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Simple Summary: Skin toxicity is the main complication during irradiation in the management of
early-stage breast cancer. In some cases, it may cause treatment to stop. These toxicities may be
acute (mainly radiodermatitis) and/or late (mainly fibrosis). Their understandings, their mechanisms
of occurrence, as well as their management is indispensable in order to improve the management
of these patients. Through this study we propose to provide a clear picture of these toxicities in
relation to the modalities of radiotherapy, advances in their quantification, and management to help
practitioners improve their knowledge and clinical practices on this topic.

Abstract: Background: Radiation therapy has been progressively improved in order to maintain a
satisfactory tumour response, while reducing toxicity. We will review the incidence of radiodermatitis
and fibrosis according to the various radiation and fractionation techniques. We will then focus
on the various methods used to manage, prevent, and quantify this toxicity. Method: More than
1753 articles were identified using the various search terms. We selected 53 articles to answer the
questions addressed in this study according to criteria set in advance. Result: The literature reports
lower acute toxicity with IMRT compared to 3DCRT, but no significant differences in terms of late
toxicities. Partial breast irradiation appears to be less effective in terms of local control with a higher
rate of late toxicity. Intra operative radiation therapy appears to provide good results in terms of
both local control and late toxicity. The hypofractionation has equivalent efficacy and safety to the
normofractionated regimen, but with lower rates of radiodermatitis and fibrosis. The adddition
of a boost, particularly a sequential boost, increases the risk of fibrosis and radiodermatitis during
treatment. Conclusion: The development of IMRT has significantly reduced acute toxicity and has
improved tolerability during treatment. Modified fractionation has reduced treatment time, as well
as adverse effects.

Keywords: radiation therapy; breast cancer; skin toxicities; fibrosis; radiodermatitis; radiotherapy;
IMRT; 3D

1. Introduction

Considerable progress has been made in the field of radiation therapy over recent
years, both in terms of medical physics, by replacing the use of cobalt by other particles or
radiation such as photons, protons, and other forms of particle therapy, and in terms of
radiation techniques, with two-dimensional (2D) and then three-dimensional (3D) confor-
mal radiation therapy, followed by intensity-modulated radiation therapy (IMRT) [1] and
the use of additional techniques such as lateral decubitus position [2] or deep inspiration
breath hold [3,4]. The aim of radiation therapy is therefore no longer simply the control and
eradication of tumours, but also preservation of healthy organs and reduction of toxicities
and cosmetic sequelae. Radiation therapy has therefore been progressively improved in
order to maintain a satisfactory tumour response, while reducing toxicity and preserving
the appearance of the breast.

The main skin toxicities of radiation therapy of eBC are classified into two cate-
gories: acute toxicities (<6 months), mainly consisting of radiodermatitis, and late toxicities
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(>6 months) mainly consisting of fibrosis. These toxicities are evaluated clinically and
graded according to international classifications CTCAE v4 or v5 [5], RTOG [6], etc.

The current challenge of radiation therapy is therefore to maintain good tumour
response, while minimizing side effects such as radiodermatitis and fibrosis.

In this study, we will review the incidence of radiodermatitis and fibrosis in breast
cancer according to the various radiation and fractionation techniques. We will then focus
on the various methods used to manage, prevent, and quantify this toxicity.

2. Methods

This study was carried out by searching for articles in PubMed, Medline, and Google
Scholar using the MESH terms: “fibrosis”; “breast cancer”, “radiation therapy” or “ra-
diotherapy”, “radiodermatitis”, “skin toxicity AND radiotherapy”, “skin toxicity AND
radiotherapy AND breast cancer”, “fibrosis AND radiotherapy”, “radiodermatitis AND
radiotherapy”, “fibrosis AND radiotherapy AND breast cancer”, “radiodermatitis AND
radiotherapy AND breast cancer”.

The population of interest is defined as patients treated for early breast cancer and
receiving radiation therapy. The aim of the study is to present a state-of-the-art report on
the occurrence of acute and late skin toxicities in relation to the different modalities of
radiotherapy, and to highlight evaluation practices, analysis, management, and prevention
of these toxicities through a literature review.

No limit concerning the date of publication of the articles was defined, and articles
that did not exclusively concern breast cancer, articles using radiation that is no longer
used routinely (Cobalt, brachytherapy, prone position, proton therapy, carbon therapy),
articles evaluating toxicities without using international CTCAE [7] or RTOG [6] criteria
in the case report, and studies that did not assess fibrosis and/or radiodermatitis, were
excluded. More than 1753 articles were identified using the various search terms, more
than 634 of which did not meet the inclusion criteria. We therefore selected 53 articles
to answer the questions addressed in this study according to the impact factor of the
journal where they were published (IF), and the relevance of the question addressed in
each study, according to the number of patients studied and focusing on North American
and European studies (Figure 1).
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3. Results
3.1. Pathophysiology
3.1.1. Radiodermatitis

The interaction between ionizing radiation and tissues results in the formation of free
radicals, either via a direct action on molecules or via products of water radiolysis. These
free radicals induce oxidative stress that can cause chemical, structural, and functional
changes in immediate contact with organic molecules. As skin is a hierarchical tissue,
distinct cellular compartments are responsible for cellular renewal (stem cells) and function
(mature cells). A variable proportion of stem cells, depending on the dose, die following
irradiation. However, loss of these cells does not initially induce any detectable lesions,
which are masked by differentiated cells. When differentiated cells die from senescence,
the residual number of stem cells is insufficient to compensate for physiological turnover
of senescent cells. Tissue lesions then become clinically detectable. The interval between
radiation therapy and expression of radiodermatitis is therefore dependent on the lifes-
pan of mature cells. Radiodermatitis constitutes an important factor affecting treatment
tolerability, as it determines the normal course of radiation therapy, and more severe
radiodermatitis may require discontinuation of treatment [8,9].

3.1.2. Fibrosis

Histological features of radiodermatitis range from inflammation to dermal sclerosis.
Radiation-induced lesions of both endothelium and connective tissue, amplified by the
action of growth factors, are responsible for remodelling and persistence of fibrous tissue.
Several phases of fibrosis have been described [10,11].

The prefibrotic phase is characterized by chronic inflammation. Endothelial cells play
an important role in the constitution of the prefibrotic phase. Inflammation is charac-
terized by increased vascular permeability, resulting in extravasation of serum proteins
and the formation of oedema. Destruction of endothelial cells and associated vascular
thrombosis lead to necrosis of microvessels, resulting in local ischaemia, triggering an
inflammatory reaction.

At the fibrotic phase, fibrous tissue is composed of inflammatory cells and fibroblasts.
Endothelial cells remain present during these secondary neovascularization phenomena
related to extension of fibrosis. Zones of active fibrosis are observed, characterized by the
presence of extracellular matrix, myofibroblasts, and neovessels. Fibrous tissue becomes
increasingly dense as a result of successive remodelling of the extracellular matrix during
late phases of reactivated acute inflammation [11].

3.2. Radiation Techniques (3DCRT, IMRT, IORT, PBI/APBI)

With progress in computers and robotics and a better knowledge of medical physics,
radiation therapy has evolved by proposing new radiation techniques allowing optimiza-
tion of radiation therapy.

In the vast majority of cases, breast radiation therapy is delivered by means of 3D
techniques, especially in the case of single breast radiation therapy [12]. In expert centres,
eligible patients can be treated in the lateral decubitus position [2] to limit irradiation of
healthy organs such as the lung and the heart. The development of IMRT [1] has allowed
improvement of treatment tolerability by significantly limiting the dose delivered to organs at
risk (OAR). At the present time, IMRT is only used for breast radiation therapy in patients with
specific anatomy (pectus valgus) or for bilateral lymph node or breast radiation therapy [12].

Many studies have compared the toxicity of 3D conformal radiation therapy vs.
IMRT [13–16].

The multicentre, double-blind, randomized controlled trial conducted by Pignol et al. [13]
evaluated about 330 patients with breast cancer, treated by either IMRT or conventional
radiation therapy with a protocol of 50 Gy in 25 fractions ± a 16 Gy boost. This study
demonstrated a significant reduction of the radiodermatitis rate in the IMRT arm. In partic-
ular, 31.2% of patients treated by IMRT experienced acute dermatitis compared to 47.8% of
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patients in the standard treatment arm. However, no statistically significant difference in
terms of quality of life was observed in this study. These results were confirmed by other
authors, including Krug et al. [14], who demonstrated a higher rate of radiodermatitis in
the 3DCRT arm compared to the IMRT arm, but with no significant differences in terms of
pain and dysaesthesia between the two arms.

The phase III, multicenter, prospective randomized trial conducted by
Horner-Rieber et al. [15] in 502 patients evaluated IMRT breast radiation therapy with
integrated boost (50.4 Gy/64.4 Gy) vs. 3DCRT with sequential boost (50.4 Gy/66.4 Gy).
With a follow-up of 2 years, cosmetic evaluation using the Harvard and LENT SOMA
criteria [17] did not demonstrate any significant difference in terms of atrophy/retraction,
telangiectasia, fibrosis, lymphoedema, or breast oedema between the two arms.

These clinical results are also confirmed by dosimetric data. The literature therefore
reports lower rates of acute toxicity (radiodermatitis) with IMRT compared to 3DCRT, but
no significant differences in terms of late toxicities, especially fibrosis (Table 1).

Some authors have also evaluated various IMRT techniques, particularly Tomother-
apy [18–20]. Lee et al. [19] evaluated 216 breast cancer patients treated by either IMRT or
Tomotherapy with an integrated boost regimen (50.4 Gy/60.2 Gy) with a median follow-up
of 5 years. Fewer patients experienced radiodermatitis (grade 2 to 3) in the Tomotherapy
arm [2.4% vs. 16% in the IMRT arm (p = 0.021)]. No statistically significant difference
in terms of long-term toxicities, including fibrosis, was observed between the IMRT and
Tomotherapy arms (p = 0.57).

Other radiation techniques have also been analysed, such as partial breast radia-
tion [21–24] or intraoperative radiation therapy [25–28], which are designed to limit irradi-
ation to the surgical site.

As demonstrated by Hickey et al. [21] in a Cochrane meta-analysis evaluating
7586 patients included in six different studies (ELIOT, GEC-ESTRO, TARGID, LIVI 2015,
POLGAR 2007, RAPID), acute dermal toxicity, including radiodermatitis, was less frequent
after PBI/APBI (partial breast irradiation/accelerated partial breast irradiation) (OR 0.04,
95% CI: 0.02 to 0.09; p < 0.00001). However, they observed an increased rate of late dermal
toxicity, especially telangiectasia (OR 26.56, 95% CI: 3.59 to 196.51; p = 0.001) and skin
fibrosis (OR 6.58, 95% CI: 3.08 to 14.06; p < 0.00001).

Due to the sometimes discordant results between studies, Hickey et al. were very
cautious in their conclusions concerning the tolerability of this type of radiation ther-
apy, especially as the results of their meta-analysis suggest that local recurrences may be
more frequent after PBI/APBI than after whole breast irradiation, although no significant
difference was observed [HR 1.48, 95% CI: (0.95 to 2.29)].

PBI/APBI therefore appears to be less effective in terms of local control with a higher
rate of late toxicity, but is associated with better tolerability during treatment. However,
in view of the discordant results published in the literature, no consensus has yet been
reached on this subject.

Intraoperative radiation therapy (IORT) has also been developed to allow irradiation
during breast surgery. However, the logistics and infrastructures required for intraoperative
radiation therapy have limited generalization of this strategy despite the good results
reported by various studies. For example, Key et al. [26] evaluated the dermal toxicity
and long-term cosmetic results of intraoperative radiation therapy with a mean follow-up
of 38.9 months. They reported 2.4% of grade 2 or higher fibrosis among the 41 patients
evaluated. A significantly higher rate of fibrosis was also observed when IORT was
associated with WBRT (hypofractionated or normofractionated) with 43.3% of grade 2 or
higher fibrosis among the 30 patients evaluated (HR: 0.034, p < 0.001). These results were
confirmed by the phase 3 TARGIT A study conducted by Sperk et al. [27] in 305 patients
with a follow-up of 6 years, in which the rate of grade 2 or higher skin fibrosis was not
statistically significant between the IORT and WBRT arms (p = 0.984). However, subgroup
analyses found an increased rate of grade 2–3 skin fibrosis in the IORT + WBRT arm
(37.5% vs. 5.9% for IORT (20 Gy) and 18.4% for WBRT (46–50 Gy) (p = 0.008).
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Table 1. Acute and late toxicities depending on the irradiation modality.

Authors No. of Patients Cancer Location Radiation Dose
(Gy) No. of Fractions Boost Dose (Gy) Irradiation

Modality
Radiodermatitis ≥

Grade 2 Fibrosis ≥ Grade 2 Cosmetic
Satisfaction ≥ Good

Pignol et al. [13] 330 breast cancer 50 25 16 3D vs. IMRT 47.8% vs. 31.2%
(p = 0.02) NA NA

Krug et al. [14] 446 breast cancer 50.4 28 16 3D vs. IMRT 29.1% vs. 20.1%
(p = 0.02) NA NA

Hörner-Rieber et al. [15] 502 breast cancer 50.4 28 14–16 3D vs. IMRT NA 10.4% vs. 11.5%
(p = 0.27)

77.5% vs. 77.3%
(p = 0.33)

Askoxylakis et al. [16] 502 breast cancer 50.4 28 14–16 3D vs. IMRT 47.8% vs. 31.2%
(p < 0.05) NA NA

Lee et al. [19] 216 breast cancer 50.4 28 9.8 IMRT vs. Tomo 16% vs. 2.4%
(p = 0.02)

1.7% vs. 2.4%
(p = 0.57) NA

Joseph et al. [20] 177 breast cancer 50 25 NA IMRT vs. Tomo 33% vs. 11%
(p < 0.001)

75% vs. 67%
(p = 0.13) NA

McCormick et al. [23] 2232 breast cancer 40–56 vs. 20 NA NA WBRT vs. PBI NA NA NA

Falco et al. [25] 150 breast cancer 46–50 vs. 20 23–25 vs. 1 NA IORT vs.
IORT + WBRT NA 1.4% vs. 23%

(p < 0.001) NA

Key et al. [26] 41 breast cancer 46–50.4 vs. 20 23–28 vs. 1 NA IORT vs.
IORT + WBRT NA 2.4% vs. 43.3%

(p < 0.001) 67.3% vs. NA

Sperk et al. [27] 305 breast cancer 46–50 vs. 20 23–25 vs. 1 NA IORT vs.
IORT + WBRT NA 5.9% vs. 37.5%

(p < 0.001) NA

Kraus et al. [28] 73 breast cancer 46 + 20 23 + 1 NA IORT vs.
IORT + WBRT NA 25% >90%
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IORT therefore appears to provide good results in terms of both local control and late
toxicity, but the IORT + WBRT combination significantly increases the risk of fibrosis, and
the technical and human resources required for implementation of this strategy constitute
a real obstacle to more generalized use.

Apart from modifying the radiation technique, changing the patient’s positioning can
also have an impact on toxicity. Some teams have studied radiation therapy delivered in
the lateral decubitus position [2]. Bronsart et al. [29] evaluated the efficacy and safety of
breast radiation therapy in the isocentric lateral decubitus position in 832 patients with
a median follow-up of 6.4 years. Acute and late toxicity rates were very low: 2.8% of
grade 3 radiodermatitis and 4.3% of grade 2/3 fibrosis during the study.

In addition to modifying the dose distribution, especially by reducing the dose to
organs at risk, ensuring that almost no dose is delivered to the lungs and the heart, radiation
therapy in the isocentric lateral decubitus position induces little few acute or late toxicity.
However, the patient eligibility criteria for this technique (large, mobile breasts, etc.), the
need to have trained radiotherapy technologists to maintain correct repositioning, as well
as a longer overall treatment time, make it difficult to generalize this technique.

3.3. Roles of Fractionation and Boost

Apart from modifying radiation techniques and developing new techniques, many
authors have also studied modified fractionation in the management of breast radiation
therapy. The conventional protocol comprising 50 Gy in 25 fractions has been progressively
replaced by hypofractionated protocols [30,31], such as 40.05 Gy in 15 fractions or, more
recently, 26 Gy in 5 fractions [32]. Another issue concerns the role of a boost [33,34], which
can be either integrated or sequential [14]. In addition to the safety and efficacy of these new
fractionation modes, some authors have therefore also evaluated the toxicities of these new
protocols (Table 2). Offersen et al. [35] compared the toxicity of normofractionated radiation
therapy with 50 Gy in 25 fractions vs. hypofractionated radiation therapy with 40 Gy in
15 fractions in 1854 patients with a median follow-up of 9 years after radiation therapy of
local or in situ breast cancer without lymph node invasion. The radiation-induced fibrosis
rate was higher in the normofractionated arm vs. the hypofractionated arm (OR 0.80,
p < 0.029) at 9 years of follow-up, but was not significantly different at 3 years and 5 years
of follow-up. Other studies confirmed these results by showing a trend towards decreased
acute and late toxicity in patients treated by hypofractionated protocols [36,37].

Delivery of a boost dose to the lumpectomy bed also raises the possibility of increased
toxicity due to the larger treatment volume. Bartelink et al. [34] studied the incidence
of fibrosis in patients with stage 1–2 breast cancer receiving a 16 Gy boost in 8 fractions
during 50 Gy breast radiation therapy in 25 fractions. In a population of 2657 patients with
a median follow-up of 20 years, the cumulative incidence of moderate to severe fibrosis
was higher in patients who received a boost dose [5.2% (99% CI: 3.9–6.4) in the boost group
vs. 1.8% (99% CI: 1.1–2.5) in the no boost group (p < 0.0001)].

Other authors have confirmed these findings and have also shown that a boost in-
creases the risk of radiodermatitis during treatment [33,38,39].
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Table 2. Acute and late toxicities depending on the number of fractions.

Author No. of Patients Cancer Location Radiation Dose (Gy) and
No. of Fractions (*) Boost Dose (Gy) Radiodermatitis ≥ Grade 2 Fibrosis ≥ Grade 2 Cosmetic Satisfaction

≥ Good

Offersen et al. [35] 1854 breast cancer 50 (25) vs. 40 (15) NA NA 13% vs. 11%
(p < 0.029)

90% vs. 91%
(p < 0.48)

Wang et al. [37] 729 breast cancer 50 (25) vs. 40 (15) 10 vs. 8.7 7.4% vs. 3%
(p < 0.019)

8.2% vs. 7.9%
(p < 0.69)

88.7% vs. 89%
(p < 0.39)

Wang et al. [36] 810 breast cancer 50 (25) vs. 40 (15) NA 8% vs. 3%
(p < 0.0001)

0% vs. 1%
(p < 0.67) NA

Bartelink et al. [34] 5318 breast cancer 50 (25) 16 vs. 0 NA 4.4% vs. 1.6%
(p < 0.0001) NA

Bartelink et al. [33] 2657 breast cancer 50 (25) 16 vs. 0 NA 5.2% vs. 1.8%
(p < 0.0001) NA

Palumbo et al. [39] 218 breast cancer 42.4 (16) 10.6–13.25 18.8% 2.3% NA

Pealinck et al. [40] 167 breast cancer 40.05 (15) 10–14.88 45% vs. 27%
(p = 0.037) NA NA

Brunt et al. [41] 189 breast cancer 40 (15) vs. 27 (5) vs. 26 (5) NA 51% vs. 29% vs. 36% NA NA

Murray et al. [32] 4096 breast cancer 40 (15) vs. 27 (5) vs. 26 (5) 10–16 NA 4% vs. 7.4% vs. 5.6% 70.3% vs. 69.6% vs.
73.3%
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Another unresolved issue concerns the impact of the boost sequence, integrated
or sequential, on toxicity. Paelinck et al. [40] compared acute toxicity between 40 Gy
hypofractionated radiation therapy in 15 fractions associated with a 10 Gy sequential boost
in four fractions or a 14.88 Gy boost in six fractions depending on the surgical margins
and an integrated boost of 46.8 or 49.95 Gy also depending on surgical margins. This
study demonstrated a statistically significant difference among the 167 patients evaluated
between the sequential boost arm and the integrated boost arm with a higher rate of
grade 2–3 radiodermatitis in patients treated by sequential boost (38/83 vs. 24/83 patients,
p = 0.037). However, there was no significant difference between the two arms in terms of
moist desquamation (p = 0.071).

Hypofractionated regimens are widely used in Scandinavian countries and England
and are the main drivers in the search for new protocols designed to reduce the overall
treatment time. Several studies have evaluated the efficacy, safety, and tolerability of
five-fraction breast radiation therapy [32,41]. In the FAST Forward trials, Brunt et al. [41]
evaluated the acute toxicity observed with various hypofractionated regimens, 40 Gy in 15
fractions, 27 Gy in 5 fractions, or 26 Gy in 5 fractions. A total of 189 patients, randomised
1:1:1 between the three protocols, were evaluated during treatment and up to 4 weeks after
the end of radiation therapy. No major difference was observed in terms of tolerability
or the incidence of radiodermatitis between the three groups. Grade 3 toxicity, evaluated
according to RTOG criteria, was reported in 13.6% of patients in the 40 Gy/15F group,
9.8% in the 27 Gy/5F group, and 5.8% in the 26 Gy/5F group. However, according to
CTCAE criteria, the proportions of evaluable patients with grade 3 toxicity were: 0% in
the 40 Gy/15F group; 2.4% in the 27 Gy/5F group, and 0% in the 26 Gy/5F group. Acute
toxicity was therefore slightly more frequent in the 27 Gy/5 fractions group.

Modified fractionation can therefore have an impact on acute and late toxicity, as the
literature tends to argue in favour of hypofractionation with equivalent efficacy and safety
to the normofractionated regimen, but with lower rates of radiodermatitis and fibrosis.
The adddition of a boost, particularly a sequential boost, increases the risk of fibrosis and
radiodermatitis during treatment. New, even more intensely hypofractionated regimens,
are also emerging, including five-fraction regimens that have been reported to be associated
with low acute toxicity in recent studies.

3.4. Predictive Factors (Genetic, Environmental, Epigenetic)

Potential genetic, environmental, and epigenetic predictive factors for radiation-
induced toxicity have been extensively evaluated [42–47]. Kraus-Tiefenbacher et al. [43]
conducted a retrospective study to identify factors influencing acute skin toxicity during
3D conformal radiation therapy with a protocol comprising 50 Gy in 25 fractions associated
with a 16 Gy boost in 8 fractions in 211 patients. After evaluating a large number of
different factors, smoking during treatment (p = 0.034), large breast volume (p = 0.003), and
absence of allergy (p = 0.002) were associated with an increased risk of acute skin toxicity in
multivariate analyses. These results were confirmed, in particular, by Sharp et al. [46], who
showed that smoking constitutes an independent risk factor for severe radiodermatitis
during adjuvant radiation therapy for breast cancer.

Some authors have also studied potential risk factors for the development of long-
term fibrosis [10,48]. Collette et al. [49] evaluated 3624 patients irradiated for breast
cancer with 50 Gy ± 16 Gy with a median follow-up of 10.7 years. They demonstrated a
statistically significant association between the risk of fibrosis and the maximum whole
breast irradiation [HR 1.24 (1.14; 1.35)] and concomitant chemotherapy [HR 2.52 (1.38;
4.62)]. The risk of fibrosis in the boost arm was further increased when the patient presented
postoperative oedema or haematoma (p < 0.01).

De Santis et al. [42] evaluated the risk factors for radiodermatitis and fibrosis in
337 patients with a 5-year follow-up treated according to a hypofractionated regimen of
42.4 Gy ± 2.65 Gy. In contrast with previous studies, De Santis did not identify any predic-
tive factors, such as breast volume, total dose received by the patient, or even concomitant
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chemotherapy, but showed that a boost dose increased the risk of radiodermatitis (OR: 1.9,
p < 0.02) without increasing the risk of fibrosis (OR: 1.5, p < 0.24).

Other studies have evaluated the role of genetic factors in the development of radiation-
induced toxicities [50–53]. Based on a review of the literature, Lazzari et al. [53] evaluated
the risks of increased acute or late toxicity depending on the presence of BRCA, ATM,
and P53 mutations. No increased radiosensitivity or acute or late toxicity in patients
with BRCA mutation has been reported in the literature. These data were confirmed by
Shanley et al. [51], in a retrospective study evaluating 110 patients with BRCA1/2 muta-
tion, which did not find any significant association with radiodermatitis or fibrosis. The
presence of a P53 mutation is considered to be deleterious in terms of radiosensitivity, but
its impact on acute or late clinical toxicity is difficult to assess due to limited data on this
subject, mainly consisting of in vitro data. The impact of ATM mutation on radiosensitivity
and toxicity has not been clearly established, as it is highly dependent on the type of
mutation and the various associated mutations.

Many studies have tried to identify individual, genetic, and environmental predictive
factors. However, due to the discordant data of the literature, no predictors of toxicity have
been clearly identified, but there is a trend towards a consensus concerning smoking and
breast volume as risk factors for toxicity. No genetic factor is currently considered to be a
predictor of toxicity, essentially due to the limited data available.

3.5. Treatment and Adjuvant Techniques (Creams, Dressings)

Many authors have assessed the value of adjuvant treatments, such as topical creams,
lotions, gels, or dressings, to prevent the risk of radiodermatitis during breast radiation
therapy. Chargari et al. [54] reviewed all topical treatments used for the prevention or
management of radiodermatitis and showed that some of these treatments can have
harmful effects, such as Aloe vera, which increases skin toxicity. Furthermore, no topical
treatment (topical corticosteroids, Calendula officinalis, etc.) has been shown to be superior to
trolamine. However, the small sample sizes of these studies, the poor distinction between
preventive and curative treatment, and inter- or even intra-observer variability in the
evaluation of radiodermatitis make it difficult to interpret these data, although encouraging
results have been reported for some treatments, such as hyaluronic acid.

In a study comprising 200 patients, Kirova et al. [55] did not observe any signifi-
cant difference in terms of efficacy between hyaluronic acid and simple emollient for the
management of radiodermatitis.

Other authors have assessed the use of dressings in the management and prevention of
radiodermatitis [56,57]. Bazire et al. [58] studied the efficacy of Hydrosorb® (hydrocolloid
dressing) in the management of grade 1 and 2 radiodermatitis. Hydrosorb® did not
improve the management of radiodermatitis compared to a water-based spray.

A large number of studies have evaluated adjuvant treatments in the prevention
and management of radiodermatitis. However, the small sample sizes and inter- and
intra-observer variability despite implementation of CTCAE v4 criteria make it difficult to
interpret the results of these studies. No local treatment has been shown to be superior at
the present time.

3.6. New Methods of Evaluation of Radiodermatitis (RILA, Ultrasound, Spectrometry)

One of the current challenges in the management of radiation-induced toxicities is the
prevention and the precise and objective quantification of acute and late adverse reactions.

Possible predictive tests of toxicity, particularly fibrosis, have been studied for many
years, including the comet assay [59], clonogenicity test [60], detection of the apoptosis
rate, etc., but none of these tests has shown to be sufficiently robust for use in routine
clinical practice.

However, the radiation-induced lymphocyte apoptosis test (RILA) [61], which assesses
the individual risk of grade ≥ 2 fibrosis, has provided promising results. By determining
the CD8 T lymphocyte count after delivering 8 Gy of irradiation to a blood sample, the
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RILA test has a negative predictive value of 91% for the risk of grade ≥ 2 fibrosis for a CD8
count ≥ 20% and a positive predictive value of 22% for a CD8 count < 12%. At 3 years,
a RILA test < 12% is predictive of a cumulative incidence of grade ≥ 2 fibrosis of 19%
(95% CI: 14–26%), a RILA test between 12–20% is predictive of a cumulative incidence
of grade ≥ 2 fibrosis of 9% (95% CI: 5–15%), and a RILA test ≥ 20% is predictive of a
cumulative incidence of grade ≥ 2 fibrosis of 7.5% (95% CI: 4–13%).

The major advantage of the RILA test is its high negative predictive value. The choice
of radiation technique and delivery of a boost dose to a patient can therefore be guided by
the individual risk of grade ≥ 2 fibrosis.

Bourgier et al. [62] also assessed 36-month breast fibrosis-free survival (BFFS) in
456 patients treatment by hormone therapy based on their RILA status and showed that
patients with RILA < 12% and hormone therapy (tamoxifen or aromatase inhibitor) had a
BFFS of 75% vs. 100% in the RILA > 12% group without hormone therapy (p = 0.004, hazard
ratio 5.84 [95% CI: 1.8–19.1]). The 36-month BFFS was comparable in patients with a RILA
test > 12% with hormone therapy and in patients with a RILA test < 12% without hormone
therapy (89.8% and 93.5%, respectively; p = 0.39, hazard ratio 1.7 [95% CI: 0.51–5.65]).

Several studies have assessed the methods that allow more accurate objective evalua-
tion of radiation-induced skin toxicity [61–63]. Yoshida et al. [62] investigated the use of
spectrophotometry and ultrasound to assess skin fibrosis. Ultrasound measurement of skin
thickness and Pearson coefficient allowed quantitative assessment of fibrosis compared to
the contralateral breast. In a group of 18 women treated for breast cancer, 50 Gy ± 10–16 Gy
with a median follow-up of 22 months after radiation therapy, average thickness of the
treated breast skin was 2.61 mm, while that of the untreated breast skin was 2.05 mm. A
mean increase of 27.3% in skin thickness was observed (p < 0.001). Skin thickness increased
by 38.4% for patients with RTOG grade 0, 23.8% for grade 1 patients, and 31.1% for patients
with grade 2 toxicity. In contrast, the average Pearson coefficient for the treated breast was
0.28 vs. 0.41 for the untreated breast, corresponding to a mean decrease of 34.1% (p < 0.001).
The Pearson coefficient decreased by 18.4% for RTOG grade 0, 35.0% for grade 1, and 42.6%
for grade 2 toxicity. However, spectrophotometry parameters, melanin, and erythema were
not correlated with the development of fibrosis.

These results were confirmed in more detail by Landoni et al. [63], who assessed
ultrasound to evaluate skin fibrosis after radiation therapy in 89 women with a median
follow-up of 20.5 months after hypofractionated breast radiation therapy at 34 Gy ± 8 Gy.
The mean increase in skin thickness relative to the contralateral breast was 0.52 ± 0.67 mm
and 0.62 ± 0.74 mm for the treated breast and the boost region, respectively. A significant
correlation was found between the increase in skin thickness in the irradiated breast and in
the boost region with fibrosis (Grade ≥ 1). The authors suggest that late skin reactions can
be reliably assessed by ultrasound, which is also able to discriminate regions irradiated at
different doses, including the boost region, in which the risk of fibrosis is increased.

Current research is therefore tending towards implementation of predictive tests of
fibrosis such as the RILA test, which has a good negative predictive value for radiation-
induced fibrosis, but routine use of this test remains controversial and difficult to implement.
New ultrasound-based methods are also being developed to allow objective and precise
assessment of skin fibrosis.

4. Discussion

Technological progress in the field of radiation therapy has improved treatment tolera-
bility by significantly reducing side effects. The development of IMRT [1] has significantly
reduced acute toxicity and improved tolerability during treatment. The introduction of
other techniques, such as the lateral decubitus position [2] or deep inspiration breath
hold [3,4], has also allowed a reduction of the dose delivered to organs at risk, thereby
reducing potential toxicities. Modified fractionation [32,37,41], especially for the treatment
of breast cancer, has reduced treatment time, as well as adverse effects, especially the risk of
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fibrosis. However, the addition of a boost dose increases the risk of acute and late toxicity,
especially in the case of sequential boost.

The management of radiodermatitis is not standardized at the present time and no
topical treatment has been shown to be superior, either curatively or preventively [54].
Identification of risk factors for poor tolerability of radiation therapy would allow treatment
adaptation in patients at risk. At the present time, no genetic factors, such as BRCA, ATM,
or P53, have been demonstrated to be associated with an increased risk of acute or late
toxicity [50,52,53]. Smoking, large breast volume, and delivery of a boost appear to be
emerging as risk factors for skin toxicity, but the literature on this subject remains discordant.
Many tests have been evaluated to classify the risk of fibrosis in a given patient, but remain
difficult to apply in routine clinical practice. To date, only the RILA test [59] appears to
be promising, but still needs to be validated before becoming part of routine practice.
Ultrasound [62] appears to be a reliable and reproducible technique to characterize and
evaluate radiation-induced fibrosis by measuring skin thickness and the Pearson coefficient.

New technique are decreasing the skin reactions. For example, Donovan et al. [64],
showed that the majority of intensity modulation techniques improved dose distribution
in breast volume by 5.6% to 11.1% (mainly in women with breasts of 500 cm3 or larger).

Many challenges have yet to be resolved in order to improve the tolerability of
radiation therapy, either concerning the radiation technique, with the growing use of
stereotaxic techniques or particle therapy, or by improvement of curative or preventive
treatments of fibrosis. The identification of genetic and environmental factors would also
allow tailored treatment guided by predictive tests prior to radiation therapy. The dermal
toxicity of radiation therapy has now been extensively described and today’s challenge is
to ensure better prevention, evaluation, and reduction of the risk of radiodermatitis.

At the other hand, tt is important to note that the evaluation of skin toxicity remains
subjective and may be discordant between the evaluation of the practitioner and that of the
patient [65], like was the case in the recall of the Cambridge trial [66].

5. Conclusions

The evolution of radiotherapy in recent years responds to the fundamental need to
improve patient management. In parallel with the introduction of new, more effective
treatment modalities through a combination of techniques or treatments, tolerance and the
occurrence of side effects constitute, today, preliminary data regarding the implementation
of a new treatment protocol. Today, the evaluation of the efficacy and safety of radiotherapy
is inseparable. Faced with the multiplicity of new treatment modalities (SBRT, IMRT,
Hadrontherapy, etc.), new fractionation patterns (normofractionated, hypofractionated,
ultra hypofractionated, etc.) emerge.

The evaluation of toxicities becomes essential especially as they can occur several
months or years after irradiation.

Today, many players are looking for a way to prevent, treat, and quantify the occur-
rence of these toxicities. However, to date, no method, test, or treatment is the subject of
consensus and use in current practice. Much work is underway, particularly in the field of
genetics and epigenetics, in order to understand and act on radiation-induced toxicity.
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25. Falco, M.; Masojć, B.; Rolla, M.; Czekała, A.; Milchert-Leszczyńska, M.; Pietruszewska, J.; Lewocki, M. Analysis of Breast Cosmetic
Effects 3 Years after Breast-Conserving Surgery and Intraoperative Radiotherapy with and without Adjuvant Whole Breast
Irradiation. Breast J. 2020, 26, 882–887. [CrossRef]

26. Key, S.; Miglierini, P.; Dupré, P.-F.; Guilbert, S.; Lucia, A.-S.; Abgral, R.; Conan-Charlet, V.; Uguen, A.; Pradier, O.; Schick, U.
Cosmetic Outcome and Chronic Breast Toxicity After Intraoperative Radiation Therapy (IORT) as a Single Modality or as a Boost
Using the Intrabeam® Device: A Prospective Study. Ann. Surg. Oncol. 2017, 24, 2547–2555. [CrossRef]

27. Sperk, E.; Welzel, G.; Keller, A.; Kraus-Tiefenbacher, U.; Gerhardt, A.; Sütterlin, M.; Wenz, F. Late Radiation Toxicity after
Intraoperative Radiotherapy (IORT) for Breast Cancer: Results from the Randomized Phase III Trial TARGIT A. Breast Cancer Res.
Treat. 2012, 135, 253–260. [CrossRef]

28. Kraus-Tiefenbacher, U.; Bauer, L.; Scheda, A.; Fleckenstein, K.; Keller, A.; Herskind, C.; Steil, V.; Melchert, F.; Wenz, F. Long-Term
Toxicity of an Intraoperative Radiotherapy Boost Using Low Energy X-Rays during Breast-Conserving Surgery. Int. J. Radiat.
Oncol. Biol. Phys. 2006, 66, 377–381. [CrossRef]

29. Bronsart, E.; Dureau, S.; Xu, H.P.; Bazire, L.; Chilles, A.; Costa, E.; Logerot, C.; Falcou, M.-C.; Campana, F.; Berger, F.; et al. Whole
Breast Radiotherapy in the Lateral Isocentric Lateral Decubitus Position: Long-Term Efficacy and Toxicity Results. Radiother.
Oncol. 2017, 124, 214–219. [CrossRef] [PubMed]

30. Meattini, I.; Poortmans, P.; Kirova, Y.; Saieva, C.; Visani, L.; Salvestrini, V.; Kim, J.; Jung, W.; Olmetto, E.; Mariotti, M.; et al.
Hypofractionated Whole Breast Irradiation after Conservative Surgery for Patients Aged Less than 60 Years: A Multi-Centre
Comparative Study. Acta Oncol. 2020, 59, 188–195. [CrossRef] [PubMed]

31. Valle, L.F.; Agarwal, S.; Bickel, K.E.; Herchek, H.A.; Nalepinski, D.C.; Kapadia, N.S. Hypofractionated Whole Breast Radiotherapy
in Breast Conservation for Early-Stage Breast Cancer: A Systematic Review and Meta-Analysis of Randomized Trials. Breast
Cancer Res. Treat. 2017, 162, 409–417. [CrossRef]

32. Murray Brunt, A.; Haviland, J.S.; Wheatley, D.A.; Sydenham, M.A.; Alhasso, A.; Bloomfield, D.J.; Chan, C.; Churn, M.; Cleator,
S.; Coles, C.E.; et al. Hypofractionated Breast Radiotherapy for 1 Week versus 3 Weeks (FAST-Forward): 5-Year Efficacy and
Late Normal Tissue Effects Results from a Multicentre, Non-Inferiority, Randomised, Phase 3 Trial. Lancet 2020, 395, 1613–1626.
[CrossRef]

33. Bartelink, H.; Horiot, J.-C.; Poortmans, P.M.; Struikmans, H.; Van den Bogaert, W.; Fourquet, A.; Jager, J.J.; Hoogenraad, W.J.; Oei,
S.B.; Wárlám-Rodenhuis, C.C.; et al. Impact of a Higher Radiation Dose on Local Control and Survival in Breast-Conserving
Therapy of Early Breast Cancer: 10-Year Results of the Randomized Boost versus No Boost EORTC 22881-10882 Trial. J. Clin.
Oncol. 2007, 25, 3259–3265. [CrossRef]

34. Bartelink, H.; Maingon, P.; Poortmans, P.; Weltens, C.; Fourquet, A.; Jager, J.; Schinagl, D.; Oei, B.; Rodenhuis, C.; Horiot, J.-C.;
et al. Whole-Breast Irradiation with or without a Boost for Patients Treated with Breast-Conserving Surgery for Early Breast
Cancer: 20-Year Follow-up of a Randomised Phase 3 Trial. Lancet Oncol. 2015, 16, 47–56. [CrossRef]

35. Offersen, B.V.; Alsner, J.; Nielsen, H.M.; Jakobsen, E.H.; Nielsen, M.H.; Krause, M.; Stenbygaard, L.; Mjaaland, I.; Schreiber, A.;
Kasti, U.-M.; et al. Hypofractionated Versus Standard Fractionated Radiotherapy in Patients with Early Breast Cancer or Ductal
Carcinoma In Situ in a Randomized Phase III Trial: The DBCG HYPO Trial. J. Clin. Oncol. 2020, 38, 3615–3625. [CrossRef]

36. Wang, S.-L.; Fang, H.; Song, Y.-W.; Wang, W.-H.; Hu, C.; Liu, Y.-P.; Jin, J.; Liu, X.-F.; Yu, Z.-H.; Ren, H.; et al. Hypofractionated
versus Conventional Fractionated Postmastectomy Radiotherapy for Patients with High-Risk Breast Cancer: A Randomised,
Non-Inferiority, Open-Label, Phase 3 Trial. Lancet Oncol. 2019, 20, 352–360. [CrossRef]

37. Wang, S.-L.; Fang, H.; Hu, C.; Song, Y.-W.; Wang, W.-H.; Jin, J.; Liu, Y.-P.; Ren, H.; Liu, J.; Li, G.-F.; et al. Hypofractionated
Versus Conventional Fractionated Radiotherapy After Breast-Conserving Surgery in the Modern Treatment Era: A Multicenter,
Randomized Controlled Trial from China. J. Clin. Oncol. 2020, 38, 3604–3614. [CrossRef]

38. Hamilton, D.G.; Bale, R.; Jones, C.; Fitzgerald, E.; Khor, R.; Knight, K.; Wasiak, J. Impact of Tumour Bed Boost Integration on
Acute and Late Toxicity in Patients with Breast Cancer: A Systematic Review. Breast 2016, 27, 126–135. [CrossRef]

39. Palumbo, I.; Mariucci, C.; Falcinelli, L.; Perrucci, E.; Lancellotta, V.; Podlesko, A.M.; Marcantonini, M.; Saldi, S.; Bini, V.; Aristei, C.
Hypofractionated Whole Breast Radiotherapy with or without Hypofractionated Boost in Early Stage Breast Cancer Patients: A
Mono-Institutional Analysis of Skin and Subcutaneous Toxicity. Breast Cancer 2019, 26, 290–304. [CrossRef] [PubMed]

40. Paelinck, L.; Gulyban, A.; Lakosi, F.; Vercauteren, T.; De Gersem, W.; Speleers, B.; Monten, C.; Mulliez, T.; Berkovic, P.;
van Greveling, A.; et al. Does an Integrated Boost Increase Acute Toxicity in Prone Hypofractionated Breast Irradiation? A
Randomized Controlled Trial. Radiother. Oncol. 2017, 122, 30–36. [CrossRef]

41. Brunt, A.M.; Wheatley, D.; Yarnold, J.; Somaiah, N.; Kelly, S.; Harnett, A.; Coles, C.; Goodman, A.; Bahl, A.; Churn, M.; et al. Acute
Skin Toxicity Associated with a 1-Week Schedule of Whole Breast Radiotherapy Compared with a Standard 3-Week Regimen
Delivered in the UK FAST-Forward Trial. Radiother. Oncol. 2016, 120, 114–118. [CrossRef]

42. De Santis, M.C.; Bonfantini, F.; Di Salvo, F.; Dispinzieri, M.; Mantero, E.; Soncini, F.; Baili, P.; Sant, M.; Bianchi, G.; Maggi, C.; et al.
Factors Influencing Acute and Late Toxicity in the Era of Adjuvant Hypofractionated Breast Radiotherapy. Breast 2016, 29, 90–95.
[CrossRef]

http://doi.org/10.1016/j.brachy.2020.03.003
http://doi.org/10.1111/tbj.13767
http://doi.org/10.1245/s10434-017-5920-5
http://doi.org/10.1007/s10549-012-2168-4
http://doi.org/10.1016/j.ijrobp.2006.05.042
http://doi.org/10.1016/j.radonc.2017.07.001
http://www.ncbi.nlm.nih.gov/pubmed/28734546
http://doi.org/10.1080/0284186X.2019.1695061
http://www.ncbi.nlm.nih.gov/pubmed/31760849
http://doi.org/10.1007/s10549-017-4118-7
http://doi.org/10.1016/S0140-6736(20)30932-6
http://doi.org/10.1200/JCO.2007.11.4991
http://doi.org/10.1016/S1470-2045(14)71156-8
http://doi.org/10.1200/JCO.20.01363
http://doi.org/10.1016/S1470-2045(18)30813-1
http://doi.org/10.1200/JCO.20.01024
http://doi.org/10.1016/j.breast.2016.03.002
http://doi.org/10.1007/s12282-018-0923-z
http://www.ncbi.nlm.nih.gov/pubmed/30341747
http://doi.org/10.1016/j.radonc.2016.12.023
http://doi.org/10.1016/j.radonc.2016.02.027
http://doi.org/10.1016/j.breast.2016.07.013


Cancers 2021, 13, 5928 14 of 15

43. Kraus-Tiefenbacher, U.; Sfintizky, A.; Welzel, G.; Simeonova, A.; Sperk, E.; Siebenlist, K.; Mai, S.; Wenz, F. Factors of Influence on
Acute Skin Toxicity of Breast Cancer Patients Treated with Standard Three-Dimensional Conformal Radiotherapy (3D-CRT) after
Breast Conserving Surgery (BCS). Radiat. Oncol. 2012, 7, 217. [CrossRef]

44. Lilla, C.; Ambrosone, C.B.; Kropp, S.; Helmbold, I.; Schmezer, P.; von Fournier, D.; Haase, W.; Sautter-Bihl, M.-L.; Wenz, F.;
Chang-Claude, J. Predictive Factors for Late Normal Tissue Complications Following Radiotherapy for Breast Cancer. Breast
Cancer Res. Treat. 2007, 106, 143–150. [CrossRef] [PubMed]

45. Brouwers, P.J.A.M.; van Werkhoven, E.; Bartelink, H.; Fourquet, A.; Lemanski, C.; van Loon, J.; Maduro, J.H.; Russell, N.S.;
Scheijmans, L.J.E.E.; Schinagl, D.A.X.; et al. Predictors for Poor Cosmetic Outcome in Patients with Early Stage Breast Cancer
Treated with Breast Conserving Therapy: Results of the Young Boost Trial. Radiother. Oncol. 2018, 128, 434–441. [CrossRef]
[PubMed]

46. Sharp, L.; Johansson, H.; Hatschek, T.; Bergenmar, M. Smoking as an Independent Risk Factor for Severe Skin Reactions Due to
Adjuvant Radiotherapy for Breast Cancer. Breast 2013, 22, 634–638. [CrossRef]

47. Männle, H.; Momm, F.; Münstedt, K. Vitamin D and Selenium Blood Levels and Acute Skin Toxicity during Radiotherapy for
Breast Cancer. Complement. Ther. Med. 2020, 49, 102291. [CrossRef] [PubMed]

48. Borger, J.H.; Kemperman, H.; Smitt, H.S.; Hart, A.; van Dongen, J.; Lebesque, J.; Bartelink, H. Dose and Volume Effects on Fibrosis
after Breast Conservation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 1994, 30, 1073–1081. [CrossRef]

49. Collette, S.; Collette, L.; Budiharto, T.; Horiot, J.-C.; Poortmans, P.M.; Struikmans, H.; Van den Bogaert, W.; Fourquet, A.; Jager, J.J.;
Hoogenraad, W.; et al. Predictors of the Risk of Fibrosis at 10 Years after Breast Conserving Therapy for Early Breast Cancer: A
Study Based on the EORTC Trial 22881-10882 “Boost versus No Boost”. Eur. J. Cancer 2008, 44, 2587–2599. [CrossRef]

50. Kuptsova, N.; Chang-Claude, J.; Kropp, S.; Helmbold, I.; Schmezer, P.; von Fournier, D.; Haase, W.; Sautter-Bihl, M.L.; Wenz,
F.; Onel, K.; et al. Genetic Predictors of Long-Term Toxicities after Radiation Therapy for Breast Cancer. Int. J. Cancer 2008, 122,
1333–1339. [CrossRef]

51. Shanley, S.; McReynolds, K.; Ardern-Jones, A.; Ahern, R.; Fernando, I.; Yarnold, J.; Evans, G.; Eccles, D.; Hodgson, S.; Ashley,
S.; et al. Late Toxicity Is Not Increased in BRCA1/BRCA2 Mutation Carriers Undergoing Breast Radiotherapy in the United
Kingdom. Clin. Cancer Res. 2006, 12, 7025–7032. [CrossRef]

52. Terrazzino, S.; Cargnin, S.; Deantonio, L.; Pisani, C.; Masini, L.; Canonico, P.L.; Genazzani, A.A.; Krengli, M. Impact of ATM
Rs1801516 on Late Skin Reactions of Radiotherapy for Breast Cancer: Evidences from a Cohort Study and a Trial Sequential
Meta-Analysis. PLoS ONE 2019, 14, e0225685. [CrossRef]

53. Lazzari, G.; Buono, G.; Zannino, B.; Silvano, G. Breast Cancer Adjuvant Radiotherapy in BRCA1/2, TP53, ATM Genes Mutations:
Are There Solved Issues? Breast Cancer 2021, 13, 299–310. [CrossRef]

54. Chargari, C.; Fromantin, I.; Kirova, Y.M. Importance of local skin treatments during radiotherapy for prevention and treatment of
radio-induced epithelitis. Cancer Radiother. 2009, 13, 259–266. [CrossRef] [PubMed]

55. Kirova, Y.M.; Fromantin, I.; De Rycke, Y.; Fourquet, A.; Morvan, E.; Padiglione, S.; Falcou, M.-C.; Campana, F.; Bollet, M.A. Can
We Decrease the Skin Reaction in Breast Cancer Patients Using Hyaluronic Acid during Radiation Therapy? Results of Phase III
Randomised Trial. Radiother. Oncol. 2011, 100, 205–209. [CrossRef]

56. Rosenthal, A.; Israilevich, R.; Moy, R. Management of Acute Radiation Dermatitis: A Review of the Literature and Proposal for
Treatment Algorithm. J. Am. Acad. Dermatol. 2019, 81, 558–567. [CrossRef] [PubMed]

57. Zhang, Y.; Zhang, S.; Shao, X. Topical Agent Therapy for Prevention and Treatment of Radiodermatitis: A Meta-Analysis. Support.
Care Cancer 2013, 21, 1025–1031. [CrossRef]

58. Bazire, L.; Fromantin, I.; Diallo, A.; de la Lande, B.; Pernin, V.; Dendale, R.; Fourquet, A.; Savignoni, A.; Kirova, Y.M. Hydrosorb®

versus Control (Water Based Spray) in the Management of Radio-Induced Skin Toxicity: Results of Multicentre Controlled
Randomized Trial. Radiother. Oncol. 2015, 117, 229–233. [CrossRef]

59. Azria, D.; Riou, O.; Castan, F.; Nguyen, T.D.; Peignaux, K.; Lemanski, C.; Lagrange, J.-L.; Kirova, Y.; Lartigau, E.; Belkacemi,
Y.; et al. Radiation-Induced CD8 T-Lymphocyte Apoptosis as a Predictor of Breast Fibrosis after Radiotherapy: Results of the
Prospective Multicenter French Trial. EBioMedicine 2015, 2, 1965–1973. [CrossRef]

60. Bourgier, C.; Castan, F.; Riou, O.; Nguyen, T.-D.; Peignaux, K.; Lemanski, C.; Lagrange, J.-L.; Kirova, Y.; Lartigau, E.; Belkacemi,
Y.; et al. Impact of Adjuvant Hormonotherapy on Radiation-Induced Breast Fibrosis According to the Individual Radiosensitivity:
Results of a Multicenter Prospective French Trial. Oncotarget 2018, 9, 15757–15765. [CrossRef]

61. González Sanchis, A.; Brualla González, L.; Sánchez Carazo, J.L.; Gordo Partearroyo, J.C.; Esteve Martínez, A.; Vicedo González,
A.; López Torrecilla, J.L. Evaluation of Acute Skin Toxicity in Breast Radiotherapy with a New Quantitative Approach. Radiother.
Oncol. 2017, 122, 54–59. [CrossRef]

62. Yoshida, E.J.; Chen, H.; Torres, M.A.; Curran, W.J.; Liu, T. Spectrophotometer and Ultrasound Evaluation of Late Toxicity
Following Breast-Cancer Radiotherapy. Med. Phys. 2011, 38, 5747–5755. [CrossRef]

63. Landoni, V.; Giordano, C.; Marsella, A.; Saracino, B.; Petrongari, M.; Ferraro, A.; Strigari, L.; Pinnarò, P. Evidence from a Breast
Cancer Hypofractionated Schedule: Late Skin Toxicity Assessed by Ultrasound. J. Exp. Clin. Cancer Res. 2013, 32, 80. [CrossRef]

http://doi.org/10.1186/1748-717X-7-217
http://doi.org/10.1007/s10549-006-9480-9
http://www.ncbi.nlm.nih.gov/pubmed/17221151
http://doi.org/10.1016/j.radonc.2018.06.020
http://www.ncbi.nlm.nih.gov/pubmed/29980320
http://doi.org/10.1016/j.breast.2013.07.047
http://doi.org/10.1016/j.ctim.2019.102291
http://www.ncbi.nlm.nih.gov/pubmed/32147042
http://doi.org/10.1016/0360-3016(94)90312-3
http://doi.org/10.1016/j.ejca.2008.07.032
http://doi.org/10.1002/ijc.23138
http://doi.org/10.1158/1078-0432.CCR-06-1244
http://doi.org/10.1371/journal.pone.0225685
http://doi.org/10.2147/BCTT.S306075
http://doi.org/10.1016/j.canrad.2009.04.003
http://www.ncbi.nlm.nih.gov/pubmed/19524470
http://doi.org/10.1016/j.radonc.2011.05.014
http://doi.org/10.1016/j.jaad.2019.02.047
http://www.ncbi.nlm.nih.gov/pubmed/30802561
http://doi.org/10.1007/s00520-012-1622-5
http://doi.org/10.1016/j.radonc.2015.08.028
http://doi.org/10.1016/j.ebiom.2015.10.024
http://doi.org/10.18632/oncotarget.24606
http://doi.org/10.1016/j.radonc.2016.09.019
http://doi.org/10.1118/1.3633942
http://doi.org/10.1186/1756-9966-32-80


Cancers 2021, 13, 5928 15 of 15

64. Donovan, E.M.; Yarnold, J.R.; Adams, E.J.; Morgan, A.; Warrington, A.P.J.; Evans, P.M. An investigation into methods of IMRT
planning applied to breast radiotherapy. Br. J. Radiol. 2008, 81, 311–322. [CrossRef]

65. Mukesh, M.B.; Qian, W.; Wah Hak, C.C.; Wikkinson, J.S.; Barnett, G.C.; Moody, A.M.; Wilson, C.; Coles, C.E. The Cambridge
Breast Intensity-modulated Radiotherapy Trial: Comparison of Clinician- versus Patient-reported Outcomes. Clin. Oncol. (R. Coll.
Radiol.) 2016, 28, 354–364. [CrossRef]

66. Coles, C.E.; Griffin, C.L.; Kirby, A.M.; Titley, J.; Agrawal, R.K.; Alhasso, A.; Bhattacharya, I.S.; Wilcox, M.; Yarnold, J.R.; Bliss, J.M.;
et al. Partial-breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOW trial):
5-year results from a multicentre, randomised, controlled, phase 3, non-inferiority trial. Lancet 2017, 390, 1048–1060. [CrossRef]

http://doi.org/10.1259/bjr/28583675
http://doi.org/10.1016/j.clon.2016.02.011
http://doi.org/10.1016/S0140-6736(17)31145-5

	Introduction 
	Methods 
	Results 
	Pathophysiology 
	Radiodermatitis 
	Fibrosis 

	Radiation Techniques (3DCRT, IMRT, IORT, PBI/APBI) 
	Roles of Fractionation and Boost 
	Predictive Factors (Genetic, Environmental, Epigenetic) 
	Treatment and Adjuvant Techniques (Creams, Dressings) 
	New Methods of Evaluation of Radiodermatitis (RILA, Ultrasound, Spectrometry) 

	Discussion 
	Conclusions 
	References

