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Immunotherapy has revolutionized lung cancer treatment in the past decade. By
reactivating the host’s immune system, immunotherapy significantly prolongs survival
in some advanced lung cancer patients. However, resistance to immunotherapy is
frequent, which manifests as a lack of initial response or clinical benefit to therapy
(primary resistance) or tumor progression after the initial period of response (acquired
resistance). Overcoming immunotherapy resistance is challenging owing to the complex
and dynamic interplay among malignant cells and the defense system. This review aims
to discuss the mechanisms that drive immunotherapy resistance and the innovative
strategies implemented to overcome it in lung cancer.
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INTRODUCTION

The discovery of the immune checkpoint inhibitors (ICIs), represented by the monoclonal
antibodies that block cytotoxic T−lymphocyte−associated protein 4 (CTLA-4), programmed
death protein 1 (PD-1), and programmed death protein ligand 1 (PD-L1), has revolutionized
the therapeutic landscape of lung cancer. The significant survival benefit derived from ICI-
containing treatment has established it as the mainstay first-line therapy in patients with advanced
or locally advanced non-small cell lung cancer (NSCLC) and extensive small-cell lung cancer
(SCLC). Unprecedented long-term clinical benefit or even, in some cases, a complete recovery has
been witnessed in lung cancer, particularly in patients with high PD-L1-expressing tumors (1–3).
Currently, investigations are under way aimed at integrating immunotherapy in the treatment of
early-stage lung cancer.

However, most patients with NSCLC develop primary resistance during ICI monotherapy and
only 15 to 20% achieve partial or complete response (3). Acquired resistance also occurs in initially
responding patients with advanced NSCLC treated with ICIs, after a median progression-free
survival (PFS) of 4–10 months (4–9). The mechanisms of resistance to immunotherapy are not
yet fully understood, and methods to overcome them must be developed. Herein, we discuss the
pathways driving resistance to immunotherapy in lung cancer to help clinicians in their current
practice, as well as identify future research priorities and treatment strategies.

DIFFERENT SCHEMAS OF RESISTANCE TO IMMUNOTHERAPY

Unlike molecular targeted therapy and chemotherapy targeting tumor cells, immunotherapy targets
the immune system of the host by mobilizing the immune cells to recognize and eventually
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eliminate tumor cells. This mechanism of action determines the
complexity of the resistance mechanisms in immunotherapy.
Different mechanisms of immunotherapy resistance are listed
in Table 1.

In accordance with the timing of development, resistance
can be considered as either primary, when no initial response
or clinical benefit to the therapy is observed, or acquired, as
disease progression occurs after an initial period of clinical benefit
(10). Clinically, 6-month treatment duration is adopted as a
cutoff value (11). This classification schema correlates with real-
time observations by clinicians and contributes to the clinical
decision-making process in the absence of other information
such as immune characteristics and tumor genetics.

Resistance is additionally classified as intrinsic or extrinsic
to cancer cells. The former occurs in the tumor cell itself
and encompasses the inherent characteristics related to gene
expression, cell signaling, immune recognition, and DNA damage
response, whereas the latter is seen in the microenvironment
or systemic circulation throughout the T-cell bioactivation
process (12, 13).

The cancer−immunity cycle is linked to immunotherapy
resistance in another related schema (14). This classification
divides resistance from an immunological perspective into
immune desert (tumor fails to evoke an immune reaction),
immune inflamed (tumor inhibits immune activities
notwithstanding abundant immune cells infiltration), or
excluded (tumor prevents immune cells infiltration in spite of
adequate immunogenicity) (13).

It is noteworthy that the immune response is a continuous
and dynamic process rather than categorical (binary). Multiple
complex interactions, including immunologic, genomic, and
host characteristics and treatment interventions, rather than a
single, dominant determinant are involved in the resistance to
immunotherapy. The fs can be overlapping or parallel in some
cases despite the different timing of occurrence (11).

TABLE 1 | Different schemas of resistance to immunotherapy.

Schemas Classifications Description

Temporal
perspective

Primary Lack of initial response or
clinical benefit to therapy

Acquired Disease progression after
an initial period
(6 months) of clinical
benefit

Spatial perspective Intrinsic Tumor-related resistance

Extrinsic Factors involved in
microenvironment or
tumor-immunity cycle

Immunological
perspective

Immune inflamed Tumor inhibits immune
activities notwithstanding
abundant immune cells
infiltration

Immune desert Tumor fails to evoke an
immunoreaction

Immune excluded Tumor prevents immune
cells infiltration in spite of
adequate immunogenicity

RESISTANCE MECHANISMS TO
IMMUNOTHERAPY

Underlying mechanisms of primary resistance span an extensive
range from tumor factors including genomic features,
transcriptomic signatures, and immune landscape, to host
factors. The potential mechanisms of acquired resistance at
least partly overlap with those involved in primary resistance
and mainly include loss of neoantigen and deficiency in
presentation, loss of T-cell effector function, and up-regulation
of alternate immune checkpoint receptors (10). Here, we
will discuss the mechanisms of resistance to immunotherapy
from tumor aspects (intrinsic and extrinsic mechanisms) and
host-related characteristics in order to avoid confusion and
repetition (Figure 1).

Tumor Cell-Intrinsic Mechanisms
Genomic Features
Low tumor mutation burden and neoantigen load
Tumor-specific antigens are the key to activate T cells
to recognize tumor as foreign, which is the first step of
tumor-induced adaptive immune responses and immune-
mediated tumor killing (15). These neoantigens, interestingly,
are derived from somatic mutations and contain new epitopes,
and subsequently lead to tumor immunogenicity. Preclinical
and clinical studies have revealed that the response of
neoantigen-specific effector T cell (Teff) paralleled tumor
shrinkage (16–20).

With the improvement of sequencing techniques, it was
found that nonsynonymous mutations can generate neoantigens
that trigger cytotoxic responses against tumors (21, 22).
Nonsynonymous mutation burden, rather than total mutation
burden of exons, was demonstrated to be more closely associated
with the clinical advantage of anti-PD-1 treatment, validating
the importance of neoantigens in dictating response (23). Tumor
mutation burden (TMB) is calculated as the total number of
nonsynonymous mutations per DNA Megabase (Mb) (21, 24,
25). Low TMB, or low numbers of clonal neoantigens, presenting
reduced tumor immunogenicity, is considered as a primary
resistance marker to immunotherapy (15, 26).

Clinically, low TMB or neoantigen load has correlated
with inferior response and poor PFS to monotherapy of
anti−PD1/PD-L1 antibodies in NSCLC (25, 27–30). However, it
fails to predict the clinical outcomes, in regard to overall survival
(OS) and combination regimens (31, 32). The influence on the OS
by subsequent treatments and the additional complexities to the
study of immunotherapy resistance added by combinations may
partly explain these controversial findings. Recently, a corrected
TMB (cTMB) approach based on the adjustment of tumor
purity was developed by Anagnostou and colleagues, which was
identified on abundant tumor samples mined from The Cancer
Genome Atlas (TCGA) and then confirmed in a patient cohort
received ICIs therapy. This cTMB more accurately predicted
the outcomes of immunotherapy, suggesting that the TMB in
samples with low tumor purity was mistakenly underestimated,
which was especially important for metastatic NSCLC, because
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FIGURE 1 | Mechanisms of resistance to immunotherapy. (A) Tumor intrinsic mechanisms that are associated with resistance to immunotherapy include lack of
tumor immunogenicity (low TMB, heterogenous antigens, mutation of certain genes, and IPRES transcriptional signatures), deficiency in antigen presentation
(alterations in INF-γ signaling pathway, HLA LOH, B2M, and TAP deletion), aberrations in several signaling pathways (MAPK, PI3K, WNT, and IFN), and absent
PD-L1 expression. (B) Host-related characteristics that lead to primary or secondary resistance include the gut microbiome, diet, concomitant medications,
inflammation state, and autoimmunity. (C) Tumor extrinsic mechanisms involved in resistance to immunotherapy include T cell-related factors (alternative immune
checkpoints, T cell exhaustion and phenotype alteration, TCR repertoire, and epigenetic modification), immunosuppressive cells (Treg, MDSC, and M2-TAM), and
cytokines and metabolites (e.g., TGF-β, adenosine) released into the tumor microenvironment. Factors in the solid text boxes are involved in primary resistance,
whereas those in the dotted text boxes are involved in secondary or acquired resistance. Factors with solid and dotted dual text boxes are involved in both.
Cytokines with “+” and “-” represent positive and negative modulators to antitumor immune response, respectively. Abbreviations: TME, tumor microenvironment;
MHC, major histocompatibility complex; TCR, T cell receptor; Treg, regulatory T cell; MDSC, myeloid-derived suppressor cell; M2-TAM, type II tumor-associated
macrophage; ICR, immune checkpoint receptor; CAF, cancer-associated fibroblast; and IPRES, innate anti-PD-1 resistance.

the tumor purity of tissue samples obtained by bronchoscopy or
puncture biopsy was often limited (33).

The dilemma of insufficient tissue sample for TMB assessment
in a considerable number of patients with NSCLC has given
rise to the employment of peripheral blood TMB (bTMB)
as a substitute predictor of response or resistance to ICIs in
NSCLC (34). In keeping with what was previously reported
in tissue, low bTMB evaluated by different plasma sequencing
assays was significantly correlated with poor survival or response
to immunotherapy in several retrospective and prospective
studies (35–37).

Increased neoantigen intratumor heterogeneity
In addition to the TMB or the numbers of clonal neoantigens,
increased neoantigen intratumor heterogeneity (ITH, defined as
relative fraction of subclonal neoantigens) can also impair the
sensitivity to ICIs by elevating the likelihood of selection of
subclones with poor immunogenicity (25, 38). The considerable
variation of neoantigen heterogeneity was demonstrated by
McGranahan and colleagues in seven primary NSCLCs (25). On
average, 44% of heterogeneous neoantigens were reported only
in a subset of tumor regions. They conducted neoantigen and

clonality analysis in lung cancer data from TCGA and then
validated the approach in a cohort of NSCLC patients treated
with ICIs. Compared with high TMB alone, the combination of
high TMB with low ITH seems to have a stronger association with
clinical benefit to ICIs in this population.

Aberrations in certain oncogene/tumor suppressor genes
Aberrations in oncogenes and tumor suppressor genes can
regulate immune response by amending cytokine profile and
immune cell composition and thus render tumor cells resistant
or sensitive to ICIs.

Generally, alterations in oncogenic driver genes are
characterized as resistant markers to immunotherapy. Although
epidermal growth factor receptor (EGFR) mutations and
anaplastic lymphoma kinase (ALK) rearrangement tend to
have high PD-L1 expression due to the activation of signaling
pathways (39, 40), the low mutation or neoantigen load
(41), along with the following mechanisms, impairs the
immunotherapy sensitivity in this group of patients with lung
cancer. First, EGFR mutations have the potential to shape
an inert immune environment by up-modulating a series of
immune suppressors including inhibitory immune checkpoints
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(e.g., PD-1 and CTLA-4), immunosuppressive cells
(macrophages and regulatory T cells), and cytokines (like
TGF-β, IL-6, and IL-10) (42, 43). It has been reported that
activated EGFR cascade was associated with elevated T-cell
exhaustion and reduced cytotoxic T lymphocytes (CTLs) in a
lung adenocarcinoma model (40). Second, downstream pathways
of EGFR mutation, such as MAPK, PI3K/AKT, and Janus kinase
(JAK)/STAT pathway, negatively affect immunoregulation.
Other oncogenic driver-genes that frequently have high PD-L1
expression in lung cancer include ROS1 rearrangements (44),
MET exon 14 skipping mutations (45), and BRAF mutations (44,
46). In contrast, RET rearrangements (47) and HER2 mutations
(44) have been reported recently to exhibit low PD-L1 expression.
None of these oncogenotypes demonstrated favorable clinical
responses to ICIs monotherapy except for BRAF mutations,
either V600E or non-V600E.

STK11 gene inactivation either by mutational or non-
mutational machinery is linked to an indolent immune
microenvironment with lower Tumor-infiltrating lymphocyte
(TILs; CD3+, CD4+, and CD8+ cells) and PD-L1 expression
in spite of the existence of moderate to high TMB (48).
Inactivated STK11 gene was recently reported to weaken the
innate immune responses by epigenetic inhibition of stimulator
of IFN genes (STING), suggesting epigenetic silencing is likely
to mediate the promotion of T-cell exclusion by the loss of
STK11 (49). In line with these findings, it has been observed in
several studies that compared with the wild-type gene, STK11
mutation predicted poorer clinical outcomes of immunotherapy
in advanced NSLCL (50, 51). The tumor suppressor TP53
mutation, a well-known negative prognostic factor in lung cancer,
is found to be associated with increased PD-L1 expression and
higher TMB in non-squamous NSCLC (30) and KRAS-mutated
lung adenocarcinoma (51).

KRAS-mutated lung cancer presents distinct immune
profiles, biology, and therapeutic vulnerabilities in different
subsets classified by co-occurring genetic events (50). Generally,
KRAS/TP53 co-mutation predicts sensitivity while KRAS/STK11
co-mutation predicts resistance to immunotherapy in NSCLC.
Dong et al. identified TP53/KRAS co-mutated subclass exhibited
the highest percentage of PD-L1+/CD8A+ and particular
increased PD-L1 expression. They further confirmed a
remarkable clinical benefit from pembrolizumab in this
population (52). Co-mutation of STK11 was shown to cause
the accrual of neutrophils with T-cell-suppressive effects,
accompanied with an analogous elevation in the production of
T-cell depletion biosignatures and tumor-promoting cytokines
(50, 53). TIL numbers and the expression of PD-L1 were also
decreased (53). Consistent with these preclinical predictions,
patients with KRAS/STK11 co-mutation or single mutation of
STK11 had poor response and survival compared with those with
wild-type when treated with ICIs (51, 54).

The Kelch-like ECG-associated protein 1 (KEAP1)
gene, regulating the cellular antioxidant and cytoprotective
transcriptional programs, plays a key role in mediating immune
evasion in NSCLC. Depletion of KEAP1 is associated with
reduced leukocyte infiltration, increased PD-L1 expression
and might also influence other immune cells such as NK cell

recruitment and function (55, 56). Co-occurring KEAP1 and
phosphatase and tensin homolog (PTEN) inactivation represent
an immunologically “cold” tumor while concurrent mutations
in KEAP1 and STK11 leads to absence of pro-cancerogenic
M2 macrophages (57). However, there are conflicting data on
the role of KEAP1 mutation and its co-mutation with STK11
in immunotherapy resistance in NSCLC. KEAP1/STK11 co-
mutations were verified to correlate with resistance to ICIs
in patients with NSCLC despite high TMB (58). Similarly,
STK11, and/or KEAP1 genomic variations posited lack of
clinical advantages from combination of immunotherapy
with chemotherapy in patients with NSCLC (59). However,
inconsistent results were reported recently that clinical benefit
from pembrolizumab compared to chemotherapy was poorer
in the patients with STK11 and KEAP1 mutation compared
with those in wild type in Keynote 042 trial, but the response
and survival to immunotherapy were not significantly different
between mutant and wild subgroups (60).

The WNT/β-catenin pathway is an additional immunotherapy
resistance mechanism. A negative relationship was demonstrated
between the level of β-catenin and TILs, which was modulated
by deficiency in the recruitment of CD103+ dendritic cells (DCs)
essential to T-cell priming and reduced expression of the cytokine
CCL4, suggesting WNT/β-catenin signaling pathway is likely to
mediate ICIs resistance through T-cell exclusion (61).

Similarly, the MAPK/PTEN/PI3K signaling pathway has been
identified to be involved in immunotherapy resistance. Loss
of PTEN and the bioactivation of the phosphatidylinositol
3-kinase (PI3K) signaling pathway in tumors decrease the
activity of CTLs through the recruitment of inhibitory cells
to the microenvironment and Vascular endothelial growth
factor (VEGF) expression (62, 63), so that they promote
resistance to ICIs (63, 64). The association of PTEN deletions
or PIK3CA/AKT mutations with increased PD-L1 expression and
immune resistance was also found in glioma (65). It was shown
in preclinical models that a PI3K-γ inhibitor decreased myeloid-
derived suppressor cells (MDSCs) and improved response to
ICIs (66).

DNA repair and replication gene alterations
Genetic instability caused by alterations in DNA replication
and repair genes can augment immunogenicity via a high-
TMB neoantigen load (67–69). Correspondingly, deficient DNA
mismatch repair (dMMR) or high microsatellite instability (H-
MSI) are suggested as sensitive predictors to ICI immunotherapy
in many tumor types. Beyond high TMB, increased CD8+ TILs
were also reported to be associated with alterations in mismatch
repair genes (70), BRCA2 (71), and POLE (72) in different tumors.
However, the role of these genes in immunoregulation in NSCLC
remains to be elucidated.

Interferon-gamma signaling mutation
The interferon-gamma (INF-γ) signaling cascade is a crucial
component of immunotherapy and tends to serve a critical
function in primary, adaptive, and acquired resistance to ICI
treatment (73–75). IFN-γ is a critical cytokine secreted by
activated T cells, natural killer (NK) T cells, in the cancer
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microenvironment, and it moderates the immune reaction via
the downstream enzymes JAK 1/2 and the signal transducer
and activators of transcription (STATs) (76). The INF-γ axis
exerts both positive and negative impacts on antitumor immune
reactions (77). On one hand, it activates an functional antitumor
immune reactive via (1) intensifying antigen presentation by up-
modulated secretion of MHC-I; (2) recruiting other immune
cells by up-regulation of the expression of chemokines (CXCL9,
CXCL10, and CXCL11) with effective chemoattractant impacts
on T cells (78); and (3) exerting direct anti-proliferative and pro-
apoptotic impacts on cancer cells (79). On the other hand, IFN-γ
acts in a negative-feedback axis to elevate PD-L1 expression as
well as other crucial immune inhibitory components, including
IDO1, down-modulating the cytotoxic reaction and adaptive
resistance to cancer cells (80, 81) (Figure 1A).

Additionally, copy-number alterations (CNAs) linked to DNA
damage response and regulation of DNA editing/repair gene
expression were shown to emanate from the malignant exposure
to IFN-γ-secreting antigen-specific CTLs in vivo, implying that
intensified genetic instability could be among the mechanisms
through which CTLs and IFN-γ immunoedits cancers, changing
their immune resistance due to genetic evolution (82).

Tumors neutralize the impact of IFN-γ by mutating or
down-regulating the molecules involved in the IFN-γ signaling
pathway, including IFN-γ receptor chains, regulatory factors,
JAK1/2, and STATs upon continuous IFN-γ exposure (73, 83).
Multiple studies have demonstrated that mutations of IFN-γ axis
and consequent loss of JAK/STAT contribute to immune escape
of tumor cells and by that leads to primary or acquired resistance
to ICI therapy via incapacity of up-regulating the expression
of PD-L1 and MHC-I (73, 78, 84). Any deficiencies in IFN-
γ, JAK1/2, or STATs including gene mutations, loss of protein
expression, negative regulator presence, or epigenetic silencing
would prevent signaling in response to IFN-γ and thereby end
up to the up-regulated tumor growth and apoptosis inhibition
and down-regulated T-cell infiltration and expression of PD-L1
and MHC-I (74, 78, 85, 86). Correspondingly, genomic changes
disturbing IFN-γ pathway genes, including the amplification of
suppressor genes PIAS4 and SOCS1 and the deletion of IFNGR1,
IFNGR2, IFIT1, IFIT2, IFIT3, IRF1, MTAP, and miR31, have been
described as possible machinery of primary resistance to various
ICI therapies (73). An IFN-γ-related mRNA profile that contains
10 genes (CCR5, CXCL9, CXCL10, CXCL11, GZMA, HLA-DRA,
IDO1, IFNG, PRF1, and STAT1) was additionally identified to
predict the response to anti-PD-1 therapy in melanoma (87).

Transcriptomic Signatures
In a recent publication, transcriptional signatures, referred
to as innate anti-PD-1 resistance (IPRES) with inflammatory
and mesenchymal tumor phenotypes, were shown to manifest
poor response to anti-PD-1 therapy in metastatic melanoma
(88). Approximately 700 differentially expressed genes (DEGs)
were identified between the responsive and non-responsive
pretreated tumors. Compared with those of responsive tumors,
the transcriptomes of non-responsive tumors were dominated
by gene up-regulation events. The up-regulated DEGs in non-
responsive tumors, considered as T-cell-suppressive, are involved

in mesenchymal transition (TWIST2, TAGLN, FAP, AXL,
ROR2, WNT5A, and LOXL2), monocyte/macrophage chemotaxis
(CCL2, CCL7, CCL8, and CCL13), immunosuppression (IL10,
VEGFA, and VEGFC), and angiogenesis and wound healing
(89–91). By contrast, down-regulated gene CDH1 (which is
typically down-regulated by mesenchymal tumor cells) was also
detected in non-responsive pretreated tumors. Interestingly,
there was no difference in the expression of INF-γ pathway
signatures, other T-cell-related genes (e.g., CD8A/B, PD-L1,
and LAG3), and the genes that presumably modulate immune
checkpoint sensitivity between responsive and non-responsive
groups, suggesting that T-cell-suppressive inflammatory and
mesenchymal phenotypes of tumor are associated with primary
resistance to anti-PD-1 therapy.

Epigenetic Modification
Emerging evidence has suggested that epigenetic modification
may mediate primary resistance and contribute to acquired
resistance during ICI therapy through the profound effect
on many aspects of antitumor immunity: neoantigen
presentation and processing; T-cell functions, differentiation,
and proliferation; memory T-cell phenotype acquisition;
interfering with T-cell migration; and mediating T-cell
exhaustion (10, 92–94).

Epigenetic targeting agents, including those targeting
histone deacetylation or methylation as well as targeting DNA
methylation, have exhibited encouraging antitumor activity
either as monotherapy or in combination with immunotherapy
in preclinical studies (94, 95). Clinical trials investigating the
performance of these agents combined with adaptive T-cell
transfer (ACT) in patients with acquired resistance to prior
immunotherapy are ongoing (96).

Stability of Chromatin Remodeling Complexes
Stability of chromatin remodeling complexes within tumor cells
can also contribute to immunotherapy resistance by multiple
mechanisms. It was found that tumor cells were more sensitive
to CTL killing, which leads to increased response to anti-PD-
1/PD-L1 therapy, due to the deficiency in chromatin remodeling
complex SWI/SNF (97, 98). BRG1-associated factor (BAF) and
polybromo-associated BAF (PBAF), as the mammalian analogs
of the SWI/SNF complex, are essential tumor suppressors and
loss of function (LOF) mutations of them were shown to
sensitize tumor cells to ICI therapy (98). The inactivated PBAF
subunits exhibited elevated CXCL9/CXCL10 expression and TILs
recruitment as a result of increase of chromatin accessibility
to transcriptional regulators of IFN-γ-inducible genes (97).
ARID1A/B subunits are unique to BAF, while other subunits
(ARID2, BRD7, and PBRM1) are exclusively contained by PBAF,
despite the high similarity of these complexes (99). In another
study, loss of ARID1A was found to elevate MSI by defective
recruitment of mismatch repair genes and thus increase TMB,
which eventual sensitize tumor cells to PD-L1 inhibitor (100).

Absent Tumor PD-L1 Expression
The PD-1/PD-L1 axis represents one of the foremost mechanisms
of modulation of peripheral immune tolerance as well as T-cell
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activation. Up-regulation of PD-L1 by cancer cells and antigen-
presenting cells (APCs) is one approach through which tumors
avoid immunosurveillance and constitutes the principle behind
PD-1/PD-L1 blockade therapies (101). Absent PD-L expression
of tumors has been found to be generally associated with less
responses and inferior survival benefits to anti-PD-1/PD-L1
therapies compared with higher expression (102) and may serve
as a resistant marker. However, up to 20% of PD−L1−negative
malignancies showed responses to PD−1 inhibitors in some
cohorts (103), as PD-L1 expression can be up-regulated by other
factors including activated IFN-γ cascade (will be discussed in a
separated part), suggesting tumor PD-L1 expression alone is not
dependable at predicting outcomes of PD-1/PD-L1 inhibitors.

Any factors that affect the PD-L1 expression of tumor cells
may lead to resistance to immunotherapy. Beyond encoding
genes, PD-L1 expression can be affected by the mutational
features of tumor although it is not paralleled with TMB in
most of the tumors (104–106). The inherent mechanisms, which
have been shown to result in constitutive expression of PD-L1
by tumor cells, consist of alterations in the PTEN/PI3K/AKT
pathway (65, 107), MYC overexpression (108), EGFR mutations
(40), CDK5 truncation (109), and elevated PD-L1 transcripts
stabilized by disruption of the 3-untranslated region (UTR) of
this gene (110). Tumor-specific immune response may also be
affected by constitutive expression of PD-L1 caused by these
oncogenic signaling processes on tumor cell surface. Although
it is still unclear whether it causes an increased or decreased
possibility of responding to anti-PD-1/PD-L1 therapies, the
constitutive PD-L1 expression could result into inadequate
response to other immunotherapeutic approaches by suppressing
antitumor effect of T cells. The other transcriptional factors
constituting HIF1, NFkB, and STAT3, as well as epigenetic
factors, additionally participate in the modulation of PD-L1
expression (111).

Inflammatory and hypoxic tumor microenvironment (TME)
can also lead to PD-L1 expression on many cell types including
tumor cells by Toll-like receptor (TLR) ligands. The recruitment
of activated T cells can increase the inflammatory mediators
and successively induce the PD-L1 expression on the surface of
tumor cells. These tumor cells specifically locate at the invasive
periphery where T cells are often abundant (112, 113).

Besides, PD-L1 is stabilized through N-glycosylation and
palmitoylation (114, 115). This is crucial for its interaction
with PD-1. The resistance to anti-PD-1/PD-L1 treatment could
moreover be attributed to the degree of generation and
secretion of soluble forms of PD-L1. These variants without the
transmembrane domain because of alternative splicing have been
reported in recurrent NSCLC incidences that re-occurred after
anti-PD-L1 antibody therapy with the ability to act as soluble
imitates for anti-PD-L1 antibodies (116).

Deficiency in Antigen Presentation
Loss of neoantigen
Loss of neoantigens in the context of immune-mediated pressure
is postulated to be another mechanism leading to resistance. In
the concept of immunoediting, the constant interactions between
tumor cells and the immune system trigger the production

of subclones that do not express neoantigens, consequently
conferring poor immunogenicity and resistance to ICIs (117).
It was demonstrated by Anagnostou and colleagues that seven
to eight putative neoantigens were lost in the recurrent NSCLC
after ICI treatment, suggesting that immunoediting plays a role
in acquired resistance to immunotherapy (118). T-cell-mediated
neoantigen immunoediting can be induced by the dynamic
interactions between T cells and tumor cells, consequently
causing partial or total loss of neoantigen (119). Consistently,
deficiency in genes that encode target tumor antigens was
demonstrated to be associated with acquired resistance in a
murine model treated with adoptive T-cell therapy (ACT) in
melanoma (120). However, this relationship between acquired
resistance and loss of target neoantigens was not observed in a
single patient case who achieved a complete response to ACT in
a separate study (121), suggesting that down-regulation/loss of
neoantigens may occur during immunotherapy, but should be
taken as a canonical mechanism of acquired immune resistance.

Proinflammatory cytokines are likely to contribute to immune
escape by inducing loss of antigen expression, resulting in
acquired resistance too. The process of Tumor necrosis factor-
α (TNF-α)-induced epithelial-to-mesenchymal de-differentiation
was shown to lead to a loss of neoantigens causing transformation
to a tumor phenotype that is less immunogenic and can more
readily evade immune surveillance in the ACT-treated mouse
model in melanoma (122). Other TIL generated cytokines, such
as IL-6 or TGF-β, are also shown to be involved in the induction
of epithelial-to-mesenchymal transition in mouse models across
numerous types of tumors, indicating that acquired resistance
can be promoted by inflammation.

Defective neoantigen presentation
Defective neoantigen presentation serves a crucial function in ICI
acquired resistance. The alterations in this process could happen
in beta-2-microglobulin (B2M), transporters associated with
antigen processing (TAP), or MHC itself (123, 124) (Figure 1A).

As part of the MHC class I (MHC-I), B2M is crucial during
antigen presentation and its genetic deficiency, including loss
of heterozygosity (LOH) and deletions or point mutations, was
identified to be an important route for primary and acquired
resistance to ICIs (125, 126). Other defects that would affect
neoantigen presentation include T-cell receptor (TCR) binding
domain mutations of MHC-I (127), loss of tapasin (a MHC-I
antigen processing molecule), selective epigenetic silencing of the
human leukocyte antigen (HLA) A3 antigen, loss of one HLA
haplotype (128, 129), and LOH in HLA (130). Homozygosity
in one or more of the three highly variable genes (HLA-A,
HLA-B, and HLA-C) that encode MHC-I, which are likely to
restrict neoantigen presentation to CTLs, was identified to have
a significant association between resistance to ICI therapy in a
large cohort of cancer patients (131). In contrast to anti-CTLA-
4, the expression of MHC-II (but not MHC-I) proteins by tumor
and the presence of IFN-γ-mediated gene signatures were found
to be associated with the positive responses to anti-PD-1 therapy
in melanoma (132).

Defective neoantigen presentation may be mediated by
IFN-γ signaling pathway through JAK1/2 and the STATs, by
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down-regulating the expression of MHC-I (133). Actually, the
IFN-γ pathway has both unfavorable and favorable impacts on
antitumor immune responses and plays a key role in acquired and
primary resistance to ICI therapy (as discussed above).

Tumor Cell-Extrinsic Immune Landscape
T-Cell-Related Factors Involved in Tumor-Cancer
Immune Cycle
Tumor-infiltrating lymphocytes
Tumor-infiltrating lymphocytes constitute a complex group of
immune cells with distinct functions and different clinical
impacts. Among them, tumor-specific CD8+ T cells can execute
anti-cancer activities by killing tumor cells directly and has a
strong prognostic effect in NSCLC (134, 135). CD4+ cells are
composed of a group of lymphocytes (Tregs CD4+, Th1, Th2, and
Th17) secreting diverse cytokine to activate and suppress CD8+
cells. Th1 secretes IFN-γ and IL2, while Th2 secretes IL-4, IL-5,
IL-9, IL-10, IL-13, and IL-25 (136, 137). CD45RO+ T cells, also
known as memory T lymphocytes, are another subclass of TILs.
Regulator and memory T lymphocytes will be discussed in section
“Suppressive tumor microenvironment.”

Low CD8+ TIL density was correlated with impaired efficacy
and survival in NSCLC patients treated with ICIs (138),
suggesting that immunotherapy resistance was mediated by low
TILs but was then positively modulated by PD-L1. TILs can be
assessed by immunohistochemistry or standard hematoxylin and
eosin (H&E) staining; however, no consensus has been reached
hitherto in the various scoring models using H&E staining
in NSCLC (139–142). A radiomic fingerprint of CD8+ TIL
derived via computerized tomography was developed recently
and showed promising efficacy in predicting response to ICI
therapies but requires further validation (143).

Thus, tumors can be described as three main immune
organization profiles (hot, altered, and cold) as per the presence
of TILs and correlated proinflammatory cytokines (144). The
“cold” immune tumor is characterized as absence of TIL
within and at the edges of tumor, manifesting resistance to
immunotherapy either due to absent immune stimulation (as
with low neoantigen cancer’s poor antigen presentation) or
because of failed T-cell priming (as with intrinsic insensitivity
to T-cell killing). The “altered” immune tumor is characterized
as low TIL within the tumor (“immunosuppressed”) or high
TIL at the edges of the tumor (“excluded”), whereas “hot” is
high degree of TIL (144). Recently, intratumorally geospatial
heterogeneity of TIL was revealed in NSCLC. Tumor subclones
from “cold” immune regions were related to mutation space
more closely and diversifying more recently compared with
those from “hot” immune regions. Higher risk of recurrence
was observed in tumors with more than one “cold” immune
region (145).

Impaired T-cell priming and infiltration
Reduced proliferation and inadequate diversification of
T cells possibly contribute to ICI resistance. Impeded
priming of naive T cells by blocked DCs recruitment was
demonstrated in melanoma to be correlated to the lack of
TILs and ICIs resistance (146). The function of DCs can be

potentially influenced by the cytokines in the TME through
(1) impaired migratory capacity as well as decreased synthesis
of costimulatory components (CD86/80) by TGF-β (147, 148);
(2) prevented DCs maturation by IL-6-gp130-STAT3 axis;
and (3) inhibited activity by Indoleamine 2,3-dioxygenase
1 (IDO, will be discussed in Section “Suppressive tumor
microenvironment”). IFN-α signaling pathway is important
to the priming of T cells by DCs. It was found that TME with
remarkable insufficient IFN-α-producing DCs naturally led
to lessened antitumor T-cell priming and thus resistance to
ICIs (149, 150). Activated IFN-α stimulated production of
the chemokine CXCL10 to recruit TILs to tumor beds and
in turn initiate spontaneous antitumor T-cell response (149–
151). Preliminary trials combining IFN-α 2b therapy with
anti-CTLA-4 inhibitors have indicated clinical activity, which
could be caused by diminished populations of MDSC (152,
153). Combinations of other ICIs and IFN-α 2b are currently
investigated (154).

Immune resistance also occurs if the tumors evolve the
ability to prevent infiltration even if tumor-specific Teffs are
formed. Mechanisms that lead to impaired T-cell infiltration
involve components in the epigenetic silencing of immune
cells (155) and the modification of secreted chemokines (156,
157). Transcriptional program that is associated with T-cell
exclusion and thereby predictive resistance to anti-PD-1 therapy
was identified in melanoma (158). Stromal cells surrounding
tumors within TME can develop the capacity to obstruct effector
T-cell entry, and the TGF-β cascade appears to serve a crucial
role in promoting T-cell exclusion features in peritumoral
fibroblasts (123, 159).

T-cell receptor clonality
T-cell receptor clonality is emerging as a new biomarker to
predict the resistance and immune-related adverse events to ICIs
therapy. Since baseline CD8+ T-cell density was found to overlap
between respondents and non-respondents to ICI therapy (160–
162), it led to the speculation that a constrict TCR arsenal
possessed by the baseline T cells concentrated on the antitumor
immune reaction and is associated with response to ICI therapies.
T-cell clones can be identified by detecting TCR rearrangements
constituting genes in the variable (V)-diversity (D)-joining (J)
region, which generate the antigen-specific complementarity-
determining region 3 (CDR3). The responsivity of TCRs
generated by TILs determines their potential to interplay with
tumor antigens that are presented on APCs. Thus, the assessment
of T-cell clonality divulges the extent of T-cell expansions caused
by tumor antigens and contributes to explore the mechanisms
underlying T-cell toleration to tumor antigens.

A lower baseline clonal T-cell arsenal has been shown to be
linked to worse clinical benefits to ICIs and survival in cancer
patients (162, 163). Besides, a remarkable increase in T-cell
clones was reported in responders during anti-PD-1 therapy
compared to non-responders, implying a cancer-specific reaction
to immunotherapy for these patients. Moreover, baseline TCR
clonality did not strongly associate with TIL density, implying
that low-TIL density tumors could still respond to anti-PD-1
treatment if TIL has a narrow TCR clonality specific to the
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tumor antigen (164). Inconsistently, it was recently found that
T-cell clonality had a positive relationship with T-cell density,
PD-L1 expression, and TMB, and a negative relationship with
EGFR mutation in NSCLC (165). A corresponding relationship
was found between the number of TCR sequences and the
number of nonsynonymous mutations, spatial heterogeneity in
expanded TCR repertoire, and spatial mutational heterogeneity
within tumors in NSCLC, respectively. This intratumorally
spatial heterogeneity of TCR repertoire maps the neoantigen
landscape, sculptured by focal antigen processing defects or HLA
loss (166). Thereby, further investigations to identify the role of
TCR clonality in immunotherapy are required.

Alternate immune checkpoint receptor up-regulation
Compensatory up-regulation of numerous alternate immune
checkpoint receptors during ICI therapy as a result of the
activation of diverse cellular signals and IFN-γ signaling
pathway were observed across multiple studies and have been
characterized to be linked to ICI adaptive resistance in NSCLC
(84, 167, 168). The expression of CD8+ T cells harboring
receptors showed serious flaws in proliferation, migration, and
cytokine secretion, indicating their immunosuppressive capacity.
In addition, progressive T-cell exhaustion was found in the
tumors with highly expressive or co-expressive receptors and
different receptor displayed different exhausted phenotype (167).

Among these receptors, lymphocyte activation gene 3 (LAG-3)
has great potentiality in cancer immunotherapy because co-
expression of PD-1 and LAG-3 was often found in T-cell-depleted
immune microenvironment, and PD-1 inhibitors combined with
LAG-3 blockades showed strong synergic antitumor responses
in preliminary models (169). LAG-3 is a co-inhibitory receptor
extensively expressed in TILs in various tumors and serves a
crucial function in mediating immune escape by suppressing
T-cell antitumor functions. It exerts immunosuppression via
binding to MHC-II molecules and other ligands such as galectin-
3 and fibrinogen-like protein 1 (FGL1) (170). Thus, blocking
LAG-3 can restore antitumor immunity and the combined LAG-
3 inhibitors therapy may accordingly overcome immunotherapy
resistance. In addition, the expression of these ligands, on the
basis of the receptor–ligand interactions, may serve as important
biomarkers to predict the efficacy of LAG-3 blockades in lung
cancer (167).

The other alternative immune checkpoint receptors, e.g.,
T-cell immunoglobulin and mucin-3 (TIM-3), V-domain
immunoglobulin-containing suppressor of T-cell activation
(VISTA), B and T lymphocyte attenuator (BTLA; also referred
to as CD272), T-cell immunoreceptor tyrosine-based inhibition
motif domain (TIGIT), and sialic acid-binding Ig-like lectin 9
(SIGLEC9), have been discovered (144). Thus, these alternate
immune checkpoints are likely to be combined with existing
ICI therapy to conquer the resistance. Increased efficacy of
PD-1 inhibitors combined with anti-TIM-3 or anti-LAG-3
regimens has been observed in either pre-clinical models or
phase I clinical trials (171, 172). Currently, numerous clinical
trials evaluating the therapeutic impact of alternate immune
checkpoint blockade applied on its own or in combination with
PD-1/PD-L1 inhibitors in multiple malignances are ongoing.

T-cell exhaustion and phenotype alteration
T-cell exhaustion is another factor involved in the primary and
acquired resistance to ICI therapy (Figure 1C). Exhausted T
cells exhibit impaired activity with progressive LOF and antigen
persistence compared with Teffs and can be induced by the
PD-1/PD-L1 interactions (173). Chronic exposure to cognate
antigen triggers increased expression of PD-1, which results in
the accumulation of T-cell exhaustion and thus T-cell dysfunction
(174). The presence of PD-1 high expression can either exist
prior to PD-1 inhibitors, which is associated with primary
resistance partially depending on tumor-associated regulatory T
cells (Tregs), or develop after the anti-PD-1 therapy, which leads
to acquired resistance by severe T-cell exhaustion. In contrast,
studies showed that the exhausted T cells with PD-1 low to
intermediate phenotype retain the capacity to be reinvigorated by
ICIs (158, 175). Epigenetic alterations were found to be associated
with T-cell exhaustion too recently. Exhausted T cell displayed
a unique chromatin landscape, which alters the transcriptional
state, limits its effect function, and determines its capacity to be
reprogrammed after therapeutic intervention (176–178).

The formation of memory T cells is crucial to the avoidance of
tumor relapse and therapy resistance following drug withdrawal,
especially in the long-lasting duration of responses to ICI therapy.
Research evidence shows that patients with resistance to anti-PD-
1 treatment have fewer tumor-correlated memory T cells relative
to sensitive patients (179). Memory T cells remain dormant until
antigen re-challenge (180, 181) and if precursor memory T cells
are exhausted under chronic antigen exposure, it will lead to
memory T-cell deletion and lack of formation (173, 177).

Acquired resistance can be mediated by the alteration from
cytotoxic activity to inactivity phenotype of antitumor T cells
during TCR-engineered ACT. The original highly cytolytic
profile when administrated to patients, which showed strong
efficacy initially, was reported to change to a phenotype with
impaired cytotoxic functions and Th2-related cytokine release
when tumor relapses within months (182, 183).

Suppressive Tumor Microenvironment
Increased immunosuppressive cells
The TME is a complex net consisting of a variety of immune
and stromal cells, cytokines, extracellular matrix, and vasculature,
which affect response to immunotherapy. Immune-suppressive
cells, including Tregs, MDSCs, M2 macrophages, along with
inhibitory cytokines in the TME, can contribute to the inhibition
to immune responses (136, 184) (Figure 1C).

Tregs can inhibit Teff reactions by secreting certain inhibitory
cytokines (IL-10, IL-35, and TGF-β) or by direct cell contact
(185–187). The cytokine IL-10 influences antigen presentation by
down-regulating the expression of MHC-II and co-stimulatory
components on DCs, thus intercepting the Teff activation (187).
The ratio of Teffs to Tregs was shown to be related to the
responses to ICIs in mouse models, in that incapacity of either
increasing Teffs or decreasing Tregs may cause resistance to
immunotherapy (188, 189). Factors that affect Tregs activity,
at the same time, are putative biomarkers of resistance. For
instance, soluble CD25, an IL-2 receptor whose binding is
assumed to stimulate Treg proliferation, was established as a

Frontiers in Oncology | www.frontiersin.org 8 October 2020 | Volume 10 | Article 568059

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-568059 October 14, 2020 Time: 17:0 # 9

Wang et al. Resistance Mechanisms of Immunotherapy

negative predictor of OS for patients treated with anti-CTLA−4
(190). However, tumor-infiltrating Tregs might likely coexist with
multiple immune cells, insinuating a potential immunoreactivity.
It was reported that a high baseline expression of FoxP3+ Tregs
in the tumor is positively associated with better survival in a
retrospective study involving patients under the treatment of
anti-CTLA-4 antibodies (161).

Myeloid-derived suppressor cells promote immune evasion
and tumor growth and have emerged as critical modulators
of immune responses in cancer. Studies have suggested the
existence of MDSCs in TME correlates with reduced efficacy of
immunotherapies, including ICIs therapy (191), ACT (192), and
DC vaccination (193). Therefore, reprogramming or eradicating
MDSCs might improve clinical response to immunotherapy.

Tumor-associated macrophages (TAMs) can be classified into
M1 and M2 macrophages according to disparities in surface
molecules, expression of transcription factors, cytokine profiles,
and metabolism (194, 195). They promote antitumor immunity
effects (mediated by M1) and pro-tumorigenic properties
(mediated by M2) that modify the TME (196). The role of
TAMs in mediating immunotherapeutic resistance in tumor has
been discussed in several reports (197, 198). It was indicated
to directly inhibit T-cell responses through PD-L1 in preclinical
studies of liver (199) and ovarian cancer (200). The inhibitor of
CSF-1R, a receptor for macrophage colony-stimulating growth
factor, was investigated in mouse models of pancreatic cancer
where it decreased the frequencies of TAMs, while increasing IFN
production and delaying tumor progression (201, 202). Similarly,
CSF-1R inhibitor was found to synergize ACT therapy in a
melanoma model (203). These data suggest that CSF-1R inhibitor
may overcome the resistance to immunotherapy.

Specific chemokines, such as CCL5, CCL7, and CXCL8, play
an important role in the recruitment of Tregs and MDSCs
to the TME, consequently boosting an immunosuppressive
climate (204). Alternately, chemokines CXCL9 and CXCL10
recruit CTLs to the TME (205) and the epigenetic silencing of
the genes encoding them can reduce TILs and consequently
promote resistance to ICIs (205). Epigenetic modulators of these
chemokine receptors relieved the suppression of these Th1-
cell-type chemokines and increased TILs leading to improved
therapeutic efficacy of PD-L1 inhibitor in a model for ovarian
cancer (155).

Elevated immunosuppressive cytokines
The cytokine milieu is critical to the recruitment, activation,
and proliferation of immune cell, performing both immune
stimulatory and suppressive effects (206). Transforming
growth factor-β (TGF-β) is a cytokine playing key roles in
angiogenesis and immunosuppression by stimulating Tregs
(207) and excluding T cell in peritumoral fibroblasts (123,
159). Up-regulated TGF-β signaling was correlated with poorly
immunogenic tumors and restrained response to ICIs in a
colorectal cancer model, indicating resistance to therapy (159).
Consequently, enhanced antitumor response to ICIs was
observed following application of TGF-β inhibitor either alone
or in combination with anti-CTLA-4 or radiation therapy (208,
209). Bintrafusp alfa, a bifunctional fusion protein composed of

the extracellular domain of TGF-β receptor II (a TGF-β “trap”)
fused to a human immunoglobulin G1 antibody blocking PD-L1,
demonstrated favorable efficacy in patients with advanced
NSCLC. Ongoing phase III trial is expected to validate the
efficacy of bintrafusp alfa vs. pembrolizumab in the first-line
setting in advanced NSCLC (NCT03631706).

Tumor necrosis factor-α pathway is postulated to be another
immune evasion machinery conferring resistance to PD1
blockade. The expression of TNFα in an inflamed TME positively
correlates with the expression of PD-L1 and TIM-3, along
with impaired accumulation and increased activation-induced
death of CD8+ TILs in melanoma models treated with anti-
PD1 therapy. Accordingly, inhibition of TNF-α prevents the
expression of PD-L1 and TIM3 and hampers anti-PD1-induced
TIL death (210). Therefore, this study offers a rationale for the
combination of PD-1/PD-L1 inhibitors with TNFα blockade as a
novel immunotherapeutic strategy to overcome resistance in lung
cancer, and the phase I clinical trial testing the combination is
ongoing (NCT03293784).

Vascular endothelial growth factor has been linked to both
decreased T−cell infiltration and immunosuppressive effects
in addition to promoting angiogenesis and thus is associated
with resistance to ICIs (211). Multiple mechanisms are involved
in the interaction of VEGF with antitumor immunity: (1)
VEGF prevented the commitment of lymphoid progenitors,
decreasing progression to the T-cell lineage (212); (2) VEGF
signaling promotes the infiltration of Tregs through a selective
endothelium and reduces trafficking and extravasation of CTLs
into the TME (213); and (3) VEGF increases expression of
inhibitory receptors, contributing to CTL exhaustion (214).
Higher levels of VEGF were found in anti-PD-1-resistant patients
than sensitive ones (160). Based on these findings and the synergy
between angiogenesis blockade and ICI therapies observed in
preliminary studies, multiple trials of combination therapy are
underway, including bevacizumab and VEGFR-TKI with anti-
PD-1 therapy.

Higher levels of interleukin 6 (IL-6) and interleukin 8 (IL-
8) have been found recently to be linked to reduced responses
and worse clinical outcomes to ICI therapies across multiple
types of cancers (215–217). IL-6 is a proinflammatory cytokine
generated by T cells and macrophages and is usually involved
in the immunoregulation connected to the IFN-γ signaling
pathway. It can reduce the expression of PD-L1 and MHC-I,
and result in tumor escape and resistance to ICI therapy (218).
IL-8 is a proinflammatory chemokine and a chemoattractant
for myeloid leukocytes expressed in multiple cancers (219, 220).
It potently regulates the chemotaxis of neutrophils (221, 222)
and exerts direct pro-tumorigenic effects (223). High levels of
IL-8 are regarded to be associated with more neutrophil and
monocyte infiltration, defective T-cell functions, and impaired
antigen presentation, which subsequently result in resistance to
ICI therapy (216, 217).

Additional immunoregulative molecules
Contributions from inflammatory processes could participate
in quashing the desired impacts of ICIs (Figure 1C). Adenosine
can be produced under the condition of hypoxia and ischemia
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caused by tumor inflammation. It was reported to inhibit
the cytotoxic function and proliferation of T cells via the
A2A receptor on T cells (224). CD73, which mediates
the generation of adenosine through dephosphorylation
of adenosine monophosphate, was also demonstrated to
suppress immune function (225). CD73 overexpression
promotes T-cell exhaustion and is linked to the resistance to
ICIs (226, 227).

IDO1 expressed in myeloid cells and cancer cells is
a rate-limiting enzyme that converts tryptophan to its
immunosuppressive metabolite kynurenine. This enzyme
can induce T-cell anergy and apoptosis by gathering kynurenines
and consuming the essential amino acid tryptophan and
prevent the T-cell clonal expansion (228). It is particularly
activated in DCs after binding with CTLA−4 and can be
unregulated by CTLA−4 during adaptive immune resistance
(229). Reduced expression of IDO at baseline was noted to
be associated with poor response to ipilimumab in a phase II
study in melanoma (161). Low level of IDO is likely to manifest
insufficiency of suppressed TILs feasible to be reactivated
by immunotherapy. Correspondingly, IDO-knockout mice
exhibited improved OS with ICI compared with wild-type
mice, and ICI therapy combined with IDO inhibitors showed
both increased numbers and functions of TILs in the TME
in an experimental setting (230, 231). However, despite
encouraging results observed in preclinical and early-phase
clinical studies in different types of tumors, no difference
was shown in pembrolizumab combined with IDO1-selective
inhibitor vs with placebo in a phase III study in metastatic
melanoma (232).

B7-H4 has been proposed as another resistance marker
to ICIs recently due to its negative modulation of T cells.
B7-H4 constitutes a type I transmembrane protein of the
B7 immunoglobulin superfamily and is encoded by the
V-set domain containing T-cell activation inhibitor 1 (VTCN
1) gene. It is induced by activated T lymphocytes and
down-regulates T-cell function by inhibiting proliferation,
cytotoxicity activity, and interleukin secretion, after binding
with T cells (233–235). Positive B7-H4 protein expression
in patients with advanced NSCLC treated with nivolumab
was recently reported to have an enhanced risk of tumor
progression and tumor-related death compared with negative
expression (236).

Host-Related Characteristics
Host-related characteristics, including gut microbiome, diet, and
antibiotic exposure that adversely affect the gut microbiome,
diet, steroid use, vaccine exposure, inflammation state, and
autoimmunity, have been shown to relate to primary and
acquired resistance to ICI therapy in lung cancer (237,
238) (Figure 1B).

Gut Microbiome
Evidence is arising to support the vigorous impact of the gut
microbiome on immunotherapy resistance. Multiple studies have
demonstrated that less bacterial diversity and lack of enrichment
of specific species showed a significant correlation with resistance

to ICI therapies. Relative abundance of Bacteroidales was found
in non-responders, while responders were more likely to have
Faecalibacterium and Ruminococcaceae (239, 240). Furthermore,
transplanting the responder’s feces into aseptic mice exhibited
improvement in the treatment of PD-L1 inhibitor (241). Certain
species can be altered by the antibiotic’s exposure, which partly
explained modified response to ICI therapy either in a good or in
a bad way (242–244).

The alteration tendency of gut microbiome structure or
dominant bacteria may differentially affect the T-cell immune
response. It may be due to the cross-reactivity between
intestinal microbiota and tumor-associated antigens, enhancing
the inflammatory cytokine production, activation of DCs,
and antigen presentation (245, 246). IFN-γ-producing CD8+
T cells were successfully induced from a consortium of
11 bacteria in the intestine, and colonization with this 11-
bacterial mixture resulted in enhanced efficacy of ICIs in mouse
models (247). Consistently, “good” bacteria introduction was
reported to significantly increase IFN-γ production in spleen
and tumor-draining lymph nodes (TDLN) (246) and induce
DCs to secrete IL-12, resulting in increased recruitment of
CCR9+CXCR3+CD4+ T cells into tumor beds (244). The
activation of DCs was reported to be modulated by the gut
microbiome in animal models and cancer patients. The resistance
to anti-CTLA-4 therapy can be reversed by oral administration
of Bacteroides fragilis, which induced Th1 immune response in
TDLN and promoted DCs maturation (243). Bifidobacterium-
feeding mouse presented higher expression of MHC-II in DCs
within tumors (248). It remains controversial whether intestinal
microbes lead to immunotherapy resistance by affecting the
production of Tregs. A higher level of peripheral Tregs was found
in patients with “bad” bacteria and was associated with poor
response to ipilimumab in metastatic melanoma patients (249).
B. fragilis can produce a microbial molecule, polysaccharide A,
which can promote the formation of the inducible population
of CD4+Foxp3+Tregs (a subset of Tregs), thereby negatively
regulating the immune system (250), whereas the other two
studies reported no differences in Treg differentiation between
pancreatic duct adenosarcoma-bearing mice and control, and the
number of Foxp3+ T cells between Bifidobacterium- and PBS-
feeding mice (251, 252). The majority of chemokine genes were
reported to be up-regulated by specific species of gut microbiome
including Fusobacterium nucleatum, B. fragilis, and Escherichia
coli in colorectal cancer cells. Additionally, the gut microbiota-
derived microbial load was associated with increased chemokine
production (251).

The gut microbiome also acts as an instructive modulator of
mutant TP53, which ultimately affects tumor proliferation and
the immune system. Kadoshi et al. recently found that mutant
TP53 presented contrasting effects in different segments of the
gut in a mouse model: a remarkable tumor-suppressive effect
in proximal gut and the expected oncogenic effect in distal
gut (253). The gut microbiome and its single metabolite gallic
acid turned mutant TP53 from a tumor-suppressive effect to an
oncogenic one, suggesting that the function of mutant TP53 is
plastic and under the control of microbiome and microbiota-
derived metabolites.
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Concomitant Medications
Antibiotics exposure has been reported to be associated with
inferior clinical outcomes during ICIs therapy in NSCLC (244,
254). However, it remains debated if antibiotics exposure
represents an independent predictive biomarker of ICIs therapy
or it is a surrogate for patients with worse prognosis (e.g., poorer
performance status, higher comorbidities). The use of antibiotics
has an unfavorable impact on the recolonization and subsequent
alterations in microbiota composition, which eventually leads to
a decline in microbial symbiotic diversity (255). The antibiotics-
induced dysbiosis destroys the gut homeostasis and extends
from childhood to adulthood, with long-lasting adverse effects
on the immune system as well as body metabolism (256–258).
The antitumor immune response-induced cyclophosphamide
was impaired by antibiotics exposure in the fibrosarcoma model,
which was associated with an improvement in the Teff-to-Treg
ratio and the loss of Enterococcus hirae-elicited helper T cell
in tumor immune infiltrate (259, 260). Correspondingly, the
absolute numbers of neutrophils and monocytes decreased after
oral administration of imipenem, vancomycin, and neomycin
before tumor inoculation in lymphoma and colon models treated
with oxaliplatin or IL-10 inhibitor (261). On the contrary, the
growth of Fusobacterium spp.-containing tumor was slowed
down after the administration of metronidazole in the mouse
model of colon cancer, suggesting such bacteria promote tumor
progression (262).

Long-term use of steroids adversely impacts the efficacy
of ICIs because of their supposed anti-inflammatory and
immunosuppressive effects that potentially hamper the mode of
ICI action (263), whereas a transient use of steroids aimed at
management of ir-AEs did not negatively affect patients’ survival
outcomes (264, 265). Beyond affecting gut microbiome, steroids
are known to prevent the activation of T lymphocytes, inhibit the
amplification of T helper subsets, recruit Tregs, and promote M2
macrophage polarization (266, 267). Hence, early use of steroids
on ICI treatment may prevent this phase of T-cell recruitment
and thus impair effective antitumor immune response. The
increment of neutrophil-to-lymphocyte ratio (NLR), derived
NLR (dNLR), and absolute neutrophil count (ANC) after steroids
has been shown to be associated with unfavorable clinical
outcome in NSCLC patients treated with ICIs (268). Steroids-
induced imbalance of immune cells in TME, especially increased
MDSCs resulting in elevated ANC and NLR, is the intermediate
of immunotherapy resistance in NSCLC (269).

Diet
Diet can affect tumor growth within TME through systemic or
local effects in multiple ways. First, it may alter the composition
and diversity of gut microbiome, which in turn exerts drastically
different effects on host immune function. Second, specific
ingredients (e.g., vitamins) may be regulated by dietary patterns
and then have an impact on immune status. It is well-known
that the general metabolic status determining deviations from
ideal body weight, as well as the metabolic factors (e.g.,
low-level arginine and tryptophan, high-level lactate, and the
adenosine pathway induced by increased glucose metabolism),
highly influences the immune activity (270–272). An appropriate

diet can maintain the homeostatic equilibrium between the
inflammatory cascade triggered by Th17 cells and the anti-
inflammatory pathway mainly based on the activity of Treg (273).

Additional Factors
Chronic accumulation and production of inflammatory
molecules in the chronic inflammatory status lead to an
immunosuppressant state, which is linked to immunotherapy
resistance. Proinflammatory and carcinogenic mediators such
as IL-6, TNF-α, and chemokines are released in the TME
and tend to trigger a variety of molecular signaling cascades
including PI3K/MAPK, JAK/STAT, and WNT/B-catenin, which
are involved in the resistance to immunotherapy as mentioned
previously. The components of immune cells are also altered
to be more immunosuppressive with more TAMs, Tregs, and
tumor-associated neutrophils within TME (274). Therefore,
blocking inflammation might be an effective strategy to improve
the outcome of immunotherapy in NSCLC (275).

Tumor development and autoimmunity are two opposite
results of imbalanced immune homeostasis in controlling tumor
cell growth (low immune responses) and regulating autoreactive
responses (immune overreaction). The host autoimmunity affects
the efficacy of immunotherapy in bringing more ir-AEs when too
strong or incapacity to prime and activate immune cells when
too weak (276). In addition, autoimmunity has an inextricable
link with host gut microbiome and anti-microbial immunity, as
effector responses that lead to inflammatory tissue damage are the
same as those that mediate effective host defense (277).

The relationship between smoking and the efficacy of ICIs
remains controversial (278–281). Smoking is associated
with high TMB, especially nonsynonymous mutations,
subsequently enhances the immunogenicity of tumor, and
improves the outcome of ICIs therapy (23, 282). Additionally,
PD-L1 expression can be up-regulated by smoking through
oxidative stress-dependent mechanism (283) and induced by
cigarette smoke and the carcinogen benzopyrene (BaP) via aryl
hydrocarbon receptor (AhR) (284). Moreover, smoking may also
have an impact on the status of TILs (285) and other immune
modulators such as B7-H3 (CD276) (286) and in turn affect the
efficacy of ICIs therapy.

THERAPEUTIC APPROACHES TO
CONQUER IMMUNOTHERAPY
RESISTANCE

Research and design of therapies to conquer immunotherapy
resistance has been advancing along with mechanistic
investigations. Combinatory treatments, either via combinations
of diverse immunotherapeutic agents or through combinations
with traditional treatments, developed to revitalize the defense
system with complementing/synergetic mechanisms, have been
introduced to serve as alternative approaches for NSCLC therapy.
Diverse targets discussed herein have the potential to serve as
both biomarkers of resistance and combination therapy targets.
In view of the different resistance mechanisms, the combinatory
therapy strategies are mainly manifested in the following aspects
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(the examples of ongoing studies trying to reverse resistance are
summarized in Supplementary Table 1):

Enhance Tumor Immunogenicity
1. Emerging evidence has indicated the positive immunologic

effects of chemotherapy (287). On one hand, it regulates
the composition and function of immune cells such as
CTLs (288), MDSCs, and Tregs (289) in the TME and
the molecules expressed on tumor cells; on the other
hand, it restores the recognition of immune system to
tumor through enhancing tumor antigen presentation
via up-regulating the expression of MHC-I and through
boosting antitumor immune responses via chemo-induced
tumor cell apoptosis (290–292). Multiple randomized
phase III clinical trials have compared the combination
of chemotherapy and ICIs with chemotherapy alone in
treatment-naïve advanced lung cancer (4, 9, 293). The
results consistently showed that the combination strategies
are superior to chemotherapy alone in the first-line
setting, regardless of PD-L1 expression, suggesting that the
synergistic activity between chemotherapy and ICIs may
offset the insensitivity due to low PD-L1 expression.

2. Similar to the effects induced by chemotherapy, radiation
therapy combined with ICIs leads to long-lasting
tumor regression through escalating antigen exposure
secondary to cancer cell apoptosis, enhancing an inflamed
TME (294), raising DCs activation and up-regulating
proinflammatory cytokines, causing elevated TILs (295),
and facilitating cancer relapsing by non-redundant
immune mechanisms (296, 297). Consolidative PD-L1
inhibition after concurrent chemo-radiation significantly
improved survival in unresectable stage III NSCLC in
the PACIFIC study, and this approach has become the
standard care of locally advanced NSCLC (298). Clinical
trials evaluating the concurrent administration of radiation
therapy with ICIs are ongoing.

3. Vaccines using cancer-specific peptides or DCs (237, 299,
300) and oncolytic virus therapy (301, 302) escalate the
antigen presentation and priming of T cells.

Target Oncogenic Genes
1. Blocking the MAPK/PTEN/PI3K axis such as BRAF,

MEK, and PI3K inhibitors contributes to Teff expansion,
avoiding T-cell exhaustion and apoptosis, activating
an immune-stimulatory transcriptional program, and
promoting the production of proinflammatory cytokines
and T-cell cytotoxicity (303, 304). BRAF and MEK
inhibitors in combination with PD-1 blockade therapy
showed a 73% overall response rate (ORR) and 93% stable
disease in BRAF V600-mutated metastatic melanoma
(305). However, cobimetinib, a MEK1/2 inhibitor,
combined with atezolizumab was evaluated in a phase Ib
umbrella platform MORPHEUS. The combination did not
show better efficacy compared with the control arm in the
NSCLC cohort of this study (306).

2. PARP inhibitors, as synergistic activating CD8+T-cell-
mediated antitumor response despite up-regulating PD-L1

expression, which can be complementally inhibited by
anti-PD-L1 therapy (307).

3. The combinations of nivolumab with veliparib and
pembrolizumab with olaparib were tested in advanced
solid tumors (308, 309). No response was observed and PFS
and OS were 9.0 and 26.8 weeks, respectively, in the former
trial while no results are available in the latter one.

Promote T-Cell Priming and Enhance
TILs
(1) Agonists of TLRs, as contributing to the DC mutations and
T-cell priming; (2) STING, as activating inflammatory reactions
via IFN-α cascade upon recognition of foreign DNA; (3) dual
block CTLA-4 and PD-1, as CTLA-4 inhibitor enhances the
T-cell priming, Treg exhaustion, and CTL-mediated immune
responses via more antigen recognition (310), while PD-1
inhibitor participates in later reactivation of Teff response; (4)
adoptive T-cell transfer either alone or in combination with
ICIs therapy, as increasing TILs and T-cell cytotoxicity (311,
312); and (5) bispecific monoclonal antibodies, as redirecting
cytotoxic effector cells to the TME, depleting suppressive cells,
and activating effector cells by targeting a cancer-specific antigen
and either CD3 on CTLs or CD16A on NK cells; or targeting
cancer-specific antigen and immune regulators, or targeting dual
immunomodulators (313).

Reshape Immunosuppressive TME
(1) Colony-stimulating factor 1 receptor (CSF1R) blockades, as
reducing tumor invasion via the MDSCs and M2 macrophages;
(2) inhibition of CD73, A2A receptor, as improving TME by
targeting suppressive factors; (3) dual blockade of the TGF-β and
checkpoint inhibitory receptors, as facilitating tumor penetration
with T cells and reversing the immune suppressive TME
(208); (4) anti-CXCR2/CXCR4 antibodies, as voiding immune
evasion (314); (5) VEGF inhibitors, as normalizing the immune
suppressive TME and reversing ICIs resistance (315); and (6)
IL-1β inhibitor canakinumab, as targeting tumor inflammatory
response and reducing immunosuppression. To date, there are
four clinical trials of canakinumab in various settings in the
treatment of NSCLC under way, and preliminary results from
two of them were released in AACR this year. Pembrolizumab
plus chemotherapy combined with canakinumab was safe
and well tolerated in the first-line treatment in locally
advanced or advanced NSCLC, and the recommended phase
III dose of canakinumab was 200 mg s.c. Q3W (316). The
efficacy of canakinumab or pembrolizumab monotherapy or
in combination as neoadjuvant treatment in resectable NSCLC
was assessed in the CANOPY-N study and the results are not
reported (317).

Target Alternate Immune Checkpoints
and Immune-Stimulatory Receptors
(1) Blockade of alternate coinhibitory immune checkpoint
receptors, such as LAG-3, TIM-3, TIGIT, BTLA, VISTA,
and SIGLEC9; (2) costimulatory agonists, including 4-1BB,
OX40, CD40, GITR, and ICOS, as enhancing T-cell expansion
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and effector functions while controlling Treg cell-suppressive
functions (318, 319).

Although not being widely used in clinical practice, the
antibodies targeting these immune checkpoints have exhibited
promising antitumor activity in early clinical trials in various
malignancies. LAG-3 blockades, Relatlimab [humanized anti-
LAG-3 monoclonal antibody (mAb)], and Eftilagimod alpha (a
soluble LAG-3 protein) combined with PD-1 inhibitors achieved
an ORR of 15% in previously treated melanoma (320) and 52.9%
in treatment-naïve advanced NSCLC (321), respectively. Based
on the positive preclinical results, TIGIT blockade, especially in
combination with anti-PD-1/PD-L1 mAb, has been explored in
various clinical settings of advanced tumors. MK-7684 (an anti-
TIGIT mAb) alone or combined with pembrolizumab showed
a disease control rate of 35% and 47%, respectively, in a phase
I study (322). Etigilimab (a humanized anti-TIGIT mAb) also
presented early signs of efficacy as a monotherapy, with a 0%
ORR but 22% stabilized disease in advanced malignancies (322).
Tiragolumab is a fully human IgG1/kappa TIGIT monoclonal
antibody with an intact Fc region that blocks TIGIT from
binding to its PVR ligand and to the co-activating receptor
CD226. It improved ORR either alone or combined with
atezolizumab compared to historical data in a phase I study (323).
The clinically meaningful improvement in ORR and PFS was
confirmed recently in the CITYSCAPE study (a phase II study
of tiragolumab plus atezolizumab vs placebo plus atezolizumab
as first-line treatment in patients with PD-L1-selected NSCLC)
(324). Cobolimab is a novel IgG4 anti-TIM-3 mAb and showed
clinical benefit with an ORR of 15% and 40% stable disease
in combination with anti-PD-1 mAb in a phase I clinical trial
(325). Other anti-TIM-3 mAbs including MBG453, Sym023,
INCAGN2390, LY3321367, BMS-986258, and SHR1702, as well
as a bispecific antibody targeting PD-1 and TIM-3 (RO7121661),
have also being evaluated in phase I trials with no clinical
results available.

Apart from blocking coinhibitory immune checkpoint
receptors mentioned above, several costimulatory agonists
are also attractive targets, a few of which have stepped into
clinical studies. ATOR-1015, a CTLA-4 × OX40 bispecific
antibody, was tested in a phase I study for safety and tolerability
in advanced solid tumors (326). GSK998, a humanized IgG1
agonistic OX40 mAb, combined with or without pembrolizumab
was also evaluated in a phase I trial of advanced solid tumors
including NSCLC (327). A lipid nanoparticle encapsulated
mRNA encoding human OX40L, mRNA-2416, showed good
tolerability when intratumorally injected as monotherapy in
advanced malignancies in a phase I/II trial, and the combination
with durvalumab is ongoing (328).

Epigenetic Modulation
(1) DNA methyltransferase inhibitors, e.g., sensitizing
tumors to PD-L1 blockade and elevating the secretion of
the immunostimulatory chemokines CXCL10 and CXCL9 (155);
(2) histone deacetylase inhibitors, as down-regulating MDSCs,
increasing the expression of MHC-I and antigen presentation,
and increasing tumor-infiltrating CD8+ T cells (95); and (3)
histone methyltransferase Ezh2 inhibitor, as reversing the effects
of loss of immunogenicity and antigen presentation (94).

Gut Microbiota Modulation
Modifying the composition of gut microbiome might eliminate
resistance to ICIs. Dietary modification, probiotics, and fecal
microbiota transplantation have been emerging as an adjunct
treatment to ICIs.

Of note, combination strategies that have been successful
in preclinical models do not necessarily pass safety and
performance assessments in clinical trials. In addition to
considering the complementarity of immunotherapy resistance
mechanisms, the timing and sequence are also important when
formulating combination treatment strategies. Therefore, the
preclinical model, translational study, and pharmacokinetic
study of each of these agents in combination and in isolation
are indispensable for the clinical success of combination
strategies. Furthermore, multimodal approaches, for example,
local therapy for oligo-progression after response to ICIs,
should be implemented on therapeutic combinations for better
clinical benefits.

CONCLUSION

It remains challenging to clarify the resistance mechanisms of
immunotherapy since they are complex and dynamic, and certain
mechanisms alternately overlap. Further understanding of the
primary and acquired resistance mechanisms of immunotherapy
will help clinicians to make reasonable combination treatment
decisions to bring superior survival and avoid additional toxicity
for patients with lung cancer.
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