs for PEP measured for different experimental conditions.

https://doi.org/10.1038/s41598-019-52710-8


8Scientific Reports |         (2019) 9:16346  | https://doi.org/10.1038/s41598-019-52710-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

Results
The SBP values of a healthy person cannot vary more than +10 mmHg in two consecutive readings49, while this 
variation may reach +15 mmHg for anatomical abnormalities or measurement errors49. Since the probability of 
having anatomical abnormalities is very low, and the accuracy of the - cuffed sphygmomanometer used in this 
study is +3 mmHg, we can consider measurements with a higher than 20 mmHg (>15 + 3 mmHg) deviation 
were caused by measurement errors. Therefore, all the cuff measurements with an error of more than 20 mmHg, 
and their related PTT or PAT values, were removed. The collected data were processed and analyzed in two inde-
pendent categories: postures (sitting, standing and supine) and exercises (handgrip, light, moderate and heavy 
exercise, recovery 1 and recovery 2) categories independently. The values of tfmin and tfmax were chosen as 27 ms 
and 78 ms respectively37.

Pre-ejection period.  Figure 3a,b show the box plots for two sessions of tests for all participants. Figure 3a 
shows the lowest PEP values, which were obtained in the supine posture. It can also be observed that the PEPs for 
sitting and standing positions are very close. A comparison of the results of the three different stages of cycling 
exercises, as shown in Fig. 3b, shows a negative trend between the strength of activities and measured PEPs.

Table 1 represents the means and SDs values of the measured PEPs based on CWR signals for different con-
ditions. Comparing the mean values of PEP for sitting and standing shows that there is a small rise (less than 
1.42 ms) for standing, while the PEP values drop considerably overall by 18.98 ms to 47.24 ms from standing to 
supine. From handgrip to heavy cycling (increasing exercise stress) the PEPs fall from 60.94 ms to 47.96 ms, then 
return to normal values during recoveries (almost 55 ms).

Considering the fact that the experiments’ conditions are not exactly the same for different studies, it is not 
expected to observe the same PEP values. To validate the measured PEPs, a comparison was made between the 
trend of our results with the results of using ICG B-point based on reported work37. As can be seen the results 
show similar patterns for changing postures and exercise tasks.

Pulse transit time.  Figure 3a,b show the box plots of PAT1 and PTT1 measurements for two sessions of tests 
for all participants and the boxplots of related BPs measured by the cuff. The box plots are used only to show the 
overall changes in extracted time parameters based on changing posture and exercise tasks. The measured PATs 
and PTTs in Fig. 3a represent a slight difference for the different postures. Finding a clear trend between PAT and 
postures seems to be complicated. As can be seen, after calculating PTT (subtracting PEP from PAT) there is a 
similar trend for both PTT and SBP values due to changing the postures. The changes in PTTs for different pos-
tures show the noticeable effect of subtracting PEP from PATs to achieve a trustworthy pulse time delay parame-
ter. Note that the relation between PTTs and SBPs should be considered in another approach, which is discussed 
in the next section.

Figure 3a,b show both PAT and PTT have negative trends with respect to exercise stress during exercise tasks, 
while BPs have the same trend. While PATs and PTTs decrease when the bike exercise was intense, their related 
BPs increase. The changes for both PAT and PTT were quite clear, which means that the effect of exercise is suffi-
ciently significant despite the influence of PEPs.

Figure 4.  (a) SBPs/PAT1 for three posture tasks, (b) SBPs/PTT1 for three posture tasks. (c,d) SBPs/PAT1 for six 
exercise tasks, (e,f) SBPs and PTT1 for six exercise tasks, and individually fitted curves for each subject using 
Eq. 15.
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Figure 5.  Bland Altman (BA) with limits of agreement (LOA) (mean + 1.96*standard deviation (SD)) plots 
using estimated SBP and cuff-based measured SBP based on PAT1, PAT2, PTT1 and PTT2. (a) BA plots for 
posture tasks using Eq. 15. (b) BA plots for exercise tasks using Eq. 15. (c) BA plots for exercise tasks using 
Eq. 16.

Algorithm Parameter CEP_7a CEP_10b CEP_15c CEP_1015d CEP_1520e CEP_20f

Posture Eq. 15

PAT1 76.02 79.27 84.96 5.69 2.03 0.41

PAT2 65.74 70.83 75.00 4.17 2.31 0

PTT1 81.30 84.55 92.28 7.72 2.44 0.41

PTT2 73.08 78.63 85.47 6.84 1.71 0

Exercise

Eq. 15

PAT1 61.48 66.67 76.30 9.63 3.70 5.93

PAT2 56.30 59.26 71.11 11.85 4.44 4.44

PTT1 71.20 75.20 80.80 5.60 3.20 4.80

PTT2 55.80 67.39 78.99 11.59 3.62 6.52

Eq. 16
PAT1 & PAT2 61.48 63.70 71.11 7.41 4.44 4.44

PTT1 & PTT2 76.09 76.81 82.61 5.80 1.45 5.07

Table 2.  Accuracy percentage based on PAT1 and PAT2, using Cumulative error percentage 
(CEP). aCEP < 7 mmHg. bCEP < 10 mmHg. cCEP < 15 mmHg. d10 mmHg < CEP < 15 mmHg. 
e15 mmHg < CEP < 20 mmHg. f20 mmHg < CEP.
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Blood pressure calculation.  Figure 4a,b show the measured SBPs based on their related PTT and PAT 
values during three different posture tasks. As seen, there is not a clear relation between extracted PAT val-
ues with SBPs, while PTTs and SBPs remain negatively correlated despite having same trend due to posture 
changing.

Similarly, Figure 4c–f show the cuff-based measured SBPs against PAT1 and PTT1 for exercise tasks. Both 
PATs and PTTs illustrate an inverse relation to SBPs during exercise, which was also observed for their trends 
in the previous section. In Fig. 4e,f the estimated inverse relation between SBPs and PATs/PTTs using Eq. 15 are 
presented as curves. The curves are plotted (based on Eq. 15) for each subject independently, using the MATLAB 
curve-fitting tool. As can be seen, the fitted curves for different subjects based on PATs are more scattered than 
for those based on PTTs. The calculated curves for SBP-PTTs are more linear and coherence than SBP-PATs. This 
leads to a noticeable improvement in calculating SBPs based on PTTs due to eliminating the PEP effect from 
PATs.

Figure 5a,b show the Bland-Altman (BA) plots with limits of agreement (LOA) for all estimated SBPs using 
Eq. 15, based on cuff-based measured SBPs, and time parameters including PAT1 and PAT2, PTT1, and PTT2, for 
different posture and exercise tasks. As can be seen, there is a considerable improvement in calculating SBPs using 
PTTs compared to that of using the PATs.

In Fig. 5c the results of SBP estimation with Eq. 16, using the combination of PAT1 and PAT2/PTT1 and PTT2, 
are shown. Equation 16 cannot be applied for postures because the number of points are not enough (less than 
four for each participant) and this leads to over-fitting. The combination of PTTs compared with PATs provides 
significant improvement in terms of SBPs calculation accuracy.

Table 2 presents the accuracy percentage for estimated SBPs using PAT1, PAT2, PTT1, PTT2, and cuff SBPs, 
which are based on Eqs 15 and 16 for different postures and exercise tasks. The accuracy is calculated using 
the cumulative error percentage (CEP) of less than 7 mmHg, less than 10 mmHg, less than 15 mmHg, between 
10 mmHg and 15 mmHg, between 15 mmHg and 20 mmHg, and more than 20 mmHg. The CEP less than 7 mmHg 
is considered based on the newly established IEEE standard on continuous blood pressure measurement system2. 
By comparing the results of estimated SBP based on PATs and PTTs, it can be seen that eliminating PEP leads 
to an almost 9% improvement. Another observation is that the accuracy percentages for the posture session are 
higher than for the exercise tasks. This is because recorded signals during posture measurements are less noisy, 
due to the participants’ steadiness, compared with exercise tasks where subjects’ body movements increase due 
to cycling.

Table 2 illustrate that the results of using Eq. 15 based on the first order of PTT1 are slightly better than using 
PTT2 for the same equation or using the second order Eq. 16 based on PTT1 and PTT2.

Considering the complexity of the calculation for Eq. 16, using two variables from the same signals i.e. PTT1 
and PTT2 does not necessarily leading to the optimum solution.

Discussion and Conclusion
The proposed method in this study investigates continuous BP estimation based on PTT measurements for the 
first time using on-body radar sensors on the chest and PPG signals from the ear. By positioning the CWR sensor 
on the sternum and evaluating its signal, PEP is measured as the difference between the foot of CWR signal and 
ECG R-peak. Comparisons between the effects of changing posture and different exercise tasks on PTT, PAT and 
their related SBP were conducted. The results show that the removal of PEP values from PATs of PPG signals to 
estimate the SBP based on PTT, leads to more accuracy. Two different regression methods (first order and second 
order equations using one variable and two variables respectively), based on Eqs 15 and 16, are implied to calcu-
late SBPs from PTTs and PATs.

The proposed CWR sensors have the ability to observe mechanical movements of the aortic valve (the aortic 
arch opening) similar to ECHO, which is considered as a reference method to observe aortic activities with the 
highest accuracy in PEP extraction36. Despite the focus on ICG technologies, CWR presents a low-power, con-
tinuous and potentially wearable system with minimal body contact to monitor aortic valve mechanical activities 
directly. In addition, compared to other pulse wave monitoring methods, such as PPG, CWR can provide cen-
tral elastic aorta monitoring, removing the peripheral vasomotion-induced inaccuracies, which requires higher 
quality in the design of CWR sensors for recordings and processing in future work. This shows the potential of 
the CWR-based system to provide a simple wearable device, which can monitor both PEPs and PTTs (in results, 
beat-to-beat SBPs).

Data are collected during different posture and exercise tasks considering their effects on time parameters and 
BPs separately. This leads to better understanding of changing posture without having activity impacts and vice 
versa. Removing the effect of PEPs from PATs leads to a clear negative relation between PTTs and SBPs for vari-
ous postures, and a more coherent negative relation (as proved in other research studies7,27) for exercise tasks. It 
should be considered that the variations of time intervals for different postures significantly relate to each subject’s 
specifications. In addition, the BP variations are very low for different postures12,26. The experimental conditions 
are designed to observe higher than normal BP values, while there is a need to study the decreasing trends of BP 
as well. In addition, investigating continuous data (beat-to-beat) can provide a better understanding of the system 
and its time parameters.

The feet of CWR signals using the maximum of the second derivative, compared with37 presents the PEP 
values37. The output of CWR contains three main signals as I, Q and arctangent Q/I. Instead of using these CWR 
signals separately, the combination of I, Q and arctangent-based extracted PEPs is presented to obtain more accu-
rate values. To derive PTT parameters, the PEPs are subtracted from PATs. The PATs are measured as the rising 
slope and maximum of corresponding PPGs by calculating the maximum of the first derivative and the first local 
maximum of the PPG signal. The proposed signal processing methods based on wavelet and adaptive filtering 
techniques are employed to clear radar signals by removing unwanted noise and artefacts without causing any 
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time shift. A BPF is designed to omit unwanted frequencies considering each subject’s heart rate which allows 
more accurate respiration/movement artefact’s filtering.

In some cases, the radar signals are not as reproducible in shape, especially during exercise tasks. There may be 
some other factors such as the heart size, position within the thorax and orientation, and respiration which may 
affect the signal and the place of its foot, subject by subject24. One other challenge to achieve a clear radar signal 
is the shape of antennae as an on-body sensor, and also the way that they are attached to the body. Redesigning 
the current antennae to be small and flexible, targeting more reliable signal detection along with applying more 
advanced signal processing methods to extract PEP values with higher accuracy, will be investigated in future 
works.

The SBP calculations based on PATs and PTTs are investigated separately using two different mathemati-
cal models. The results show a noticeable effect of PEP-correction in the SBP calculation accuracy. For both 
experimental conditions, an overall improvement of 10% is achieved using PTTs compared to PATs. The highest 
improvement is obtained using Eq. 15 based on PTT1 s which also has the advantage of simplicity. Based on the 
results represented in this study, the potential superiority of CWR-based PEP extraction for different purposes 
such as SBP calculations is demonstrated.

Sometimes the PEP can change in an opposite direction to the PAT during BP changes due to the variations in 
preload and afterload34. Note that the PEP (in parallel PTT) can be influenced, not only by position or activity of 
the subject, but also by other parameters such as heart rate, vessel elasticity, age, body fat and gender. Adding the 
effect of these parameters to the mathematical regression methods could provide more accurate SBPs estimation, 
which will be studied in future works.
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