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Mendelian randomization highlights 
significant difference and genetic heterogeneity 
in clinically diagnosed Alzheimer’s disease 
GWAS and self-report proxy phenotype GWAX
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Abstract 

Background: Until now, Mendelian randomization (MR) studies have investigated the causal association of risk 
factors with Alzheimer’s disease (AD) using large‑scale AD genome‑wide association studies (GWAS), GWAS by proxy 
(GWAX), and meta‑analyses of GWAS and GWAX (GWAS+GWAX) datasets. However, it currently remains unclear about 
the consistency of MR estimates across these GWAS, GWAX, and GWAS+GWAX datasets.

Methods: Here, we first selected 162 independent educational attainment genetic variants as the potential instru‑
mental variables (N = 405,072). We then selected one AD GWAS dataset (N = 63,926), two AD GWAX datasets (N = 
314,278 and 408,942), and three GWAS+GWAX datasets (N = 388,324, 455,258, and 472,868). Finally, we conducted a 
MR analysis to evaluate the impact of educational attainment on AD risk across these datasets. Meanwhile, we tested 
the genetic heterogeneity of educational attainment genetic variants across these datasets.

Results: In AD GWAS dataset, MR analysis showed that each SD increase in years of schooling (about 3.6 years) was 
significantly associated with 29% reduced AD risk (OR=0.71, 95% CI: 0.60–0.84, and P=1.02E−04). In AD GWAX data‑
set, MR analysis highlighted that each SD increase in years of schooling significantly increased 84% AD risk (OR=1.84, 
95% CI: 1.59–2.13, and P=4.66E−16). Meanwhile, MR analysis suggested the ambiguous findings in AD GWAS+GWAX 
datasets. Heterogeneity test indicated evidence of genetic heterogeneity in AD GWAS and GWAX datasets.

Conclusions: We highlighted significant difference and genetic heterogeneity in clinically diagnosed AD GWAS and 
self‑report proxy phenotype GWAX. Our MR findings are consistent with recent findings in AD genetic variants. Hence, 
the GWAX and GWAS+GWAX findings and MR findings from GWAX and GWAS+GWAX should be carefully interpreted 
and warrant further investigation using the AD GWAS dataset.
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Background
Alzheimer’s disease (AD) is the most common neurode-
generative disease [1, 2]. From 2009 to 2019, large-scale 
genome-wide association studies (GWAS) have been 
conducted using clinically diagnosed AD and cogni-
tively normal controls, and successfully identified mul-
tiple common AD genetic variants with genome-wide 
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significance P < 5.00E−08 [3–9], especially two large-
scale GWAS meta-analyses from the International 
Genomics of Alzheimer’s Project (IGAP) including 
the IGAP 2013 (n= 74,046, 25,580 cases, and 48,466 
controls) [6], and the IGAP 2019 (n= 94,437, includ-
ing 35,274 cases and 59,163 controls) [9]. However, 
these genetic variants could only explain about 40% of 
the genetic variance of AD [10–12]. Hence, the major-
ity of AD genetic risk remains undiscovered [10–12]. 
Until recently, GWAS for family history of AD, known 
as GWAS by AD proxy phenotype (GWAX) using UK 
Biobank individuals is widely used to increase the sam-
ple size into the traditional GWAS, which may contrib-
ute to identify more additional novel genetic variants 
[13–15]. These meta-analyses of AD GWAS and GWAX 
(GWAS+GWAX) have reported novel findings [13–15].

Importantly, all these AD GWAS, GWAX, and 
GWAS+GWAX summary datasets are publicly available, 
which provides strong data support to investigate the 
causal association between AD and previously reported 
risk factors using a Mendelian randomization (MR) 
design [16–18]. Meanwhile, there is no strict standard to 
limit the use of AD GWAS, GWAX, or GWAS+GWAX 
datasets in MR studies. Hence, some MR studies are 
based on the AD GWAS datasets from IGAP 2013 or 
IGAP 2019 [19–25], of which three MR studies had 
evaluated the impact of multiple modifiable risk factors 
on AD [16–18]. In 2017, Larsson and colleagues selected 
24 potentially modifiable risk factors and found that only 
increased educational attainment was significantly asso-
ciated with a reduced risk of AD [16]. In 2020, Wang and 
colleagues analyzed 45 potentially modifiable risk fac-
tors, and eventually highlighted educational attainment 
and urate levels [17]. In 2021, Andrews and colleagues 
selected 22 risk factors, and eventually identified educa-
tional attainment using polygenic risk scores (PRS) and 
MR [18]. Meanwhile, others MR studies are based on 
the AD GWAS+GWAX datasets [26–32]. However, it 
currently remains unclear about the consistency of MR 
estimates from AD GWAS, GWAX, and GWAS+GWAX 
datasets.

Here, we selected the educational attainment as the risk 
factor, and evaluated its impact on AD risk using large-
scale AD GWAS, GWAX, or GWAS+GWAX datasets, 
as the causal association between educational attainment 
and AD had been well established in recent MR studies 
[16–18, 33].

Methods
Study design
MR is based on three principal assumptions. First, the 
instrumental variables (genetic variants) should be sig-
nificantly associated with the exposure (educational 

attainment), generally achieving the genome-wide signifi-
cant level (P<5.00E-08) [19]. Second, instrumental vari-
ables should not be associated with confounders of the 
exposure (educational attainment) and outcome (AD) 
[19]. Third, instrumental variables should affect the risk 
of the outcome (AD) only through exposure (educational 
attainment) [19]. The second and third assumptions are 
collectively known as independence from pleiotropy. Fig-
ure 1 provides a flow chart about our MR study design.

Educational attainment genetic variants
We selected 162 independent educational attainment 
genetic variants with the genome-wide significance (P 
< 5.00E−08) to be the potential instrumental variables, 
as provided in supplementary Table  1 [34]. Educational 
attainment is a continuous variable, which is deter-
mined by the number of years of schooling completed 
at or above age 30 [34]. These 162 genetic variants are 
identified by a large-scale GWAS in 405,072 individu-
als of European descent including 293,723 individuals in 
discovery stage (SSGAC) and 111,349 individuals in the 
independent replication stage (UK Biobank) [34].

AD GWAS dataset
We selected the clinically diagnosed AD GWAS dataset 
from IGAP 2019 stage 1 including 21,982 AD cases and 
41,944 cognitively normal controls of European descent 
[9]. This GWAS dataset is based on a meta-analysis using 
participants from four AD consortia including Alzheimer 
Disease Genetics Consortium, Cohorts for Heart and 
Aging Research in Genomic Epidemiology Consortium 
(CHARGE), The European Alzheimer’s Disease Initia-
tive (EADI), and Genetic and Environmental Risk in AD/
Defining Genetic, Polygenic and Environmental Risk for 
Alzheimer’s Disease Consortium (GERAD/PERADES) 
[9]. Table  1 provides the demographic profile about the 
AD GWAS dataset.

AD GWAX datasets
We selected two GWAX datasets for AD proxy pheno-
type including GWAX 2018 [13], and GWAX 2021 [15], 
respectively. Both studies are based on the UK Biobank 
participants [35]. UK Biobank is a large national and 
international health resource including the genetic and 
phenotype data from 502,536 community-dwelling indi-
viduals aged between 37 and 73 years recruited in the 
United Kingdom between 2006 and 2010 [35]. In UK 
Biobank, a proxy phenotype for AD case-control status 
was assessed via self-report [13]. Participants were asked 
to report “Has/did your father or mother ever suffer from 
Alzheimer’s disease/dementia?” [13]. Table  1 provides 
the demographic profile about these two AD GWAX 
datasets.
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Fig. 1 The flow chart about the MR study design. GWAS, genome‑wide association studies; GWAX, GWAS by proxy; GWAS+GWAX, meta‑analyses 
of GWAS and GWAX; IVW, Inverse‑variance weighted; MR‑PRESSO, Mendelian randomization pleiotropy residual sum and outlier

Table 1 Demographic profile about the selected AD GWAS datasets

AD Alzheimer’s disease, AAO age at onset, AAE age at examination, s.d standard deviation, GWAS genome-wide association studies, GWAX GWAS by proxy, 
GWAS+GWAX meta-analyses of GWAS and GWAX
a These 53,042 AD cases consisted of 898 clinically diagnosed AD and 52,791 AD proxy phenotype

Dataset AD Control

N % female Mean AAO (s.d) N % female Mean AAE (s.d)

GWAS ADGC [9] 14,428 59.3 71.1 (17.3) 14,562 59.3 76.2 (9.9)

GWAS CHARGE [9] 2,137 67.3 82.6 (12) 13,474 55.8 76.7 (8.2)

GWAS EADI [9] 2,240 65 75.4 (9.1) 6631 60.6 78.9 (7.0)

GWAS GERAD [9] 3,177 64 73.0 (0.2) 7277 51.8 51.0 (0.1)

GWAS All [9] 21,982 ‑ ‑ 41,944 ‑ ‑

GWAX 2018 [13] 42,034 65.9 ‑ 272,244 ‑ ‑

GWAX 2021 [15] 53,042a ‑ ‑ 355,900 ‑ ‑

GWAS+GWAX 2018 [13] 67,614 ‑ ‑ 320,710 ‑ ‑

GWAS+GWAX 2019 [14] 71,880 ‑ ‑ 383,378 ‑ ‑

GWAS+GWAX 2021 [15] 75,024 ‑ ‑ 397,844 ‑ ‑
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AD GWAS+GWAX datasets
We selected three large-scale AD GWAS+GWAX data-
sets including GWAS+GWAX 2018 (a meta-analysis 
using IGAP 2013 and UK Biobank) [13], GWAS+GWAX 
2019 (a meta-analysis using IGAP 2013, PGC-ALZ, 
ADSP, and UK Biobank) [14], and GWAS+GWAX 2021 
(a meta-analysis using IGAP 2019 and UK Biobank) [15], 
respectively. All these three GWAS+GWAX datasets 
included the IGAP and UK Biobank participants, and 
are not independent of each other. Table 1 provides the 
demographic profile about the three GWAS+GWAX 
datasets.

Establishing the Wald estimator
For the same effect allele from each educational attain-
ment genetic variant Gj(j = 1, …, 162), we assume that we 
have successfully extracted their corresponding summary 
results in educational attainment GWAS dataset includ-
ing the beta coefficients and their standard errors 
( β̂Xj , se

(

β̂Xj

)

 ), and in the AD GWAS, GWAX and 
GWAS+GWAX datasets including the beta coefficients 
and their standard errors ( β̂Yj , se

(

β̂Yj

)

 ). For a given 
genetic variant, the causal effect of educational attain-
ment on AD can be consistently estimated as a simple 
ratio, also called the Wald estimator θ̂j =

β̂Yj

β̂Xj
 and its 

approximate variance vj =
se
(

β̂Yj

)2

β̂2
Xj

 [19, 36].

MR analysis
Using the Wald estimator from each educational attain-
ment genetic variant, we conducted the MR analysis 
using four MR methods including inverse-variance 
weighted (IVW), weighted median, MR-Egger, and MR-
PRESSO (Mendelian Randomization Pleiotropy RESid-
ual Sum and Outlier) to combine the variant-specific 
estimates and get the overall estimate [36–39]. IVW 
is the main MR analysis method, which combines the 
variant-specific Wald estimators by taking the inverse 
of their approximate variances as the corresponding 
weights [37]. Weighted median could derive consist-
ent estimates when up to 50% of instruments are not 
valid [37]. MR-Egger could test the presence of poten-
tial pleiotropy and account for this potential pleiotropy 
using the MR-Egger intercept test [36]. MR-PRESSO 
could detect and correct for the horizontal pleiotropy 
via outlier removal (the MR-PRESSO outlier test) [40]. 
The odds ratio (OR) as well as 95% confidence interval 
(CI) of AD corresponds to about per 3.6 years increase 
(about 1 standard deviation (SD)) in EduYears. All 
the statistical tests were completed using R Packages 

“MendelianRandomization” [39] and “MR-PRESSO” 
[40]. The significance threshold is P < 0.05.

Heterogeneity test and paired‑samples T test
We performed a heterogeneity test of the Wald estima-
tors using the Cochran’s Q statistic and the I2 statistic 
[41]. Cochran’s Q statistic approximately follows a χ2 dis-
tribution with k-1 degrees of freedom (k is the number of 
the selected studies) [42]. I2 = (Q − (k − 1))

/

Q × 100% 
ranges from 0 to 100%, with 0–25%, 25–50%, 50–75%, 
and 75–100% corresponding to low, moderate, large and 
extreme heterogeneity, respectively [42]. Importantly, the 
Cochran’s Q statistic and I2 assume that the subjects are 
independent of one another and were selected at random 
from a larger population. Hence, we only test the hetero-
geneity in AD GWAS and GWAX including two compar-
isons GWAS vs. GWAX 2018, and GWAS vs. GWAX 
2021. All statistical tests were completed using R Package 
“meta: General Package for Meta-Analysis.”

In line with the heterogeneity test, we further con-
ducted the paired-samples T test to evaluate the aver-
age differences of Wald estimators in GWAS vs. GWAX 
2018, and GWAS vs. GWAX 2021. Analysis of vari-
ance (ANOVA) is widely used to analyze the differences 
among means from multiple independent (unrelated) 
groups. However, the selected AD GWAS, GWAX, and 
GWAS+GWAX datasets are not completely independent 
with each other. Therefore we could not provide the over-
all differences among the mean effect sizes across the AD 
GWAS, GWAX, and GWAS+GWAX datasets. Here, we 
provide a combined plot using all shared genetic variants 
to visualize the differences in effect sizes and directions 
across the six datasets.

Results
MR analysis in AD GWAS dataset
We extracted the GWAS summary statistics of 159 edu-
cational attainment genetic variants in the AD GWAS 
dataset, as provided in supplementary Table 2. Using the 
MR-Egger intercept test, we did not identify any signifi-
cant pleiotropic variant. Using MR-PRESSO Global Test, 
we found two genetic variants rs268134 and rs28420834 
to be the pleiotropic variants (Table  2). Hence, we 
excluded both variants in MR analysis. IVW showed that 
each SD increase in years of schooling (about 3.6 years) 
was significantly associated with 29% reduced AD risk 
(OR=0.71, 95% CI: 0.60–0.84, and P=1.02E−04). Inter-
estingly, evidence from weighted median, MR-Egger, and 
MR-PRESSO further supported this finding, as provided 
in Table 3. Meanwhile, all the MR estimates from these 
four methods are consistent in terms of direction.
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MR analysis in AD GWAX datasets
We extracted the GWAS summary statistics of 147 and 
159 educational attainment genetic variants in GWAX 
2018, and GWAX 2021, respectively, as provided in 

supplementary Table 3-4. In GWAX 2018, no pleiotropic 
variant is identified using both the MR-Egger intercept 
test and MR-PRESSO Global Test (Table  2). MR analy-
sis indicated no significant causal association between 
educational attainment and AD, as provided in Table  3. 
However, two methods showed an increased trend of AD 
risk with high educational attainment including IVW 
(OR=1.09, 95% CI: 1.00–1.19, and P=0.051), and MR-
PRESSO (OR=1.09, 95% CI: 1.00–1.20, and P=0.053). 
In GWAX 2021, rs268134 is identified to be a pleiotropic 
variant and then excluded in MR analysis (Table 2). IVW 
highlighted that each SD increase in years of schooling 
could significantly increase 84% AD risk (OR=1.84, 95% 
CI: 1.59–2.13, and P=4.66E−16). The MR estimates from 
weighted median, MR-Egger and MR-PRESSO were con-
sistent with the IVW estimate in terms of direction and 
magnitude (Table 3).

MR analysis in AD GWAS+GWAX datasets
We extracted the GWAS summary statistics of 147, 
155, and 159 educational attainment genetic variants 
in GWAS+GWAX 2018, GWAS+GWAX 2019, and 
GWAS+GWAX 2021, respectively, as provided in sup-
plementary Table  5-7. Only in GWAS+GWAX 2021, 
MR-PRESSO indicated rs268134 to be a pleiotropic 
variant, and then excluded in MR analysis (Table  2). In 
GWAS+GWAX 2018, MR analysis showed no signifi-
cant causal association between educational attainment 
and AD (Table  3). In GWAS+GWAX 2019, we found 
that high educational attainment could reduce the risk 
of AD (Table  3). In GWAS+GWAX 2021, MR analysis 
further supported the increased risk of AD with high 
educational attainment using four MR methods, as pro-
vided in Table 3. IVW showed that each SD increase in 
years of schooling could significantly increase 22% AD 
risk (OR=1.22, 95% CI: 1.08–1.36, and P=1.00E−03). 
The MR estimates from weighted median, MR-Egger and 

Table 2 Pleiotropy analysis in AD GWAS, GWAX, and GWAS+GWAX datasets

The significance threshold is P < 0.05

GWAS genome-wide association studies, GWAX GWAS by proxy, GWAS+GWAX meta-analyses of GWAS and GWAX, MR-PRESSO Mendelian randomization pleiotropy 
residual sum and outlier

GWAS dataset SNP # MR‑Egger intercept MR‑PRESSO

Intercept 95% CI P value P value Pleiotropy variant

GWAS 159 0.01 [− 0.002, 0.023] 0.108 0.0025 rs268134, rs28420834

GWAX 2018 147 0.003 [− 0.002, 0.008] 0.189 0.085 No significant outliers

GWAX 2021 159 − 0.001 [− 0.012, 0.009] 0.809 0.02925 rs268134

GWAS+GWAX 2018 147 0.001 [− 0.004, 0.006] 0.725 0.01375 No significant outliers

GWAS+GWAX 2019 155 0.001 [− 0.001, 0.003] 0.226 0.06875 No significant outliers

GWAS+GWAX 2021 159 0.003 [− 0.006, 0.011] 0.536 0.001 rs268134

Table 3 MR analysis of the association between educational 
attainment and AD

The significance of the association between educational attainment and AD was 
at P < 0.05

CI confidence interval, IVW inverse-variance weighted, MR-PRESSO Mendelian 
randomization pleiotropy residual sum and outlier, GWAS genome-wide 
association studies, GWAX GWAS by proxy, GWAS+GWAX meta-analyses of GWAS 
and GWAX

Dataset Method OR 95% CI P value

GWAS IVW 0.71 0.60–0.84 1.02E−04

Weighted median 0.69 0.54–0.88 2.00E−03

MR‑Egger 0.39 0.19–0.80 1.00E−02

MR‑PRESSO 0.71 0.60–0.84 1.40E−04

GWAX 2018 IVW 1.09 1.00–1.19 5.10E−02

Weighted median 1.01 0.89–1.16 8.62E−01

MR‑Egger 0.93 0.72–1.20 5.83E−01

MR‑PRESSO 1.09 1.00–1.20 5.26E−02

GWAX 2021 IVW 1.84 1.59–2.13 4.66E−16

Weighted median 1.88 1.54–2.30 1.23E−09

MR‑Egger 2.10 1.16–3.79 1.40E−02

MR‑PRESSO 1.84 1.59–2.13 1.22E−13

GWAS+GWAX 2018 IVW 1.00 0.91–1.08 9.10E−01

Weighted median 0.92 0.82–1.04 1.70E−01

MR‑Egger 0.95 0.74–1.23 7.12E−01

MR‑PRESSO 1.00 0.91–1.08 9.10E−01

GWAS+GWAX 2019 IVW 0.96 0.93–0.98 2.00E−03

Weighted median 0.95 0.92–0.99 1.00E−02

MR‑Egger 0.90 0.80–1.00 5.20E−02

MR‑PRESSO 0.96 0.93–0.98 1.82E−03

GWAS+GWAX 2021 IVW 1.22 1.08–1.36 1.00E−03

Weighted median 1.19 1.02–1.39 3.00E−02

MR‑Egger 1.12 0.70–1.79 6.44E−01

MR‑PRESSO 1.22 1.08–1.36 1.11E−03
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MR-PRESSO were consistent with the IVW estimate in 
terms of direction and magnitude (Table 3).

MR analysis in AD GWAS, GWAX, and GWAS+GWAX 
datasets using the same genetic variants
These above MR analyses were based on different edu-
cational attainment genetic variants as the instrumental 
variables in AD GWAS, GWAX, and GWAS+GWAX 
datasets. We further conducted a secondary MR analysis 
using the same educational attainment genetic variants in 
each AD GWAS, GWAX, and GWAS+GWAX datasets. 
Finally, we selected 143 same educational attainment 
genetic variants available across all datasets by excluding 
rs268134 and rs28420834, as both are pleiotropic vari-
ants. Interestingly, the secondary MR analysis supported 
these above findings, as provided in Table 4. Figure 2 is a 
combined plot, which visualizes the differences in effect 
sizes and directions across the six datasets using the 143 
genetic variants.

Heterogeneity test and paired‑samples T test
Using the 143 same educational attainment genetic vari-
ants, we tested the genetic heterogeneity of the Wald 
estimators in AD GWAS and GWAX datasets. Using 
GWAS vs. GWAS 2018 comparison, 47 (33%) and 29 
(20%) of 143 genetic variants showed evidence of hetero-
geneity with I2 > 25% and I2 > 50%, respectively. GWAS vs. 
GWAX 2021 comparison indicated that 57 (40%) and 44 
(30%) of 143 genetic variants showed heterogeneity with 
I2 > 25% and I2 > 50%. paired-samples T test showed that 
the average Wald estimator in GWAS (mean = − 0.39) 
was significantly smaller than the average Wald estima-
tors in GWAX 2018 (mean = 0.13, and P = 2.17E−06) 
and GWAX 2021 (mean = 0.65, and P = 3.16E−14), 
respectively.

Discussion
Until now, MR methods had been widely used to deter-
mine the causal association between AD and previously 
reported risk factors using the AD GWAS, GWAX, or 
GWAS+GWAX summary datasets [16–32]. However, 
the consistency of MR estimates from AD GWAS, 
GWAX, or GWAS+GWAX datasets currently remains 
unclear. Here, we first evaluated the causal association 
of a well-established risk factor educational attainment 
with the risk of AD using large-scale GWAS, GWAX, 
or GWAS+GWAX datasets [16–18, 33]. MR analysis 
in the AD GWAS dataset showed that high educational 
attainment could significantly reduce the risk of AD, 
which is consistent with recent findings [16–18, 33]. 
However, MR analysis indicated no significant causal 
association between educational attainment and AD 
in AD GWAX 2018 dataset, and even showed that high 

educational attainment increased the risk of AD in the 
AD GWAX 2021 dataset. Meanwhile, MR analysis in 
AD GWAS+GWAX datasets suggested the ambiguous 
findings about the causal association between educa-
tional attainment and AD. Hence, all these above find-
ings indicated the inconsistency of MR estimates in AD 
GWAS, GWAX, and GWAS+GWAX datasets.

Interestingly, our findings are consistent with recent 
findings in AD genetic variants. Andrews and col-
leagues recently summarized and discussed 40 AD sus-
ceptibility loci with genome-wide significance, which 
were identified by at least one of the four studies [10], 
including GWAS 2013 [6], GWAS+GWAX 2018 [13], 
GWAS+GWAX 2019 [14], and GWAS 2019 [9]. They 
found that only 15 were replicated across all the four 
studies, and 9 were replicated in two or three studies at 
full genome-wide significance [10].

Table 4 MR analysis of the association between educational 
attainment and AD using the same educational attainment 
genetic variants

The significance of the association between educational attainment and AD was 
at P < 0.05

CI confidence interval, IVW, inverse-variance weighted, MR-PRESSO Mendelian 
randomization pleiotropy residual sum and outlier, GWAS genome-wide 
association studies, GWAX GWAS by proxy, GWAS+GWAX meta-analyses of GWAS 
and GWAX

Dataset Method OR 95% CI P value

GWAS IVW 0.68 0.57–0.81 8.04E−04

Weighted median 0.65 0.51–0.84 1.00E–03

MR‑Egger 0.39 0.19–0.82 1.20E−02

MR‑PRESSO 0.68 0.57–0.81 2.64E−05

GWAX 2018 IVW 1.09 1.00–1.19 5.00E−02

Weighted median 1.01 0.89–1.16 8.67E−01

MR‑Egger 0.92 0.71–1.17 4.88E−01

MR‑PRESSO 1.09 1.00–1.19 5.17E−02

GWAX 2021 IVW 1.88 1.62–2.18 1.14E−16

Weighted median 1.88 1.52–2.32 5.14E−09

MR‑Egger 1.88 1.04–3.39 3.60E−02

MR‑PRESSO 1.88 1.62–2.18 9.03E−14

GWAS+GWAX 2018 IVW 0.99 0.91–1.07 7.87E−01

Weighted median 0.92 0.81–1.04 1.63E−01

MR‑Egger 0.95 0.74–1.22 7.05E−01

MR‑PRESSO 0.99 0.91–1.07 7.87E−01

GWAS+GWAX 2019 IVW 0.96 0.93–0.98 1.00E−03

Weighted median 0.95 0.92–0.99 9.00E−03

MR‑Egger 0.91 0.81–1.01 7.03E−02

MR‑PRESSO 0.96 0.93–0.98 7.63E−04

GWAS+GWAX 2021 IVW 1.21 1.08–1.36 1.00E‑03

Weighted median 1.19 1.01–1.40 3.90E−02

MR‑Egger 1.03 0.65–1.65 8.90E−01

MR‑PRESSO 1.21 1.08–1.36 1.33E−03
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We further test the genetic heterogeneity of educa-
tional attainment genetic variants across the GWAS, 
GWAX, and GWAS+GWAX datasets. Interestingly, 
heterogeneity test indicated evidence of genetic hetero-
geneity across the GWAS, GWAS, and GWAS+GWAX 
datasets. Importantly, GWAS vs. GWAX 2021 compari-
son highlighted the largest number of genetic variants 
with heterogeneity. Hence, the genetic heterogeneity 
may have caused the opposite directions about the causal 
association between educational attainment and AD in 
clinically diagnosed AD and self-report proxy phenotype.

Our findings are consistent with recent hypothesis that 
the phenotypic heterogeneity may cause the genetic het-
erogeneity, and further reduce the statistical power for 
GWAX and GWAS+GWAX [10, 13]. It is known that the 
AD GWAX is based on the self-report AD proxy pheno-
type from UK Biobank participants [10, 13]. GWAX the-
oretically could increase the large-scale sample size into 
traditional AD GWAS, and further improve the statistical 
power [10, 13]. In fact, not all UK Biobank participants 
could discriminate AD from other dementia subtypes, 
and exactly reflect the clinically diagnosed AD status, 
considering the different presentations and genetic archi-
tectures [13]. Hence, the incorrect AD classification 
may reduce the statistical power to detect the true AD 
risk loci, and further influence the loci uncovered using 
GWAX and GWAS+GWAX [13]. This hypothesis may 
explain why only a small fraction of AD susceptibility loci 
could be replicated across the AD GWAS, GWAX, and 

GWAS+GWAX datasets. We think that this hypothesis 
and our findings from heterogeneity test may explain the 
inconsistency of MR estimates in AD GWAS, GWAX, 
and GWAS+GWAX datasets. Meanwhile, the biological 
factors and medical interventions may also have dramati-
cally different effects on different people [43].

Our MR study may have several strengths. First, we 
selected one large-scale educational attainment GWAS 
dataset, and six large-scale AD GWAS, GWAX, or 
GWAS+GWAX datasets, which may provide ample 
power to detect the causal association between edu-
cational attainment and the risk of AD, as reported by 
recent MR studies [16–18, 33]. Importantly, all these 
participants are of European descent, which may fur-
ther reduce the influence from population stratification. 
Third, we selected multiple MR methods and tested the 
pleiotropy. Hence, the MR assumptions did not seem to 
be violated. Fourth, educational attainment is well-estab-
lished AD risk factor, as reported by recent MR studies 
[16–18, 33]. Hence, evaluating the impact of educational 
attainment on AD risk may exactly reflect the consist-
ency of MR estimates from AD GWAS, GWAX, or 
GWAS+GWAX datasets.

Limitations
Our MR study may have some limitations. First, we only 
selected one AD risk factor educational attainment to 
evaluate the consistency of MR estimates across AD 
GWAS, GWAX, or GWAS+GWAX datasets. In fact, 

Fig. 2 A combined plot visualizing the differences in effect sizes and directions across the six datasets using the 143 genetic variants. GWAS, 
genome‑wide association studies; GWAX, GWAS by proxy; GWAS+GWAX, meta‑analyses of GWAS and GWAX
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several risk factors have been identified to be causally 
associated with AD risk [23, 26, 27, 44–52]. Hence, our 
findings should be further verified using other well-estab-
lished AD risk factors. Second, the educational attain-
ment of GWAS is based on the meta-analysis of SSGAC 
(293,723 individuals) and UK Biobank (111,349) [34]. 
Hence, the educational attainment GWAS dataset and 
GWAX, or GWAS+GWAX may have the overlapped 
individuals, and may not be independent. Hence, our MR 
findings from GWAX, and GWAS+GWAX should be 
further evaluated using independent datasets.

Conclusions
In summary, our MR analysis highlighted the difference 
and genetic heterogeneity in clinically diagnosed AD and 
self-report proxy phenotype using large-scale AD GWAS, 
GWAX, and GWAS+GWAX summary datasets. Hence, 
the GWAX and GWAS+GWAX findings and MR find-
ings from GWAX and GWAS+GWAX should be care-
fully interpreted and warrant further investigation using 
the AD GWAS dataset.
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