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Malignant growth is defined by multiple aberrant cellular features, including

metabolic rewiring, inactivation of tumor suppressors and the activation of

oncogenes. Even though these features have been described as separate

hallmarks, many studies have shown an extensive mutual regulatory

relationship amongst them. On one hand, the change in expression or

activity of tumor suppressors and oncogenes has extensive direct and

indirect effects on cellular metabolism, activating metabolic pathways

required for mal ignant growth. On the other hand, the tumor

microenvironment and tumor intrinsic metabolic alterations result in changes

in intracellular metabolite levels, which directly modulate the protein

modification of oncogenes and tumor suppressors at both epigenetic and

post-translational levels. In this mini-review, we summarize the crosstalk

between tumor suppressors/oncogenes and metabolism-induced protein

modifications at both levels and explore the impact of metabolic (micro)

environments in shaping these.

KEYWORDS

tumor suppressor gene, post-translational modification, metabolites, tumor
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Introduction

Cancer initiation and progression are characterized by a series of genetic and

epigenetic alterations (1). As such, mutations inducing a gain-of-function in

oncogenes or a loss-of-function in tumor suppressor genes (TSGs) are able to adjust

the cell cycle boundaries and transform a mammalian cell into its malignant derivative (2,

3). As a result, the cells maintain continuous growth thanks to aberrant oncogenic

signaling and the inactivation of cell cycle suppressors (4, 5).
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To fulfill the energy and bio-mass demands of continuous

proliferation, malignant cells acquire the capacity to rewire their

metabolism (6). During this reprogramming, tumors rely on specific

metabolic pathways depending on extrinsic factors like the site of

tumor growth, as well as intracellular signals (7). Previously,

mutations in oncogenes and TSGs have been linked to an altered

metabolic phenotype, with the Warburg effect – the preference for

glycolysis even under sufficient oxygen supply – as an example of

metabolic reprogramming regulated by oncogenic signaling (8–12).

Nevertheless, while oncogenic signaling reprograms cellular

metabolism, also metabolites and metabolic enzymes themselves

are able to modulate the activity of oncogenic proteins in a bi-

directional feedback loop (13).

One way by which the function of an (onco)protein can be

affected bymetabolites is through proteinmodifications, a process in

which a small chemical substrate (such as lactyl-CoA, palmitoyl-

CoA, acetyl-CoA, succinyl-CoA) is covalently bound to a protein of

interest (14). Depending on the type and dynamics of the

modification, this changes the transcription of oncogenes or their

protein stability, interaction, localization and overall activity (14).

Many of the attached substrates are derived from central carbon

metabolites, hereby linking themetabolic phenotype to downstream

proteinmodifications (13).Consequently, changes in themetabolism

and its derivedmetabolites can alter themodifications during cancer

progression and thus the downstream regulation of the protein

signaling cascade.

A tumor does not only consist of transformed cancer cells, but

contains a complex entity of heterogeneous cell types which has

been referred to as the “tumor microenvironment” (TME) (15).

This TME displays a differing nutritional and metabolite

composition depending on the intracellular metabolism of the

various cell types, the cell-cell interactions and the specific tumor

location in the body (16, 17). This change in nutrient availability

will not only directly affect the fuels used for cellular proliferation,

but will also alter metabolite-derived protein modifications.

Therefore, the type and extent of the modifications will depend

on the environment in which the cancer cells site (18).

In this mini-review, we highlight a select number of established

and emerging metabolite-derived protein modifications by which

epigenetic changes related to oncogenes/TSGs or modulation of

oncogenic protein products can be induced; and explore the role of

the metabolic microenvironment in shaping these modifications.
Lactylation

While a tumor grows, the inner center becomes deprived of

oxygen. This phenomenon, called hypoxia, induces direct

metabolic, transcriptomic and genetic changes within multiple cell

types in the TME (8, 19). Both the lack of oxygen and the Warburg

effect push the cancer cells to mainly rely on glycolysis, produce

high levels of lactate and even excrete the metabolite into the

extracellular space. This lactate has long been considered a
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metabolic waste product, but gained more notice after the

discovery of several novel physiological functions in past years.

Indeed, lactate is now known as a fuel for mitochondrial

metabolism and as immune regulator through impairing cytokine

production and polarization (20–25). However, the study of lactate

function at molecular level is still a largely unexplored area.

Next to its conventional role in central carbon metabolism,

lactate and its derived acyl-coenzyme A (CoA) - lactyl-CoA - have

been shown tomodify histone proteins in a process called lactylation

(26). In this novel protein modification, lactic acid from exogenous

and glucose-dependent endogenous sources is covalently bound to a

lysine residue in histone proteins and directly affects gene

transcription in multiple cancer cell types and macrophages under

hypoxic conditions (26). Over the past few years, a growing number

of studies show a strong association between histone lactylation and

oncogenic signaling to induce the progression of human cancers (27,

28).Accordingly, elevated levels of global and specificH3K18histone

lactylation in ocular melanoma tissues have been associated with

poor patient prognosis, which could be related to the transcriptional

levels of thenovel oncogeneYTHN6methyladenosineRNAbinding

protein (YTHDF2) in tumor-initiating myeloid cells (Figure 1) (29).

LactylatedYTHDF2 recognizes efficiently them6Amodification sites

in themRNAs of TSGs such asPER1 and P53 and then induces their

degradation to accelerate tumor progression of ocular melanoma.

Geneticallyorpharmacologically impairing thishistone lactylationof

YTHDF2 not only inhibit proliferation and migration in vitro, but

also reduces tumor sizeof orthotopic xenografts of ocularmelanoma,

reflecting the relevance of this modification in vivo (29).

Not only deprivation of oxygen, also the general availability of

exogenous lactate can inducehistone lactylation in adose-dependent

manner, highlighting the role of themetabolicmicroenvironment in

inducing this protein modification (26, 27, 30). Indeed, in tumor-

infiltrating myeloid cells – a key population involved in tumor

immune escape – environmental lactate was shown to increase the

transcriptional expression of oncogene methyltransferase like 3

(METTL3) through lactylation of histone H3K18. Remarkably,

they found that lactate also directly targets two lysine residues in

theMETTL3protein,which is highly essential for its activity to target

RNAs and add m6A-modifications (Figure 1). By inserting these

modifications in themRNAof JAK1, lactylatedMETTL3 strengthens

the pro-tumoral JAK/STAT3 pathway and enhances tumor

progression of colon cancer both in vitro and in vivo (31).

In non-small cell lung carcinoma (NSCLC), which has been

shown to highly take up lactate for energetic purposes in vitro and

in patients, this metabolite can act in two ways to aid cell survival

(28). First of all, lactate fuels the tricarboxylic acid (TCA) cycle in

the mitochondria to generate energy in terms of ATP. Next to that,

lactate can activate the downstream transcription of hypoxia

inducible factor 1 (HIF-1) through lactylating the promoter

regions of glycolytic enzymes like hexokinase 1 (HK-1). As HIF-1

signaling is known to support the glycolytic phenotype and induce

lactate generation, lactate thus stimulates its own regeneration by

acting as transcriptional regulator (28, 32). All of this illustrates the
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link between a nutritionally enriched environment and epigenetic

regulation of oncogenic signaling through nutrient-derived protein

modification. However, more research will be needed to gain a

comprehensive understanding of how environmental lactate

stimulates cancer growth through (histone) lactylation

of oncogenes.
Protein lipidation

Upon measuring interstitial fluid of mice and patient-

derived melanoma xenografts, marked increases in various free

fatty acid (FA) species were seen, suggesting dynamic changes in

lipid composition in the TME (33). Indeed, numerous studies

have indicated the uptake of exogenous FAs and lipids by cancer

cells to boost their tumor growth in vitro and in vivo (33–37). It

is widely accepted that lipids and FA metabolism provide an

important source of energy in cancer cells. However, other roles

for fatty acids and their by-products are emerging in literature

(38). In that regard, fatty acids palmitate and myristate have

been shown to associate with proteins in order to enhance their

hydrophobicity, protein-protein interactions and improve

protein folding and stability (39). This attachment of lipid

species is termed protein lipidation and comprises an essential

class amongst the metabolic post-translational modifications

(PTMs) (40).
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S-Palmitoylation

Attachment of palmitoyl-CoA - the acyl-CoA derived

from palmitate - occurs through a thioester bond with a

cysteine residue in the protein of interest (39, 40). This process

called S-palmitoylation is a key feature for protein functionality

and its imbalance can induce detrimental consequences in terms of

cellular malignancy (41, 42). Transfer of the palmitoyl-CoA occurs

enzymatically through a family of zinc finger DHHC-containing

palmitoyl S-acyltransferases (DHHCs), of which multiple have

been implicated in various cancer types like renal, pancreatic,

ovarian and gastric cancer (40, 43, 44).

As S-palmitoylation drives protein stability, this lipid-derived

protein modification can affect oncogenic and tumor suppressor

protein products to promote cancer growth. For example, signaling

of tyrosine kinase EGFR – one of the essential drivers of oncogenic

signaling in various types of lung cancer– is amplified andprolonged

thanks to its palmitoylation by transferase DHHC20 (Figure 1) (45).

Since EGFR is known tomitigate its signaling throughPI3K-Akt and

RAS, loss of DHHC20 or a palmitoyl-resistant EGFR significantly

reduces their oncogenic signaling and downstreamMyc in a mouse

model of oncogenic KRAS-driven lung adenocarcinoma and

subsequently affects tumor growth both in vitro and in vivo (45, 46).

Other well-known example of oncogenes regulated by S-

palmitoylation is the GTPase RAS (Figure 1), which is more

explicitly discussed in the mini-review from Busquets-Hernandez
FIGURE 1

Schematic overview of metabolite-derived modifications palmitoylation (Pal), succinylation (Suc), glycosylation: O-GlcNAcylation (blue squares) and
sialylation (pink squares), acetylation (Ace), lactylation (Lac) and myristoylation (Myr) affecting various oncogenes and TSGs at epigenetic level or post-
translational level. Transcriptionally regulated oncogenes are put in squares and oncoproteins or tumor suppressor proteins in ovals. Thick arrows indicate
transcriptional induction. B-cell lymphoma 6 protein (Bcl6), B-cell lymphoma 11a protein (Bcl11a), cytidine monophosphate sialic acid (CMP-sialic acid),
Coenzyme A (CoA), Epidermal growth factor receptor (EGFR), hypoxia-inducible factor 1 (HIF1), Methyltransferase 3 (Mettl3), tricarboxylic acid (TCA),
uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), YTH domain-containing family protein 2 (YTHDF2). Figure created with Biorender.
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et al (47). With RAS proteins being amongst the most frequently

altered oncogenes in various human cancers, targeting their

palmitoylation might be an effective therapy for multiple cancer

types. As such, mice transplanted with bone marrow cells

expressing the palmitoylation-deficient NRAS mutant remained

without malignant growth for two years, while the wild-type

oncogene limited survival to a maximum of 3 months upon

developing a fatal myeloid leukemia-like disease (48). Also,

recently, it was shown that members of the a/b hydrolase

domain 17 family (ABHD17) family efficiently depalmitoylate

NRAS (removal of the palmitoyl-CoA group). Reducing the

expression of the ABHD17 family or treatment with a potent

new pan-inhibitor – ABD957 – which targets all family members

both impairs N-RAS signaling and hereby tumor growth in AML

and immortalized kidney cells (49, 50). Therefore, aiming at the

palmitoylation/depalmitoylation cycle of oncogenes provide a novel

opportunity to target cancer cells that are dependent on NRAS for

their growth (50).

Tumor suppressors can also be affected by S-palmitoylation. It

was shown that S-palmitoylation of tumor suppressor p53

promotes its nuclear translocation and subsequent signaling (51).

However, multiple in vitro cancer cells carrying a wild-type p53 are

able to circumvent this PTM by recruiting epigenetic regulators to

the promoter region of palmitoyltransferase DHHC1 (51). By doing

this, cancer cells can overcome the tumor suppressive activity of p53

and promote their own progression (51). In addition,

palmitoylation of protein GNA13 – a TSG commonly mutated in

germinal center B-cell-like diffuse large B-cell lymphoma (GCB-

DLBCL) and Burkitt’s lymphoma –was shown to be essential for its

protein stability, membrane association and tumor suppressor

activity (52). Interestingly, it was recently shown that GNA13

negatively correlates with the expression of cell death regulator

BCL2 in a palmitoylation-dependent manner in these GCB-DLBL

cells. By affecting the palmitoylation of GNA13, these cancer cells

with a wild-type GNA13 protein became again sensitized to a BCL2

inhibitor, suggesting GNA13 palmitoylation as potential target for

combinatory therapy with BCL2 inhibitors (53).

Another example of a tumor suppressor protein whose

palmitoylation is essential for its activity is Scribble (SCRIB), a

protein critical in cell polarity and cell-cell junctions (40, 54). S-

palmitoylation by DHHC7 is essential for its efficient plasma-

membrane targeting and subsequent tumor suppressive activities.

Indeed, upon loss of its palmitoyl group, downstream oncogenic

pathways of the Hippo pathway such as Yes-associated protein

(YAP), MAPK and PI3K/Akt take over and promote tumorigenesis

in immortalized kidney, ovarian and breast cancer cell lines (40, 54).

With palmitate being one of the most abundant FAs, an

increased abundance and uptake within the TME could have a

direct impact on the S-palmitoylation of target proteins in the

various cell types. Even though this environmental link has not been

described yet in cancer models, an increase in palmitate abundance

due to diet or disease induces hyper-palmitoylation in hippocampal

neurons and hepatocytes of mice (55–57). Therefore, considering
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the key role of palmitoylation in regulating protein localization and

function and a marked increase of FAs in TME, further work

investigating the relationship between these two features will arise.
Myristoylation

Like palmitate, myristate and its derived myristoyl groups

(14-carbon saturated fatty acyl groups) can be covalently

attached to N-terminal glycine residues of proteins (58, 59).

This lipidation called myristoylation is also critical for protein

localization and stability, and it has been linked to various

malignancies such as ovarian, lung cancer and leukemia (60, 61).

Lipidomics analysis of metastasizing ovarian cancer cells

identified specifically myristic acid as being highly enriched

compared to non-metastatic cells (60). Indeed, the increased

myristic acid abundance was seen to enhance ovarian cancer in

both mice and patients’ samples by inducing myristoylation of the

oncogenic SRC pathway (Figure 1) (62, 63). Src and Src family

kinases (SFKs) are proto-oncogenes that play a key role in regulating

various cell surface signaling, and SFK myristoylation was shown to

induce attachment to the cytoplasmic membrane and improvement

their kinase activity (62, 63). Next to ovarian cancer, also prostate

cancer progression can be affected through inhibition of SRC

myristoylation, highlighting its importance in various cancer types

(64). Myristoylation plays an important role in the in vivo growth of

lung cancer, by affecting both tumor suppressor FUS1 and oncogene

methyl transferase EZH2 (65, 66). While myristoylation of FUS1 is

highly essential for its ability to suppress in vivo tumor growth,

myristoylated EZH2 was shown to efficiently bind with STAT3 and

promote in vivo lung cancer (67).
Acetylation

Multiple nutritional sources (glucose, fatty acids, acetate, amino

acids, etc) can generate acetyl-CoA, a metabolic intermediate

carbon source with a key role in mitochondrial energetic

purposes and lipid biosynthesis (68). Next to its metabolic role,

acetyl-CoA can act as a substrate for acetylation, a reversible protein

modification in which an acetyl group from acetyl-CoA is linked to

lysine residues in histone or non-histone proteins. This

modification, catalyzed by lysine acetyltransferases (KATs,

formerly termed histone acetyltransferases or HATs), has been

shown to contribute to cancer development and progression

through the regulation of gene transcription (69–71). Indeed,

cancer cells maintain their oncogenic signaling through

acetylation of their epigenome, with the aberrant expression of

MYC, BCL6 and BCL11A induced by acetylation of histone H3

lysine 27 (H3K27) in lymphoma as an example (Figure 1) (72).

While histone acetylation has been proven to regulate the

expression of some oncogenes (72–74), recent studies have shown

that KATs are also capable of acetylating non-histone proteins at
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post-translational level, including a large number of oncogenes or

TSGs (75, 76). It has been long known that acetylation is an

essential regulator of p53 protein to stabilize and support its

DNA-binding activities (77, 78). While its importance is

extensively described in other reviews (77, 79, 80), Cao et al.

recently observed an unexpected role for acetylated p53 in

promoting PD-1 (programmed cell death protein 1) expression in

tumor cell lines of different origins, including lung cancer,

osteosarcoma, melanoma, and pancreatic cancer (81). Once

acetylated, p53 facilitates PD-1 transcription by recruiting

acetyltransferases onto its promoter. This regulation seems to be

dependent on the two specific acetylation sites (K120/164) in the

p53 protein, suggesting that acetylation at specific sites can

determine the activity of a protein.

Regarding oncogenes, studies showed evidence of both direct

and indirect acetylation of c-Myc signaling. For example, the

oncoprotein MYC in T-cell leukemia is directly acetylated, while

acetylation through histone H3K9 also indirectly elevated MYC

transcription in neuroblastoma cells and hepatocarcinoma (82,

83). Indeed, many interacting cofactors of MYC possess

acetyltransferase activity and modify different lysine residues

in the oncoprotein during their interaction (84–86). As lysine

can be a binding dock for both ubiquitinylation and acetylation,

these modifications can interfere with one another. Therefore,

direct acetylation prevents MYC from ubiquitin-mediated

degradation and stabilizes the protein (85–87).

Remarkably, protein acetylation is highly sensitive to changes in

acetyl-CoA levels and local changes in its intracellular

compartmentalized abundance can impact acetylation at the

specific intracellular compartments of the cell (cytosol versus

nucleus) (88, 89). In this regard, even though acetyl-CoA itself

cannot be taken up from the environment, differing availabilities

from its sources can directly impact the intracellular acetyl-CoA

abundanceand itsderivedmodification invivo (90–92).Accordingly,

acetate cannotonlyact asbioenergetic substratebut canalso function

as an epigenetic regulator by enhancing histone acetylation ofTwist -

an inducer of EMT - in hepatocellular cell lines and patient samples,

suggesting a plausible link between environmental acetate and

intracellular acetylation (93–95). However, further studies are

needed to evaluate the direct regulation of oncogenic signaling by

environmentally induced acetylation. It is interesting tomention that

immortalized astrocytes with tumor suppressor deficiency have

marked upregulated expression of nucleo-cytosolic acetyl CoA

synthetase (ACSS) enzymes that oxidize acetate to acetyl-CoA,

suggesting the usage of acetate as carbon source in oncogenic

settings (94). However, if they use acetate-derived acetyl-CoA for

its protein modification remains elusive.
Succinylation

Gastrointestinal stromal tumors, renal, thyroid, testicular

tumors and neuroblastomas are often characterized by germline
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mutations in succinate dehydrogenase (SDH) enzyme. As a key

metabolic enzyme in the TCA cycle, its deficiency results in an

accumulation of succinate both intra- and extracellularly (96). As

succinate can be immediately interconverted to succinyl-CoA, its

increase will significantly affect succinyl-CoA levels as well as its

derived succinylation (97). Succinylation is a PTM, in which

succinyl groups are being dynamically and reversibly attached to

lysine residues of proteins (98). The major substrate for

succinylation is succinyl-CoA – a cofactor that can be generated

from the mitochondrial TCA cycle, lipid and amino acid

metabolism. This PTM has been shown to play an important

regulatory role in the progression of a variety of tumors like

thyroid, gastric and breast cancer (98, 99). In short, succinylation

was seen to boost proliferation of both thyroid and breast cancer

cells and promote metastasis in gastric cancer. Remarkably, while

this PTM can promote tumorigenesis in those types of cancer, it has

a tumor suppressive effect on liver cancer, lung cancer and

osteosarcoma (100–102).

Mass spectrometry identified more than 500 succinylation sites

in about 300 proteins in gastric cancer tissues, highlighting its

importance in regulating cancer progression (99, 103). Next to the

above-mentioned modifications of TSG p53, succinylation was

added very recently to the list of its regulatory PTMs. Using mass

spectrometric analysis, p53 was seen to be succinylated at lysine 120

(K120) which is also a common acetylation site and key modulatory

residue (Figure 1). Loss of this modification by SIRT5 highly affects

the p53 response to DNA damage and all gene expressions related

to apoptosis and cell cycle arrest (p21, MDM2, TIGAR, SFN),

indicating the importance of this PTM for its functionality (104).

Nevertheless, whether this is related to any specific type of cancer

remains elusive.
Glycosylation

Glycosylation the addition of sugar chains to proteins or lipids -

is one of the main features of malignancy and shows a

glycosylation-specific gene expression during cancer progression

(105–108). The enzyme O-linked N-acetylglucosamine transferase

(OGT) involved in attaching the substrate to the protein and

modification of the substrate O-linked b-N-acetylglucosamine (O-

GlcNAc) itself are known to be necessary for tumorigenesis and

metastasis abilities of multiple cancer types, like papillary thyroid

cancer in vivo, breast, colon, liver and lung cancer (109–112).

Similar to the other PTMs described above, oncogenes and

tumor suppressors can also be glycosylated to alter their activity

(113, 114): EGFR family, estrogen receptor (ER) family, c-MYC,

YAP, B-catenin, TSG protein retinoblastoma (Rb), p53 and others

(Figure 1) (114–120). Indeed, O-glycosylation at threonine 58 in

oncogene c-Myc was shown to be a major mutation site in human

lymphomas and was shown to stabilize the protein to promote

proliferation and tumorigenesis of hepatocellular carcinoma cells in

vivo and in vitro (121–123).Moreover, oncoproteinYAP is stabilized
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by O-GlcNAcylation in both in vitro and in vivomodels to promote

high glucose-induced liver tumorigenesis (120). Similar, to other

PTMs, oncogenes themselves can induce O-GlcNAcylation and

OGT expression directly as part of their oncogenic signaling,

indicating the existence of a bi-directional feedback loop between

glycosylation and oncogenic expression (124).

Often, glycans and glycosylated proteins are located at the

extracellular side of the plasma membrane. Also, any changes in the

intracellular and microenvironmental metabolite pools can have a

direct effect on O-GlcNAcylation, of which its substrate UDP-

GlcNAc is produced through the hexosamine biosynthetic pathway.

As glucose, amino acid, fatty acid and nucleotide metabolism are all

linked to this pathway and therefore the synthesis of the substrate,

any difference in metabolite levels from these pathways might

influence O-GlcNAcylation (110). This highlights the possibility

of a direct role for the microenvironment in the interplay between

glycosylation and various cell types of the TME. Indeed, the

glycolytic phenotype induced by loss of p53 was shown to elevate

O-GlcNAc levels and its derived PTM in mouse embryonic

fibroblasts and human transformed fibroblasts in vitro (125). A

more detailed description of these dynamics can be found in the

review Peixoto et al. (2019) (126).

Interestingly, very recently it was shown that glycosylation

can be modulated by the heterogeneous protein expression of the

metabolic enzyme phosphoglycerate dehydrogenase (PHGDH),

which affects breast cancer-derived metastasis formation (111).
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Mechanistically, loss of PHGDH was shown to induce the

activation of the hexosamine-sialic acid pathway and hereby

the sialylation – a specific type of glycosylation - of integrin avb3
(Figure 1). Doing this, the PHGDHlow breast cancer cells

promote the migration and metastatic dissemination from the

primary tumor (111). However, more research will be needed to

not only fully elucidate the environmental role in inducing O-

GlcNAcylation of oncogenes, but also the role of non-clonal

metabolic heterogeneity in alterating glycosylation in general.
Conclusion

Metabolites are not only intermediate products of intracellular

metabolic reactions, but also important regulators for the PTMs of

cancer-related proteins like oncogenes and tumor suppressors.

Emerging research demonstrates the existence of a metabolic niche

within the TME, in which differing nutrient availability can mediate

an indirect crosstalk between cell types and oncogenic intracellular

signaling through shaping themetabolic PTMs. Targeting this novel

interchange between PTMs and the environment offers new

opportunities to target cancer growth in an organ-specific and

more efficient manner. So far, drugs targeting modification-related

enzymes such as deacetylase (HDAC) inhibitors have shown

significant potential to slow down tumor growth in therapeutic

settings (Table 1). However, at the moment, less explored PTMs as
TABLE 1 List of oncogenes and tumor suppressors that can be regulated by post-translational modifications.

Name of
modification

Oncogene/
TSGs

Molecular mechanism Cancer type Drugs (Blocking
target)

Lactylation HIF-1 Up-regulates transcription of HIF-1 to modulate cancer cell proliferation and
migration (28)

NSCLS AZD3956 (MCT1)

YTHDF2 Facilitates YTHDF2 expression and induces degradation of TSGs PER1 and
TP53 by recognizing m6A modification sites (29)

Ocular melanoma

METTL3 Promotes Mettl3 expression and enhances its capture of m6A-modified RNA
(31)

Colon cancer

Palmitoylation P53 Activates p53 signaling by promoting transcription and stabilizing its protein
(51)

Breast cancer There are no potent and
specific inhibitors in clinical

trialsNRAS Activates multiple downstream signaling pathways (48) Leukemia

EGFR Interacts with a PI3K subunit and increases reduced PI3K signaling activity
(46)

Lung cancer

GNA13 Modulates its membrane association and signal transduction (52) B-Cell Lymphoma

Myristoylation SRC Activates Src pathways and enhances fatty-acid beta oxidation (60) ovarian cancer PCLX-001 (N-
myristoyltransferases 1

and 2)
Reduces its degradation and promotes plasma and endosomal membrane

location (127)
B-cell lymphomas

Regulates its kinase activity and promotes SFK-induced oncogenic signaling
(64)

prostate cancer

FUS1 Stabilizes Fus1 to induce apoptosis and altering cell cycle processes (65) Lung cancer

EZH2 Enables it to form phase-separated droplets and liquid-like nuclear puncta;
enhances interaction with STAT3 and increased STAT3 transcriptional

activity (66)

Lung cancer

(Continued)
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TABLE 1 Continued

Name of
modification

Oncogene/
TSGs

Molecular mechanism Cancer type Drugs (Blocking
target)

Acetylation MYC Interacts with p30II protein, augments c-MYC-dependent transcriptional and
oncogenic functions (82)

T-cell leukemia SAHA, vorinostat (Class I
and II HDACs);

Romidepsin (Class I
HDACs);

Panobinostat (Pan-HDACs);
Entinostat (Class I HDACs);
Belinostat (Class I and II

HDACs)

Decreases its expression leading to cancer cell activation and apoptosis (128) Acute myeloid
leukemia; breast cancer

Enhances Myc protein stability (83) Hepatocellular
carcinoma

Enhances c-MYC expression to promotes proliferation and induces the
apoptosis of cancer cells (129)

gastric cancer

Promotes the transcription of c-Myc to promote cancer cells proliferation
(130)

pancreatic cancer

Promotes its protein level to affect cancer cell proliferation and survival (131) Non-small cell lung
cancer

HIF-1 Modulating the activity and protein stability of HIF-1 to regulate the balance
between cell cycle arrest and apoptosis in hypoxia (132)

Osteosarcoma

KRAS Enhances the stability and transcriptional activity of HIF-1a to stimulate
anaerobic glycolysis (133)

Fibrosarcoma

Affects its activity to impact its transformative and oncogenic properties (134,
135)

Lung carcinoma,
pancreatic cancer,

colon cancer

pRb Governs the interaction of the C-terminal E2F-1-specific domain of pRb with
E2F-1 in response to DNA damage (136)

Osteosarcoma

Modulates its phosphorylation, protein–protein interaction and control of
gene transcription (137)

Breast cancer, prostate
cancer

p53 Enhances its stabilization to upregulate pro-apoptotic genes (138, 139) Prostate cancer

Promotes its transcriptional regulation activity (140) Breast cancer

Promotes the transactivation of its target genes leading to suppressed cell
growth, migration and increased cell apoptosis (141)

Colorectal cancer

Enhances binding to PBRM1 to regulates the p53 signaling pathway (142) Kidney cancer

Induces its expression and transcription-activation activities (143) Cervical cancer

Increases its steady state level to induce apoptosis and autophagy cell death
(144)

Endometrial cancer

Enhances its expression in the nucleus
(145)

Lung cancer

Enhances its downstream apoptosis-associated genes (146) Cutaneous T-cell
lymphomas

PTEN Stabilizes its expression to suppress cell growth and metastasis (147) Laryngeal cancer

Induces its membrane translocation to inhibit cell migration and invasion
(148)

Glioma

Increase its activation to suppress cell growth and invasion (149) Hepatocellular
carcinoma

Succinylation p53 Regulates its activation resulting in affect response to DNA damage (104) Colorectal cancer There are no potent and
specific inhibitors in clinical

trials

Glycosylation MYC Stabilizes its protein expression to promote cell proliferation and migration
(123)

Hepatocellular
carcinoma

GR-MD-02 (Galectin);
GMI-1271 (Selectins);

SGN-2FF (Fucosylation);
GM3 (Glycolipids)

Stabilizes its protein level to accelerate tumorigenesis (150) Lung cancer

YAP Antagonizes Hippo pathway-mediated phosphorylation of YAP (120) liver cancer

HIF-1a Delays HIF-1a degradation to regulates metabolic reprograming and survival
stress signaling (151)

Breast cancer

EGFR Enhances its expression and cell surface transport to regulate cell
proliferation by affecting the EGFR/ERK signaling pathways (152)

Colorectal cancer

b-Catenin Pancreatic cancer

(Continued)
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well as the interplay between the modifications and their

environment lack sufficient knowledge to develop specific

inhibitors. Investigating the complexity of these environmentally-

drivenmetabolic PTMs and their dependence on tumor localization

will allow us to gain a deeper mechanistic understanding and

ultimately exploit these for future cancer therapies.
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