
© The Author(s) 2019. Published by Oxford University Press. Page 1 of 9
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

Database, 2019, 1–9

doi: 10.1093/database/baz088
Original article

Original article

An effective biomedical data migration tool

from resource description framework to JSON

Jian Liu1,*, Mo Yang1, Lei Zhang2 and Weijun Zhou 3,*

1School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China,
2Zhejiang University of Science and Technology, 310023, Hangzhou, China and 3Department of Hema-
tology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China

*Corresponding author. Tel: +86-18686896700; Email: jianliu@hit.edu.cn

Citation details: Liu,J., Yang,M., Zhang,L. et al. An effective biomedical data migration tool from resource description
framework to JSON. Database (2019) Vol. 2019: article ID baz088; doi:10.1093/database/baz088

Received 21 March 2019; Revised 6 June 2019; Accepted 9 June 2019

Abstract

Resource Description Framework (RDF) is widely used for representing biomedical data

in practical applications. With the increases of RDF-based applications, there is an

emerging requirement of novel architectures to provide effective supports for the future

RDF data explosion. Inspired by the success of the new designs in National Center for

Biotechnology Information dbSNP (The Single Nucleotide Polymorphism Database) for

managing the increasing data volumes using JSON (JavaScript Object Notation), in this

paper we present an effective mapping tool that allows data migrations from RDF to

JSON for supporting future massive data explosions and releases. We firstly introduce

a set of mapping rules, which transform an RDF format into the JSON format, and

then present the corresponding transformation algorithm. On this basis, we develop an

effective and user-friendly tool called RDF2JSON, which enables automating the process

of RDF data extractions and the corresponding JSON data generations.

Database URL: https://github.com/lyotvincent/rdf2json

Introduction

With the increasing adoption of semantic web technologies
(22–25) and formalisms in biomedical and biomolecular
areas, many popular database applications (such as Uniprot
(36), Ensembl (9), BioModels (19), etc.) provide accessible
data represented in a Resource Description Framework
(RDF) format (10, 13, 27). As the World Wide Web Consor-
tium (W3C) recommended standard, the graph-based RDF
model is well suitable for explicitly publishing life science
data and linking the diverse data resources (5, 7, 11, 28).

For instance, the RDF model is chosen in GlycoRDF (32)
for the glycomics-based data resource integration and repre-
sentation. In (31), by using the RDF model, the DisGeNET
platform interconnects multiple gene-disease associations
and pharmacological data sources obtained from several
drug discovery applications for helping us study molecular
mechanisms underpinning human diseases. To effectively
publish the cross-reference information about diseases and
abnormal states extracted from disease ontology and abnor-
mality ontology, Disease Compass (17) linked the causal
chains of diseases by using the RDF model.

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
http://orcid.org/0000-0002-0137-7382
https://github.com/lyotvincent/rdf2json


Page 2 of 9 Database, Vol. 2019, Article ID baz088

The emergence of numerous RDF-based applications
lead to the generation of massive RDF data resources,
which naturally attracts the interest of seeking for novel
architectures and providing supports for the future RDF
data explosion (2). In recent years, JSON (JavaScript Object
Notation) becomes a popular format for representing and
publishing massive data resources over the web application
(8, 16, 18, 35, 38). JSON documents could be used to
store records in MongoDB database (3), which is a cross-
platform and support distributed processing of data sets
with a large size. Previous attempts (4, 14) partitions RDF
data graph into several subgraphs by duplicating no-literal
nodes, and then organizes these partitioning subgraphs in
MongoDB. This partitioning approach duplicates no-literal
nodes twice and costs some extra storage space.

JSON has been accepted as a major format for the
future data explosion in National Center for Biotechnology
Information dbSNP (34). Now the architecture of dbSNP
is redesigned to provide products by using JSON files,
which suit for the programmatic approaches well and could
effectively provide supports for the increasing volume of
data. Orphanet (26) chooses JSON as a new data format
for the mission providing the scientific community with
freely available data sets related to rare diseases and orphan
drugs in a reusable format. As a completely language-
independent format, JSON has a higher compression ratio
in coding, and this property makes it take up less space
(30). This property also makes JSON become a popular
format for data interchange on the web (15, 20, 21, 39).
Therefore, many web-based services, such as Semantic-
JSON (16), Open chemistry (12), etc., choose JSON as
the data representation formats. In order to provide access
to the linked life science database, Semantic-JSON (16)
develops an interface using a representational state transfer
(REST) web service to the retrieval of the Semantic Web
data in JSON formats. Open chemistry (12) develops a
web application by providing access to the open source
chemical science data in JSON formats. It facilitates data
exchanges across different languages, and makes it easy to
send the chemical science data to the web client developed
in JavaScript. Moreover, the Ensembl (39) provides a web
service to retrieves its data through the REST service, and
JSON is chosen as its main endpoint data exchange format.

The adoption of a new data format will trigger the
requirement of data migrations from the historical format
to the new one (33). There have been some mapping tools
that allow data migrations in previous works, e.g. Bio2RDF
(6) and VCF2RDF (29), etc. Bio2RDF creates a knowl-
edge space based on RDF documents by converting public
bioinformatics databases into RDF documents and linking
them together with normalized URIs (Uniform Resource
Identifiers) in a standardized way. VCF2RDF presents the

isomorphic mapping between VCF and RDF to make porta-
bility and interoperability of the self-contained description
of the genomic variation in next-generation sequencing
results. Unfortunately, although JSON has been employed
to model future data explosion, and the available data size
of RDF sources is rapidly increasing, relatively little work
focuses on the data migrations from RDF to JSON (1, 37).
In particular, in the new era of big data, the studies on the
mapping rules and an effective mapping tool from RDF
to JSON for biomedical users without programming skills
obviously lag behind.

Currently, developing an effective mapping technique
deal with data migrations from the RDF model to the JSON
model in a uniform way is still an open problem. In order
to solve this problem, in this paper we present an effective
mapping tool that allows data migrations from RDF to
JSON for supporting future massive data explosion. After
giving a set of mapping rules which transform the RDF
format into the JSON format, the corresponding transfor-
mation algorithm from RDF to JSON is presented. On this
basis, we develop a user-friendly tool called RDF2JSON,
which enables automating the process of the RDF data
extraction and the corresponding JSON data generation.
Finally, experimental evaluations are carried out to verify
the advantages of the proposed tool by using real-world
data sets.

Materials and methods

In this section, we firstly give the RDF graph model pars-
ing process, and then introduce the mapping rules. Based
on these mapping rules to transform, the corresponding
data migration algorithm is developed. The implementation
details about the mapping tool RDF2JSON is given in the
end of this section.

RDF graph parsing

RDF is based on the triples consisting of resources, prop-
erties and values. A resource is an entity accessible by an
URI, a property defines a binary relation between resources
or literals and a value is a literal or a resource. RDF Schema
(RDFS) (27) provides a data modeling vocabulary and
syntax to RDF descriptions. RDFS allows the definitions of
the class and the property, respectively, which have global
effects. It is flexible to add new properties to existing
classes. In the following, a fragment of an RDF schema
about computational models of biological processes is given
in Figure 1.

In Figure 1, there are some classes such as ‘SBMLEle-
ment’, ‘SpeciesReference’ and ‘KineticLaw’, and some
properties such as ‘sbmlElement’ and ‘kineticLaw’. Since



Database, Vol. 2019, Article ID baz088 Page 3 of 9

Figure 1. A fragment of an RDF schema.

classes and properties can be refined in subclasses and
subproperties, there is a hierarchy of classes and a hierarchy
of properties existing in RDFS. For example, the tag
‘rdfs:subClassOf’ represents that the class ‘KineticLaw’
is a subclass of the class ‘SBMLElement’, and the tag
‘rdfs:subPropertyOf’ depicts that the property ‘kineticLaw’
is a subproperty of the property ‘sbmlElement’. In the
domain and range mechanisms of RDFS, a property is
defined according to a domain and has an associated range
that can be a literal or a class, which build the relations
among classes and properties. For example, the property
‘kineticLaw’ is limited by the property ‘domain’ and the
property ‘range’, which means that the types of values are
instances of the class ‘KineticLaw’ and the class to which
the property ascribes to is ‘Reaction’.

An RDF statement consists of a subject, a predicate and
an object, in which the subject is a class and the object
is a class or a literal, the predicate is a property. Since
a hierarchy of classes and a hierarchy of properties are
built by RDFS using the vocabulary in the RDF statements,
we can take advantage of this hierarchy to construct an
RDF graph model for data extractions. Figure 2 shows the
constructed graph model of the RDF schema above based
on the hierarchy relationships of classes and properties. In

particular, in this graph model, vertices depict the classes
and literals, and edges represent properties.

Mapping rules from RDF to JSON

This section will introduce the mapping rules from RDF
to JSON. The details of the mapping rules are shown as
follows.
RULE 1 For the root element (depicted as rdf: RDF) in
the RDF document, the namespaces are transformed in the
following format:

“namespaces”: {prefix: namespace, . . .},
where the prefix is to refer to the RDF namespace, and the
namespace is identified by the URI.
RULE 2 For the basic RDF description, the key is the
property. The value of the property is divided into two
categories to describe:

(a) Literal type: The value object includes value and
datatype. If the language property of the property
value is specified, the language attribute (lang) is also
included.

(b) URIRef type: The value object includes ‘rdf:resource’,
which is called by all things described by RDF.

RULE 3 For the value of the property being a blank
node identifier, all the triples, in which the identifier is
the resource, are extracted from the model. And these
triples are processed recursively according to the basic RDF
description.

In the case where the value of a property is a set of values,
the W3C recommendation defines container such as bags,
sequences and alternatives in order to hold such values. The
parsing rules are following:
RULE 4 For a set of values, the following elements under
the child relation are mapped into key-value pairs, in which
the key is the ordinal attribute and the value is the value of
the element. The type of the container is retained.

For describing a group containing only the specified
members and complying with the grammar rules of the
triple, the elements are nested according to the order of
elements.
RULE 5 For a group of the specified elements, the nested
structure is parsed to generate a list of key-value pairs and
the type information is retained.
RULE 6 For the hierarchy relation of classes, the key-value
pair, in which the key is the property name of subclass and
the value is the URI of superclass, is put under the resource
JSON object.

Figure 3 shows a schematic diagram for the process of
hierarchy relation of the class, in which C1 and C2 are class
instances. The solid line with label represents that C1 is a



Page 4 of 9 Database, Vol. 2019, Article ID baz088

Figure 2. The partial graph model based on the given instance of RDFS.

Figure 3. A mapping example of the hierarchy relation of classes.

Figure 4. A mapping example of the hierarchy relation of properties.

subclass of C2. The relation is extracted from the triple set
of the description about C1. The relation is transformed
into a pair of key and value, which is put under the JSON
object of C1.
RULE 7 For the hierarchy relation of properties, the key-
value pair, in which the key is the property name of the
subproperty and the value is the URI of super property, is
put under the resource JSON object.

Figure 4 shows a schematic diagram for the process of
hierarchy relation of property. The solid line with label
represents that P1 is a subproperty of P2, and P1 and P2 are
property instances. The relation is extracted from the triple
set of the description about P1. The relation is transformed
into a pair of key and value, which is put under the JSON
object of P1.
RULE 8 For the domain and range of a property, two key-
value pairs, in which the keys are the names of properties
and the values are the value of the property, are put under
the property JSON object.

Figure 5 shows a schematic diagram for the process of
the domain and range of a property. C1 and C2 are class

Figure 5. A mapping example of the domain and the range of properties.

instances defining the resources denoted by the subjects and
objects of the triples whose predicate is P. The relation is
extracted from the triple set of the description about P. The
relations are transformed into two pairs of key and value,
which are put under the JSON object of P.
RULE 9 For repetitive properties of the same resource, the
values are merged into an array.
RULE 10 For the property that does not contain a specific
value, a blank string is used to describe the value.

Figure 6 shows an example that illustrates the mapping
between RDF and JSON. For simplicity, only two represen-
tative instances are shown in the figure. The property ‘sbml-
Rdf:kineticLaw’ is defined with domain property ‘sbml-
Rdf:Reaction’ and range property ‘sbmlRdf:KineticLaw’
and has a superproperty ‘sbmlRdf:sbmlElement’. Accord-
ing to rules 7 and 8, these properties could be mapped
into the JSON object of the property ‘sbmlRdf:kineticLaw’,
which has been defined by the base descriptions of the
property ‘sbmlRdf:kineticLaw’ according to rules 2 and 3.
Similarly, the class ‘sbmlRdf:SBMLElement’ has a super-
class ‘sbmlRdf:Element’, and the hierarchical relationship
could be mapped into the JSON object of the class ‘sbml-
Rdf:SBMLElement’ according to rule 6.

Figure 7 gives the data migration process based on the
above mapping rules (Algorithm 1). First, we use RDFLib to



Database, Vol. 2019, Article ID baz088 Page 5 of 9

Figure 6. A mapping instance from RDF to JSON.

Figure 7. The mapping algorithm.

parse the RDF file into a graph model. RDFLib is a python
library for working with RDF, a simple yet powerful lan-
guage for representing information. Then, the namespaces
used to abbreviate the URI are extracted from the model
into the root object by the rule1. In the main loop (4–28),

all the resources contained in the model are processed step
by step. And the properties associated with each resource
are extracted to form the next layer of the loop (9–28). In
the inner loop, we map the properties according to rules 2
to 7. Finally, the root object is mapped to the JSON file.
Since the algorithm mainly consists of two layers of loop,
the time complexity is O(n2).

RDF2JSON framework and implementation

Figure 8 shows that the RDF2JSON application is designed
and implemented on the basis of client–server architecture
with the intention of utilizing and separating each mod-
ule into independent pieces. The server-side component is
implemented by Python (version 3.6) providing access to
using several libraries such as zerorpc and rdflib. Zerorpc
(version 0.9.7) is a flexible remote procedure call implemen-
tation, which serves as a known remote server to execute
a specified procedure with supplied parameters. The pre-
processing of the data conversion uses the rdflib library to
parse the input file to get RDF statements before applying
the mapping rules. To write the transformed data into the
output file we use JSON module in Python. The returned
data is saved under the same path of the source.

The client-side component handles interaction with user,
which is mainly implemented in electron (version 6.0.0),
an open-source framework for creating native applications
with web technologies such as JavaScript, HTML5 and
CSS. The page architecture, design and functionality use
the Bootstrap framework together with several jQuery (ver-
sion 3.x) plugin to enhance user interactivity. To improve



Page 6 of 9 Database, Vol. 2019, Article ID baz088

Figure 8. The framework of RDF2JSON.

user friendliness, a common display layout is adopted and
maintained between application functions. The file upload
area is located on the right side of the page. As a desktop
application, it allows a cross-platform compatibility among
the most used operating systems (Windows 7 or above) and
Linux (version 16.04).

Load JSON file into MongoDB

MongoDB could use the transformed JSON files to store
massive records obtained from RDF files. The mongoim-
port tool is provided for importing the JSON file into
MongoDB; the system command line is as follows:

mongoimport –d < database> –c <collection> –file
<filename>,where “–d” specifies the name of the database,
“–c” specifies the collection to import and “–file” specifies
the location and name of a file containing the data to
import. Note that the field names of the document cannot
contain “.” or null, and cannot start with “$” for the system
reference. Thus, if these characters appear in the document
fields, they need to be replaced with other specific character
such as Unicode characters.

After storing the RDF records in MongoDB, the basic
MongoDB query mechanism could be used for searching
the desired results. In particular, a ‘find’ function, which
receives two parameters in JSON documents, ‘query’ and
‘projection’, and returns a cursor to the matching docu-
ments, could be used for the searches. The goal of ‘query’ is
to specify the conditions that determine which documents
to select, in which the <field>:<value> expressions is
used to specify the equality conditions and query operator
expressions. The ‘projection’ is used to specify the fields
to return in the documents. The MongoDB query also
provides aggregation pipeline methods called ‘aggregate’ to
process a series of documents (such as COUNT, GROUP,
SORT, LIMIT, SKIP, etc.) to provide aggregate computa-
tions. Besides, the expression operators can be used to

construct the query expressions such as arithmetic expres-
sion operators, boolean expression operators, etc.

Results

In order to test the performance of RDF2JSON, two real-
world data sets UniprotKB and BioModels containing RDF
data sources are chosen in our experiments. UniProtKB is
a comprehensive resource for protein sequence and anno-
tation data. BioModels is a repository of computational
models of biological processes. All the experiments are
running on the Ubuntu 18.04 LTS 64-bit operating platform
with the following system features: Intel® core i5-8500 CPU
@3.00GHz×6 and 32GB main memory. The approaches
are programmed in Python 3.6.

Table 1 gives the results of the experiment running on
the UniprotKB data set. From Table 1, we observe that, for
the experimental data set, JSON provides a compression
storage and the compression rate for the tested data is
about 40%. The best compression happens in R1 with
the rate of 46% (the size of using RDF is 8.75 MB and
the size of using JSON is 4.64 MB). As the RDF is an
extension of XML and it is a complete markup language,
it uses redundant tags for the content descriptions, which
may result in redundant storage. JSON organizes data as
an ordered list of ‘name/value’ pairs, which reduces the
redundant tags.

Figure 9 illustrates the results of the experiments running
on the BioModels data set. In Figure 9, similar to the exper-
imental results obtained in the UniprotKB data set above, a
consistent result is observed and the average compression
rate is about 14%. We also investigate the scalability of
RDF2JSON, by varying number of the input RDF files.
Figure 10 reports the running times when the size of input
RDF files increase. From the figure, we can see that the
running time will increase when the input files increase, and
it approximates linear growth.



Database, Vol. 2019, Article ID baz088 Page 7 of 9

Table 1. Experimental results running on UniprotKB

File name The numbers of subjects RDF size (MB) JSON size (MB)

R1 uniprotkb_eukaryota_oxymonadida_66288.rdf 11 662 8.75 4.64
R2 uniprotkb_eukaryota_glaucocystophyceae_38254.rdf 35 767 23.41 13.71
R3 uniprotkb_eukaryota_alveolata_33630_1000000.rdf 763 169 541.61 310.40
R4 uniprotkb_eukaryota_rhizaria_543769.rdf 1 973 509 1307.53 785.36
R5 uniprotkb_eukaryota_parabasalia_5719.rdf 2 424 903 1571.67 950.61
R6 uniprotkb_eukaryota_rhodophyta_2763.rdf 4 031 384 2678.03 1583.91
R7 uniprotkb_eukaryota_opisthokonta_fungi_4751_8000000.rdf 4 448 979 3173.19 1815.40

Figure 9. Occupied storage comparisons.

Figure 10. Running times by varying the input size.

Discussion

With the emergence of rapidly increasing size of RDF data
sources, there is an urgent need of a novel infrastructure
to provide effective supports for future data explosion.

In this paper, we deal with the RDF data explosion
issue by introducing the JSON model, and show the
benefits of using JSON. After parsing the RDF schema,
we present a set of mapping rules, which transforms an



Page 8 of 9 Database, Vol. 2019, Article ID baz088

RDF schema into the JSON schema, and then propose
an effective and specified algorithm to complete data
migrations from RDF to JSON. We complement the work
with a user-friendly and cross-platform tool RDF2JSON
to help users without programming skills. Through
the final experiment results, we also demonstrate the
performance and advantages of RDF2JSON by using
the real-world Uniprot and BioModels data sets. In the
future work, we plan to integrate efficient query processing
and optimization approach by using Spark/MapReduce,
which has promising processing performance over massive
data.

Acknowledgements

We gratefully acknowledge Jiao Chen for the helpful comments and
suggestions.

Funding
National Key R&D Program of China (2017YFC1200200,
2017YFC1200205, 2018YFC1603800, 2018YFC1603802); National
Natural Science Foundation of China (61602130, 61872115), China
Postdoctoral Science Foundation funded project (2015M581449,
2016T90294); Heilongjiang Postdoctoral Fund (LBH-Z14089);
Natural Science Foundation of Heilongjiang Province of China
(QC2015067); Fundamental Research Funds for the Central
Universities (HIT.NSRIF.2017036).

Conflict of interest. None declared.

References

1. Alexander,K. (2008) RDF in JSON: a specification for serialising
RDF in JSON. In Proceedings of the 4th International Workshop
on Scripting for the Semantic Web, Semantic Technology Insti-
tutes International, Tenerife, Spain, 1–6.

2. Antezana,E., Kuiper,M. and Mironov,V. (2009) Biological
knowledge management: the emerging role of the Semantic Web
technologies. Brief. Bioinform., 10, 392–407.

3. Aswamenakul,C., Buranarach,M. and Saikaew,K.R. (2014) A
Review and Design of Framework for Storing and Querying
RDF Data Using NoSQL Database. In the 4th Joint Interna-
tional Semantic Technology Conference, Springer. Chiang Mai,
Thailand, pp. 144–147.

4. Banane,M., Belangour,A. and El Houssine,L. (2017) Storing
RDF data into big data NoSQL databases. In: First International
Conference on Real Time Intelligent Systems. Springer, Cham,
pp. 69–78.

5. Beckett,D. and McBride,B. (2004) RDF/XML syntax specifi-
cation (revised). Technical report In: W3C Recommendation,
10(2.3) https://www.w3.org/TR/REC-rdf-syntax/.

6. Belleau,F., Nolin,M.A., Tourigny,N. et al. (2008) Bio2RDF:
towards a mashup to build bioinformatics knowledge systems.
J. Biomed. Inform., 41, 706–716.

7. Chiba,H. and Uchiyama,I. (2017) SPANG: a SPARQL client
supporting generation and reuse of queries for distributed RDF
databases. BMC Bioinform., 18, 93.

8. Fabregat,A., Sidiropoulos,K., Viteri,G. et al. (2017) Reactome
diagram viewer: data structures and strategies to boost perfor-
mance. Bioinformatics, 34, 1208–1214.

9. Flicek,P., Amode,M.R., Barrell,D. et al. (2013) Ensembl 2014.
Nucleic Acids Res., 42, D749–D755.

10. García Godoy,M.J., López-Camacho,E., Navas-Delgado,I.
et al. (2013) Sharing and executing linked data queries
in a collaborative environment. Bioinformatics, 29,
1663–1670.

11. Gray,A.J., Groth,P., Loizou,A. et al. (2014) Applying linked
data approaches to pharmacology: architectural decisions and
implementation. Semant. Web, 5, 101–113.

12. Hanwell,M.D., de Jong,W.A. and Harris,C.J. (2017) Open chem-
istry: RESTful web APIs, JSON, NWChem and the modern web
application. J. Cheminform., 9, 55.

13. Jupp,S., Malone,J., Bolleman,J. et al. (2014) The EBI RDF plat-
form: linked open data for the life sciences. Bioinformatics, 30,
1338–1339.

14. Kalogeros,E., Gergatsoulis,M. and Damigos,M. (2018) Docu-
ment based RDF storage method for efficient parallel query
processing. In: Research Conference on Metadata and Semantics
Research. Springer, Cham, pp. 13–25.

15. Kersey,P.J., Allen,J.E., Allot,A. et al. (2017) Ensembl Genomes
2018: an integrated omics infrastructure for non-vertebrate
species. Nucleic Acids Res., 46, D802–D808.

16. Kobayashi,N., Ishii,M., Takahashi,S. et al. (2011) Semantic-
JSON: a lightweight web service interface for Semantic Web
contents integrating multiple life science databases. Nucleic
Acids Res., 39, W533–W540.

17. Kozaki,K., Yamagata,Y., Mizoguchi,R. et al. (2017) Disease
Compass—a navigation system for disease knowledge based on
ontology and linked data techniques. J. Biomed. Semantics, 8,
22.

18. Laird,M.R., Langille,M.G. and Brinkman,F.S. (2015)
GenomeD3Plot: a library for rich, interactive visualizations
of genomic data in web applications. Bioinformatics, 31,
3348–3349.

19. Li,C., Donizelli,M., Rodriguez,N. et al. (2010) BioModels
Database: an enhanced, curated and annotated resource for
published quantitative kinetic models. BMC Syst. Biol., 4,
92.

20. Li,Y., Katsipoulakis,N.R., Chandramouli,B. et al. (2017) Mison:
a fast JSON parser for data analytics. Proc. VLDB Endowment,
10, 1118–1129.

21. Lisena,P. and Troncy,R. (2018) Transforming the JSON Output
of SPARQL Queries for Linked Data Clients. In: Companion of
the The Web Conference 2018 on The Web Conference 2018.
International World Wide Web Conferences Steering Commit-
tee, Lyon, France. pp. 775–780.

22. Liu,J. and Yan,D.L. (2016) Answering approximate queries over
XML data. IEEE Trans. Fuzzy Syst., 24, 288–305.

23. Liu,J. and Zhang,X.X. (2017) Efficient keyword search in fuzzy
XML. Fuzzy Sets Syst., 317, 68–87.

24. Liu,J., Zhang,X.X. and Zhang,L. (2017) Tree pattern matching
in heterogeneous fuzzy XML databases. Knowl. Based Syst.,
122, 119–130.

25. Liu,J., Liu,Q., Zhang,L. et al. (2019) Enabling massive XML-
based biological data management in HBase. IEEE/ACM Trans

https://www.w3.org/TR/REC-rdf-syntax/


Database, Vol. 2019, Article ID baz088 Page 9 of 9

Comput. Biol. Bioinform., doi: 10.1109/TCBB.2019.2915811,
in press.

26. Maiella,S., Rath,A., Angin,C. et al. (2013) Orphanet and its
consortium: where to find expert-validated information on rare
diseases. Rev. Neurol., 169, S3–S8.

27. McBride,B. (2004) The resource description framework (RDF)
and its vocabulary description language RDFS. In: Handbook
on Ontologies. Springer, Berlin, Heidelberg, pp. 51–65.

28. Otegui,J. and Guralnick,R.P. (2016) The geospatial data quality
REST API for primary biodiversity data. Bioinformatics, 32,
1755–1757.

29. Penha,E.D.S., Iriabho,E., Dussaq,A. et al. (2016) Isomorphic
semantic mapping of variant call format (VCF2RDF). Bioinfor-
matics, 33, 547–548.

30. Pezoa,F., Reutter,J.L., Suarez,F. et al. (2016) Foundations of
JSON schema. In: Proceedings of the 25th International Con-
ference on World Wide Web. International World Wide Web
Conferences Steering Committee, Montréal, Québec, Canada,
pp. 263–273.

31. Queralt-Rosinach,N., Pinero,J., Bravo,À. et al. (2016)
DisGeNET-RDF: harnessing the innovative power of the
Semantic Web to explore the genetic basis of diseases.
Bioinformatics, 32, 2236–2238.

32. Ranzinger,R., Aoki-Kinoshita,K.F., Campbell,M.P. et al. (2014)
GlycoRDF: an ontology to standardize glycomics data in RDF.
Bioinformatics, 31, 919–925.

33. Rigden,D.J. and Fernández,X.M. (2017) The 2018 Nucleic
Acids Research database issue and the online molecular biology
database collection. Nucleic Acids Res., 46, D1–D7.

34. Sherry,S.T., Ward,M.H., Kholodov,M. et al. (2001) dbSNP: the
NCBI database of genetic variation. Nucleic Acids Res., 29,
308–311.

35. Smelter,A., Astra,M. and Moseley,H.N. (2017) A fast and effi-
cient python library for interfacing with the Biological Magnetic
Resonance Data Bank. BMC Bioinformatics, 18, 175.

36. UniProt Consortium (2014) UniProt: a hub for protein informa-
tion. Nucleic Acids Res., 43, D204–D212.

37. World Wide Web Consortium. (2014) JSON-LD 1.0: a JSON-
based serialization for linked data, https://www.w3.org/TR/
2014/REC-json-ld-20140116/.

38. Xin,J., Afrasiabi,C., Lelong,S. et al. (2018) Cross-linking Bio-
Things APIs through JSON-LD to facilitate knowledge explo-
ration. BMC Bioinformatics, 19, 30.

39. Yates,A., Beal,K., Keenan,S. et al. (2014) The Ensembl REST
API: Ensembl data for any language. Bioinformatics, 31,
143–145.

10.1109/TCBB.2019.2915811
https://www.w3.org/TR/2014/REC-json-ld-20140116/
https://www.w3.org/TR/2014/REC-json-ld-20140116/

	An effective biomedical data migration tool from resource description framework to JSON
	Introduction 
	Materials and methods
	RDF graph parsing
	Mapping rules from RDF to JSON
	RDF2JSON framework and implementation
	Load JSON file into MongoDB

	Results
	Discussion 
	Funding


