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Co-expression networks tightly coordinate the spatiotemporal patterns of gene
expression unfolding during development. Due to the dynamic nature of developmental
processes simply overlaying gene expression patterns onto static representations of co-
expression networks may be misleading. Here, we aim to formally quantitate topological
changes of co-expression networks during embryonic development using a publicly
available Drosophila melanogaster transcriptome data set comprising 14 time points.
We deployed a network approach which inferred 10 discrete co-expression networks
by smoothly sliding along from early to late development using 5 consecutive time
points per window. Such an approach allows changing network structure, including
the presence of hubs, modules and other topological parameters to be quantitated. To
explore the dynamic aspects of gene expression captured by our approach, we focused
on regulator genes with apparent influence over particular aspects of development.
Those key regulators were selected using a differential network algorithm to contrast the
first 7 (early) with the last 7 (late) developmental time points. This assigns high scores
to genes whose connectivity to abundant differentially expressed target genes has
changed dramatically between states. We have produced a list of key regulators – some
increasing (e.g., Tusp, slbo, Sidpn, DCAF12, and chinmo) and some decreasing (Rfx,
bap, Hmx, Awh, and mld) connectivity during development – which reflects their role in
different stages of embryogenesis. The networks we have constructed can be explored
and interpreted within Cytoscape software and provide a new systems biology approach
for the Drosophila research community to better visualize and interpret developmental
regulation of gene expression.

Keywords: PCIT, regulator genes, RNA-Seq – RNA sequencing, developmental process, transcriptomics

INTRODUCTION

The increasing accessibility of -omics data drives the development of computational methods
to integrate different sources of information and connect the underlying molecular mechanisms
to complex phenotypes (Greenham and McClung, 2018). Among those methods, co-expression
networks gain increasing application for the ability to integrate large transcriptional datasets.
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Co-expression network allows the simultaneous identification
and clustering of genes with similar expression patterns across
multiple/contrasting conditions, providing a global overview
of the co-expression relationships between genes that are
functionally related or members of the same pathway (Marti-
Marimon et al., 2018). While including samples from multiple
conditions can straighten relevant correlations, such an approach
is prone to Simpson’s paradox, where the correlation trend
observed in individual networks is reversed when all the
samples from multiple conditions are combined in one network.
A detailed explanation of the Simpson’s paradox can be found in
this article (Wang et al., 2018).

Additionally, constructing co-expression networks
considering all samples under scrutiny has a limited ability
in identifying condition-specific modules because such a
correlation signal can be diluted by a possible lack of correlation
in other conditions (van Dam et al., 2017). But limiting the
sample size to a specific tissue/condition would reduce the
sample size, thereby compromising the statistical power in
detecting shared co-expression modules (van Dam et al., 2017).
Even with differential co-expression analysis, an approach that
identifies genes with varying co-expression relationships under
different conditions, it remains challenging to infer causality due
to the static representation and the fact that correlation does not
imply causation (Stuart et al., 2003).

Another challenge with co-expression network is the analysis
of time series data. Studying time-series gene expression enables
the identification of transient transcriptional changes, temporal
patterns of a response and causal relationships between genes
(Bar-Joseph et al., 2012). But incorporating time dependent
changes to determine causal relationships within a gene network,
such as a transcription factor (TF) and its target genes, remain
challenging, mostly because different processes gain and lose
importance over time in a non-linear fashion (Greenham
and McClung, 2018). Investigation of a single network built
from all time-point samples leads to an even poorer capture
of meaningful correlations than discussed before. This is
particularly true for dynamic processes, such as Drosophila
melanogaster embryogenesis comprising multiple developmental
stages. For example, in the early stages of embryogenesis, the
zinc finger class of TFs are predominantly expressed and a
large number of TFs are maternally contributed (Adryan and
Teichmann, 2010). In later stage, however, the homeobox TFs
were predominantly expressed and maternally contributed TFs
were significantly reduced (Adryan and Teichmann, 2010).
Therefore, one can expect different biological processes (and thus
different connections among genes) appearing and disappearing
over time, while connections for fundamental genes remain for
basic cell functions.

In this study, we employed a likelihood-based approach
to exploit the dynamics of gene networks over time using
a very comprehensive time-series dataset from a recently
published study in Drosophila melanogaster (Becker et al., 2018).
Becker et al. (2018) provided a highly detailed description of
embryogenesis assayed across 14 time points and interpreted
their data through the conventional approach of contrasting
patterns of differential expression between the various time

points, with a particular view to connect mRNA and protein
abundance data. Nevertheless, this comprehensive dataset of a
premier model to study developmental biology provides a great
opportunity to better understand the changing topology of the
Drosophila networks. The approach described here provides
a more dynamic visualization of gene expression over time
and captures the relevance of specific genes according to the
developmental stage. It can be applied to other time-series -
omics data, which we argue is more insightful than overlaying
patterns of differential expression onto static representations of
co-expression networks.

METHODS

The Drosophila embryogenesis dataset used in this study was
obtained from the NCBI’s Gene Expression Omnibus, GEO
Series accession number GSE121160. Further information about
sample collection and RNA libraries generation can be found
in the original publication (Becker et al., 2018). The mentioned
study generated a paired transcriptome/proteome time course
dataset with 14 time points during Drosophila melanogaster
embryogenesis, i.e., 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, and 20 h.
The 68 embryo RNA libraries were pooled in equimolar ratio and
sequenced on 8 lanes of a HiSeq2500 (1 × 51 cycles plus 7 cycles
for the index read).

Reads were mapped to the BDGP6 fly reference genome and
gene expression was estimated as read counts. We considered
for the analysis 7,640 genes that presented counts in at least
20 samples and more than 100 counts on average. Data were
averaged within each time point and log2 transformed. From
the genes that passed quality control, we focused on 3,568 genes
clustered according to (Becker et al., 2018), based on pairwise
comparison of genes up or down-regulated (relative to the first
time point – 0 h) in mRNA and protein data, resulting in
groups named to represent the gene status on mRNA/protein:
up/up (495 genes), down/up (1,736 genes), down/down (1,022
genes), and up/down (315 genes). Genes were also classified as
regulators (791 genes) based on the list provided by Rhee et al.
(2014) consisting of essential genes involved in replication and
transcription, splicing, DNA repair and cell division.

To identify key regulators of Drosophila embryogenesis
among the 791 pre-defined regulators mentioned before, we
applied the regulatory impact factor metrics (RIF; Reverter
et al., 2010) considering all clusters and regulators as targets
(4,133 genes). RIF has been applied in a range of biological
circumstances reviewed in Hudson et al. (2012) and Ehsani
and Drabløs (2020), including a very recent example relating
to how sunitinib drug treatment influences kidney cancer (Al-
Lamki et al., 2020). In brief, RIF combines the correlation
between a regulator and its potential targets with the degree
of differential expression of the targets between the tested
conditions. Therefore, RIF requires contrasting conditions,
which we defined as early (the first 7 time points) vs. late (the
last 7 time points) embryogenesis. The results are comprised
by two metrics designed to assign scores to (1) regulator
genes consistently differentially co-expressed with target genes
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(RIF1), and to (2) those with the most altered ability to predict
the abundance of target genes (RIF2). Regulators with scores
deviating ± 1.96 SD from the mean (corresponding to a nominal
t-test P< 0.05) were considered significant and labeled as “key.”

The dynamic aspects of gene expression during embryogenesis
were explored by creating 10 groups of 5 consecutive time points
(i.e., 0–4 h, 1–5 h and so on) which were then used to create
10 networks by applying the Partial Correlation and Information
Theory (PCIT) algorithm (Reverter and Chan, 2008) to the 4,133
genes (clustered genes and regulators). PCIT combines partial
correlation coefficients with information theory to determine
locally significant correlations automatically, avoiding the need
for the specification of fixed correlation cut-offs. In short, PCIT is
a data driven approach that explored all the correlations between
possible triplets of genes prior to the identification of significant
correlations that are within extremes of the distribution (Reverter
and Chan, 2008). The outputs of PCIT were visualized on
Cytoscape Version 3.7.1 (Shannon et al., 2003). One additional
network was created considering all the time points to allow us to
compare the two approaches.

To further explore the networks, we eliminated connections
that were present in six or more networks, as those were
considered to be fairly conserved and would not reflect the
dynamic aspects of gene expression during embryogenesis. On
the other side, we kept only connections that appear in the same
direction (positive or negative) in at least 3 consecutive networks,
to capture more meaningful correlation and avoid technical
noise. Finally, we focused on correlations involving key regulators
and explored the changes between networks over time by creating
an animated image in Graphics Interchange Format (GIF).
Functional enrichment analysis was performed on STRINGv10
online platform (Szklarczyk et al., 2015) using hypergeometric
test and correction for multiple tests (FDR < 0.05).

RESULTS AND DISCUSSION

By defining 5 consecutive time points as the number of samples
used to construct co-expression networks and sliding forward
one time point at a time, we generated 10 networks and compared
them to recover some of the dynamic aspects of gene expression
during Drosophila embryogenesis. The number of consecutive
time points and total networks were arbitrary and designed
to generate the higher number of networks while keeping a
reasonable number of samples to extract meaningful correlations.
Our goal was to demonstrate that changes in gene behavior over
time can be captured and add value to the interpretation of the
underlying biological processes. However, those parameters can
be adjusted according to the biological question and number of
samples under investigation.

Comparing the characteristics of each network (Table 1),
although they were created based on the same set of 4,133 genes,
they presented different numbers of significant connections
(edges) which reflects the appearance and disappearance of
significant correlations over time. Most of the other topological
parameters remain unchanged or demonstrate very slight change.

The variation in the number of connections per gene in
each network was captured in Figure 1. The co-expression

networks demonstrated a scale-free Power-law connectivity
distribution; a few nodes are highly connected (hubs) and
many nodes are lowly connected (Barabási and Oltvai,
2004). Although the distribution of degree (number of
significant connections per gene) change according to
the network, a higher proportion of genes possess lower
degree (between 50 and 150 connections), while some
networks present a few genes with possessing as many as
470 significant connections.

Comparing the connections between genes across the
networks, only 74 were present in all the networks as
illustrated in Supplementary Figure S1A. Those conserved
connections involved a set of 131 genes which presented
enrichment for KEGG pathways ribosome (FDR = 1.63e-
21), spliceosome (FDR = 3.92e-08), and DNA replication
(FDR = 2.45e-05, Supplementary Figure S1B), all terms related
to basic cell functions for maintenance of life. Although
in this study our aim was to explore the dynamic aspects
of genes expression and therefore focus on connections
changing over time, exploring conserved connections across
several consecutive networks is also a valid strategy to
understand the biological mechanisms behind the process
under investigation. In this study, however, most of the
connections were present in only one of the networks (1,520,837
out of 2,400,823 total significant connections; Supplementary
Figure S1A) and the highest level of overlap occurred
at around 4 consecutive networks (Supplementary Figure
S1C), reflecting the changes in correlations as samples are
gradually replaced.

The RIF analysis performed by contrasting the first 7
developmental time points against the last 7 resulted in 59 key
regulator genes (P < 0.05; Supplementary Figure S2). The
need to define contrasting conditions and the high overlap
between consecutive networks led us to perform RIF considering
all samples as opposed to comparing consecutive networks.
Although all 59 key regulators were only significant according
to RIF2, if we look at the top 10 regulators according to
RIF1 (Supplementary Table S1) we will find HmgD, Ubx,
and Sp1, all genes previously reported for their roles in
Drosophila embryogenesis. In details, HmgD is a high mobility
group protein that is highly concentrated at the beginning
of Drosophila embryogenic development but the exact role
remain unclear (Renner et al., 2000). On the other hand, Ubx
plays an important developmental role throughout Drosophila
embryogenesis by affecting abdominal identities during early
stage of embryogenesis and thoracic segments identities in
later stage of embryogenesis (Lamka et al., 1992). Epigenetic
enhancer silencing was found to regulate Ubx expression at
different embryonic stage by responding to Ubx levels and
genetic variation (Crickmore et al., 2009). Similar to Ubx, Sp1
also plays an important developmental role during Drosophila
embryogenesis where the effect is confined to ventral appendage
specification that affects the leg development at larval stage
(Estella and Mann, 2010). These results reflect the aptitude of RIF
analysis to put forward genes with regulatory potential.

RIF and PCIT are related in the sense they are both assessing
patterns of connectivity via co-expression. By sorting the 59
key regulators according to their connectivity on network 1
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TABLE 1 | Topological parameters of co-expression networks.

Net1 Net2 Net3 Net4 Net5 Net6 Net7 Net8 Net9 Net10

Nodes 4,133 4,133 4,133 4,133 4,133 4,133 4,133 4,133 4,133 4,133

Edges 414,539 354,486 450,098 380,369 332,086 352,702 337,808 421,647 370,491 331,339

CC 0.50 0.49 0.47 0.45 0.45 0.44 0.45 0.45 0.44 0.44

NCC 1 1 1 1 1 1 1 1 1 1

Diameter 7 6 6 6 6 6 6 6 6 6

Centrz 4 5 4 4 4 4 4 4 4 4

avSpl 0.05 0.04 0.06 0.06 0.04 0.05 0.05 0.06 0.05 0.04

avNeighb 3.52 3.51 3.32 3.21 3.32 3.29 3.29 3.10 3.27 3.30

Density 201 172 218 184 161 171 163 204 179 160

Heterog 0.05 0.04 0.05 0.04 0.04 0.04 0.04 0.05 0.04 0.04

CC, clustering coefficienta; NCC, connected componentsb; Centrz, centralizationc; avSpl, average shortest path lengthd; avNeighb, average number of neighborse;
Heterog, heterogeneityf. aClustering coefficient – a ratio N/M where N is the number of edges between the neighbors of a node and M is the maximum number of
edges that could possibly exist between the neighbors of a node. bConnected components – an indication of network connectivity where a lower number of connected
components suggests a stronger connectivity. cCentralization – the degree to which a few members hold the greatest number of connections in the network. High
centralization score represents a highly centralized network where only a few members hold the most central positions. dAverage shortest path length – expected distance
between two connected nodes. eAverage number of neighbors – average connectivity of a node in the network. fHeterogeneity – tendency of a network to contain hub
nodes.

(representing the earliest embryogenesis stage) it is possible to
notice two blocks of key regulators: the ones increasing the
number of connections over time and the ones decreasing the
number of connections over time (Figure 2). Considering all
the genes used for network construction, 12 out of the 100 least
connected genes are key regulators that increase connectivity
over time, representing a significant enrichment (P = 19.02e-09).
On the other side, key regulators that decrease connectivity over
time are more spread among all the genes in network1.

Some of the key regulators were previously reported for
their roles in Drosophila embryogenesis. For example, Tusp
(tubby domain superfamily proteins) expression was detected
in sensory neurons and brain cells during the later stages
of Drosophila embryogenesis and this is consistent with our
findings, showing an increased connectivity of Tusp during late
embryogenesis (Ronshaugen et al., 2002). Other key regulators
with increased connectivity over time include slbo (slow border
cells) and DCAF12 (DDB1 and CUL4 associated factor 12). The
slbo locus is vital for regulated cell migration during Drosophila
development and a null mutation can lead to lethality in late
embryonic or early larval life (Montell et al., 1992). This is
consistent with the increased connectivity of this gene over time,
indicating an increased activity toward late developmental stages.
Concordantly, DCAF12, a regulator of apoptosis in Drosophila,
is also reported in the literature as having a significant increase of
connectivity during late embryogenesis (Hwangbo et al., 2016).
Thus, it is reasonable to hypothesize the increased connectivity of
slbo and DCAF12 are important for the survival of the embryo.

Some of the key regulators with decreased connectivity over
time were also previously studied in the context of Drosophila
embryogenesis. One example is bcd (bicoid), a gene that has been
well studied for its role in the anterior-posterior specification
during Drosophila embryogenesis (Frohnhöfer and Nüsslein-
Volhard, 1986). According to our results, bcd demonstrated
the highest connectivity during early embryogenesis which is
consistent with a previous study where mRNA of bcd were highly

expressed in early embryo for anterior specification (Berleth
et al., 1988). Likewise, Hmx (homeobox) gene has been shown
to be expressed in developing Drosophila brain during early
embryonic stages and it was suggested to be paramount for the
development of the Drosophila central nervous system (Wang
et al., 2000). The Drosophila Rfx (regulatory factor X) gene was
previously identified as being a peripheral neuron marker and can
also be found in the brain, although its presence is not restricted
to embryogenesis but throughout development (Vandaele et al.,
2001). The distinct change in connectivity of Rfx between early
and late embryogenesis in our analysis implies its possible role
during embryogenesis that is yet to be elucidated. We also
found the mld (molting defective) gene to decrease connectivity
over time. The mld gene is required for the production of
ecdysone, a hormone that controls molting during Drosophila
larval development (Ono et al., 2006). Nevertheless, there is lack
of evidence of mld role during embryogenesis.

By focusing only on connections involving key regulators and
present in less than 6 networks, we can observe the changes in
the co-expression network over time regarding key regulators
gaining and losing connections, as well as the change in the
direction of the connections. When a gene is highly connected
(present significant correlation with many other genes in the
network), it is considered a central regulator of gene expression,
since a slight change in their expression will simultaneously
influence several other genes. This tightly connected cluster of
genes is expected to work coordinately to a specific biological
function or pathway relevant to the trait under investigation
(Stuart et al., 2003). When in a different condition or, in this case,
a different set of time points, the same gene does not demonstrate
high connectivity, the lack of significant correlations indicates
that this gene, and therefore the biological process it represents, is
not so relevant to the phenotype anymore. In our study, by sliding
one time point at a time and creating consecutive networks,
we were able to visualize the gradual increase and decrease of
connectivity of key regulators over time, which is related to the
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FIGURE 1 | Number of genes within different degree ranges in each of the 10 networks. Degree refers to the number of significant connections per gene. All
networks were comprised of 4,133 genes/nodes.

increase or decrease of their role in each particular moment.
To illustrate that, Figure 3 shows two of our key regulators,
bcd (Figure 3A) and Tusp (Figure 3B), and their first neighbors
(direct connections). For a dynamic representation of the changes
in the networks over time, please refer to Supplementary File S2
(bcd) and Supplementary Files S3 (Tusp).

As discussed earlier, the roles of bcd and Tusp in the beginning
and in the end of embryogenesis, respectively, are well known
and revealed here by the changes in number of connections
over time. In contrast, combining connections from all the
10 networks in a single network hinders the observation of
such changes which consequently complicates the extraction of
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FIGURE 2 | Connectivity of the 59 key regulators in each network. Connectivity was calculated as the number of significant connections of a gene divided by the
number of significant connections of the most connected gene in the network.
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FIGURE 3 | Co-expression networks considering only the first neighbors (direct connections) of bcd (A) and Tusp (B) genes. The figure compares the result
obtained creating one single network with all the time points of Drosophila embryogenesis (All) and the 10 networks constructed based on our dynamic approach
(1–10). Red triangles represent key regulators and blue ellipses represent first neighbors of Tusp and bcd. Only connections appearing consistently in at least 3
networks and in less than 6 networks are reported for networks 1 to 10. Orange and green axis represent positive and negative correlations, respectively.
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information regarding regulatory role of the gene at specific
time points. Although considering all time points leads to
numerous significant connections that are statistically more
robust and can be important to understand the overall function
of a gene, the dynamic aspects expected to be represented
in a time series data is actually lost. To compensate for
the small number of time points used in each network, our
approach focused on connections appearing consistently in
at least three consecutive networks. It is important to note
that tissues samples collected for any RNA-Seq experiment
are prone to bias due to cellular heterogeneity (Kukurba and
Montgomery, 2015). In our particular example, each time
point represents the combined expression of multiple cell types
with specific functions in the embryo. Avoiding such bias
would involve approaches such as single-cell RNA sequencing,
which would significantly increase the costs of the experiment
(Nguyen et al., 2018).

With a likelihood-based approach, we were able to capture
the dynamicity of gene networks across different time points in
Drosophila embryogenesis, focusing on key regulatory genes.
Our approach provides a novel and complementary strategy
to understanding the topology of gene networks by sliding
smoothly from early to late development. One can focus on
specific dynamic aspects such as genes with increasing or
decreasing connectivity over time, or even explore conserved
mechanisms along the biological process under investigation.
Although it is out of the scope of this work to discuss specific
biological aspects of Drosophila embryogenesis, we were able
to capture some known biological signals regarding early and
late developmental stages. Our results recapitulate the known
molecular biology of Drosophila embryogenesis and revealed

new insights for further studies. Being able to extract such
comprehensive information justify the value of this approach.
We anticipate the dynamic investigation proposed here being
applied to other time-series-omics data, as a way to further
explore regulatory aspects of gene expression changes over
time. We argue this approach is preferable to overlaying
patterns of differential expression onto static representations of
co-expression network.
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