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Purpose. To identify pivotal differentially expressed miRNAs and genes and construct their regulatory network in hepatocellular
carcinoma. Methods. mRNA (GSE101728) and microRNA (GSE108724) microarray datasets were obtained from the NCBI
Gene Expression Omnibus (GEO) database. Then, we identified the differentially expressed miRNAs and mRNAs. Sequentially,
transcription factor enrichment and gene ontology (GO) enrichment analysis for miRNA were performed. Target genes of these
differential miRNAs were obtained using packages in R language (R package multiMiR). After that, downregulated miRNAs
were matched with target mRNAs which were upregulated, while upregulated miRNAs were paired with downregulated target
mRNA using scripts written in Perl. An miRNA-mRNA network was constructed and visualized in Cytoscape software. For
miRNAs in the network, survival analysis was performed. And for genes in the network, we did gene ontology (GO) and KEGG
pathway enrichment analysis. Results. A total of 35 miRNAs and 295 mRNAs were involved in the network. These differential
genes were enriched in positive regulation of cell-cell adhesion, positive regulation of leukocyte cell-cell adhesion, and so on.
Eight differentially expressed miRNAs were found to be associated with the OS of patients with HCC. Among which, miR-425
and miR-324 were upregulated while the other six, including miR-99a, miR-100, miR-125b, miR-145, miR-150, and miR-338,
were downregulated. Conclusion. In conclusion, these results can provide a potential research direction for further studies about
the mechanisms of how miRNA affects malignant behavior in hepatocellular carcinoma.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common
cancers in the world. It is estimated that 840,000 new cases of
HCC are acquired and at least 780,000 people die of HCC
every year, and over half of the global incidence andmortality
of HCC occur especially in Eastern Asian [1]. HCC has a high
incidence (4.7% of new cancer cases) and the second highest
cancer mortality rate (8.2% of cancer-related deaths) world-
wide [2], and China accounts for 47% of the total number
of HCC cases as well as HCC-related mortality [3]. The
development of HCC is closely related to the infection of
the hepatitis B virus (HBV) infection, followed by the hepati-
tis C virus infection (HCV), and related to aflatoxins, alcohol
drinking, and so on [4, 5]. In China, HCC has the third high-
est cancer incidence and has become the second leading
cause of cancer-related death, second only to lung cancer

[6]. Unfortunately, there are many difficulties in the diagno-
sis and treatment of HCC, but the most frequent is the lack of
methods for early diagnosis as well as the paucity of studies
about the molecular mechanisms of tumor initiation and
progression. Therefore, we designed the study to explore
the molecular mechanisms of HCC carcinogenesis and pro-
gression, as well as new relevant molecular markers for early
diagnosis.

Recently, noncoding RNA (ncRNA) drawn extensive
concern to further illustrate the molecular mechanisms of
HCC. MicroRNAs (miRNAs), families of small noncoding
RNAs, had been reported that can serve as molecular
markers for early diagnosis of a number of tumors [7, 8].
Many of miRNAs (e.g., miR-1247-3p [9] and miR-935 [10])
have been demonstrated to play a role in the progression of
HCC by influencing proliferation, invasion, and metastasis
of tumor cells as well as other malignant phenotypes.
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MiRNAs can promote the degradation of mRNAs and inhibit
their translation into proteins by binding to the 3′-untrans-
lated region (3′-UTR) of target mRNAs [11]. Thus, studies
on miRNAs were important for inquiring the molecular
mechanisms of carcinogenesis and to seek novel biomarkers.

Microarray profiling is a kind of high-throughput tech-
nique that developed rapidly in recent years, which can be
applied to detect differentially expressed miRNAs and genes
in cancer and control samples [12]. To find new directions
for research in miRNAs and genes, we analyzed miRNA
and mRNA microarray datasets to identified differentially
expressed miRNAs and genes and explored their potential
relationships. Next, we identified the key miRNAs with sur-
vival analysis, network analyses, and functional enrichment.

2. Materials and Methods

2.1. Microarray Data Collection. The rawmiRNA andmRNA
sequencing data were obtained from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/), which represents the
largest public repository of microarray data. In this study,
one gene expression profile (GSE101728) and one miRNA
expression profile (GSE108724) were downloaded from the
GEO.

The GSE101728 dataset was composed of seven pairs of
HCC and matched adjacent tumor-free tissue sample mRNA
expression profiles which were collected during the surgery
from HCC patients admitted to the Zhongshan Hospital of
Fudan University [13]. The GSE108724 dataset includes the
profiling of the miRNA expression in seven pairs of HCC
and matched adjacent tumor-free tissues from the same hos-
pital and research team [13]. All the data were obtained in a
raw status and normalized with Perl (Perl version 5.32.3) and
R (version: 4.0.2).

2.2. Data Processing. The raw data was downloaded, and the
probe ID was transferred to gene symbol or miRNA name.
The data from different groups was classified into the normal
group and tumor group with packages in R language (R pack-
age limma), which was also used to screen the differentially
expressed miRNAs and mRNA between the tumor and nor-
mal tissues. In the same time, we also calculated the log fold
change (logFC), P values, and adjusted P values (adj. P val).
In addition, adj. P value<0.05 and ∣logFC ∣ >2 were set as
the standards of differentially expressed miRNA and mRNA
selection. According to the above standards, 37 differentially
expressed miRNAs (15 upregulated and 22 downregulated)
and 745 differentially expressed mRNAs (30 upregulated
and 441 downregulated) were screened.

2.3. Prediction of miRNA Target Genes. After extracted the
differential miRNAs, packages in R language are used to
predict the target genes (R package multiMiR). The pack-
ages were published in 2014 [14], but were updated in
April 2020 recently. The packages were integration of
fourteen databases for prediction of the miRNA target
gene, including miRecords (http://c1.accurascience.com/
miRecords), miRTarBase (http://mirtarbase.cuhk.edu.cn/
php/index.php), TarBase (http://diana.imis.athena-

innovation.gr/DianaTools/index.php), and miRDB (http://
mirdb.org/). And the intersection of the results of the
fourteen databases was taken as the final result of the tar-
get gene prediction.

2.4. miRNA-mRNA Interaction Network Construction. Inves-
tigation of the miRNA and mRNA coexpression network is
beneficial for the exploration of the molecular mechanism
of hepatocellular carcinoma. To construct the miRNA-
mRNA network, including positive and negative relation-
ships between mRNA and miRNA, we extracted 35 miRNAs
with target genes from all the 37 differentially expressed miR-
NAs and 295 target mRNAs from 745 differentially expressed
mRNAs. We matched upregulated miRNA with their down-
regulated target mRNA and downregulated miRNA with
their upregulated mRNA. In result, 330 nodes and 481 edges
are included in the network. In this study, the miRNA-
mRNA network was constructed using a Perl program,
followed by visualization using Cytoscape software (version
3.8.0; 64-bit; http://www.cytoscape.org/) [15]. In addition,
we obtained a list of 568 oncogenes and 1217 tumor suppres-
sor genes that have been identified based on previous reports.
Research on oncogenes has been reported, and the specific
list of oncogenes can be downloaded on the OncoGenomics
(intOGen) platform (https://www.intogen.org/search) [16].
The list of tumor suppressor genes can be downloaded in
the Tumor Suppressor Gene Database (https://bioinfo.uth
.edu/TSGene/). We divided the mRNAs in the network into
tumor-promoting genes and tumor suppressor genes accord-
ing to the obtained gene classification data and distinguished
by different colors in the network.

2.5. Functional and Pathway Enrichment Analysis. We ran a
transcription factor enrichment analysis and a GO enrich-
ment analysis for differential miRNA for the three GO
domains: molecular functions (MF), biological processes
(BP), and cellular components (CC). A KEGG pathway anal-
ysis and a GO enrichment analysis, including MF, BP, and
CC, of the mRNAs were subsequently performed. All the
enrichment analysis was performed using FunRich software
(version 3.1.3; http://www.funrich.org). P < 0:05 was applied
as the criterion.

2.6. Overall Survival (OS) Analysis of the miRNAs. The
related clinical data of HCC patients were downloaded from
The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer
.gov/) database. A total of 368 HCC patients with complete
available miRNA expression and follow-up datasets were
involved in the overall survival analysis. Patients were
divided into two groups according to the median value of
the expression of miRNA that we want to study (high vs.
low expression). Kaplan-Meier survival analysis was per-
formed, and P value of 5-year survival rates was calculated
and displayed. For all the analysis and plotting process, the
R package Survival (https://cran.r-project.org/web/
packages/survival/index.html) was used.

2.7. Analyzed the Expression Data Downloaded from the
TCGADatabase. In addition to relevant clinical data, we have
also downloaded data on the miRNA expression in normal
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tissues and liver cancer tissues in TCGA. The aforemen-
tioned methods are used to process the data, to screen out
the miRNAs that are abnormally expressed in liver cancer tis-
sues, and to perform relevant multifactor COX regression
analysis and survival analysis for differential miRNAs. Based
on miRNAs that have an impact on the prognosis, target
genes are predicted, and an interactive network of miRNA
and mRNA is constructed. For oncogenes and tumor sup-
pressor genes in the network, we also conducted survival
analysis and calculated the difference in five-year survival
rates.

3. Results

A total of 745 differentially expressed genes were identified
from GSE101728 and 37 miRNAs from GSE108724. The
conditions of judgment for significant differences are the
log fold change > 2 and the adjusted P value <0.05. There
are 304 upregulated genes and 441 downregulated genes
among these differential genes. For miRNA, 15 miRNAs are
upregulated, and 22 are downregulated (Figure 1). Heatmap
of miRNA andmRNA differentially expression clearly distin-
guished HCC tissues (posterior seven samples) from paired
adjacent normal tissues (Figures 1(a) and 1(c)). In the heat-
map, red represents high expression, and green represents
low expression. The comparison of colors can show the dif-
ference in the expression of miRNA and mRNA in the two
sets of samples. In the volcano plot, green and red dots indi-
cated the down and upregulation of the miRNA and mRNA
expression in tumor and normal tissues, respectively. In the
volcano map of miRNA, you can see the expression distribu-
tion of miRNA. Since the fold change is set to 4 times, most
miRNAs are considered to have no expression differences,
and only a small part of miRNAs are included in subsequent
studies (Figures 1(b) and 1(d)).

For the selected differential miRNAs, we performed GO
and transcription factors (TF) enrichment analysis. TF and
GO analysis are hints for the research direction. Through
the GO analysis, we can find the GO classification items of
the differential miRNAs and find out which function changes
may be related to the differential miRNAs. The results of TF
and GO enrichment analysis of the differential miRNAs are
shown in Figure 2. The results of TF analysis for differential
upregulated and downregulated miRNA are shown below
(Figure 2(a)–(c)). In the result of transcription factor enrich-
ment, the blue column indicates the proportion of miRNA
enriched on the transcription factor to all differential miR-
NAs. The red bar represents the value of -log10 (P value),
and the yellow bar represents the threshold of statistical dif-
ference (-log10 0.05, P = 0:05). The red bar is longer than
the yellow band, indicating a statistical difference (P < 0:05
). GO analyses cover three domains and show the top 10 sig-
nificant GO enrichments according to enrichment scores
[-log10 (P value)] (Figures 2(d)–(f)).

In order to show the relationship between differential
miRNAs and target genes more intuitively, we used Cytos-
cape software to achieve visualization. The miRNA-mRNA
regulatory network was constructed that consists of 35 miR-
NAs and 295 target mRNAs. Since miRNAs generally nega-

tively regulate target genes, 17 upregulated miRNAs were
matched with 144 downregulated target mRNAs while 18
downregulated miRNAs with 151 target mRNAs (Figure 3).
In the network, we use different colors to represent different
expression levels and different functions of miRNA and
mRNA.

We not only performed GO enrichment analysis for miR-
NAs but also GO and KEGG enrichment analysis for differ-
ential mRNAs. GO enrichment analysis and KEGG
pathway analysis of differentially expressed genes in the
miRNA-mRNA network are shown in Figure 4. Representa-
tion of the genes in the GO enrichment bubble plot and circle
plot displayed the count distribution in BP, CC, and MF.
Bubble color intensity indicates fold enrichment of GO terms
overrepresented in that cluster of genes, and the size corre-
sponds to the number of genes enriched (count). The GO
analysis results revealed that the differentially expressed
genes were significantly enriched in the terms “reproductive
structure development,” “reproductive system development,”
“positive regulation of cell adhesion,” etc (Figures 4(a) and
4(b)). The result of the KEGG pathway analysis was shown
in the same form. The genes were significantly enriched in
“MicroRNAs in cancer,” “PI3K-Akt signaling pathway,”
and “Focal adhesion.” The results of the enrichment analysis
suggest that the effect of differential genes enriched in the
corresponding items on the corresponding phenotype of
tumor cells can be studied. For example, the KEGG enrich-
ment analysis results of SRC show that it is enriched in the
item of cellular adhesion, so basic experiments can be used
to verify whether SRC has an effect on the invasion and
metastasis of liver cancer cells..

If the difference in the expression of miRNAs is signifi-
cantly related to the survival of patients, it means that this
miRNA is likely to have greater research value. Therefore,
for differential miRNAs in the network, OS analysis was per-
formed. The data including the expression of miRNAs,
follow-up time, survival state, and survival time were from
the TCGA miRNA-seq dataset. Survival curves were plotted,
and differences between survival curves were estimated
(Figure 5). As a result, nine survival curves are statistically
different (P<0.05); among them, hsa-mir-125b was divided
into hsa-mir-125b-1 and hsa-mir-125b-2 (Figures 5(c) and
5(d)).

In addition to the GEO database, we also conducted data
mining on the TCGA database. Perform data processing on
the data downloaded from the TCGA database screen out a
total of 53 abnormally expressed miRNAs and calculate the
P value. All the different miRNAs are displayed in the chart
and sorted by P value (Table 1). We drew a heatmap and a
volcano map to visually show the difference in the expression
and distribution of 53 differential miRNAs in normal tissues
and cancer tissues (Figures 6(a) and 6(b)). In order to study
the impact of differential miRNAs on the prognosis of
patients, we used multivariate COX regression analysis and
survival analysis methods. Multivariate COX regression anal-
ysis showed that 8 miRNAs are related to the prognosis of
patients (P < 0:05). At the same time, we also calculated the
hazard ratio of each miRNA. A hazard ratio greater than 1
indicates a negative impact on the prognosis, and the hazard
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ratio that is less than 1 indicates a benign effect on the prog-
nosis (Figure 6(c)). Then, we drew survival curves for all the
differential miRNAs based on the expression, the patient’s
survival time, and survival status and calculated the 5-year
survival rate. The results showed that the 5-year survival rates

of mir-9-1, mir-9-2, mir-9-3, mir-452, mir-514a-2, and mir-
4800 were significantly different (Figures 6(d)–(i)).

To find more meaningful target-regulatory relationships
and guide the next experiments, we constructed a network
which only contains miRNAs with significant differences in
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Figure 1: Heatmap and volcano plot of differentially expressed miRNAs and mRNAs. (a) Heatmap of differential miRNA microarray. (b)
Volcano plot of differential miRNA microarray. (c) Heatmap of differential mRNA microarray. (d) Volcano plot of differential mRNA
microarray.

4 BioMed Research International



P < 0.001

0 20 40 60

TF for differential miRNA
–Log10 (P value)

Percentage of genes

Tr
an

sc
rip

tio
n 

fa
ct

or

EGR1

SP1

SP4

POU2F1

FOXA1

MEF2A

NKX6-1

NFIC

POU3F2

SOX1

0 20 40 60

8.2%

3.8%

18.3%

13.6%

17.1%

9.1%

36.4%

21%

57.8%

30.7%

P < 0.001

P < 0.001

P < 0.001

P < 0.001

P < 0.001

P < 0.001

P < 0.001

P < 0.001

P < 0.001

Percentage of genes

P = 0.05 reference

P value

(a)

Transcription factor for upregulated miRNA
-Log10 (P value)

Tr
an

sc
rip

tio
n 

fa
ct

or

Percentage of genes

HOXB13

HOXA5

NFIC

NKX6-1

LHX3

FOXA1

SP4

SP1

EGR1

POU2F1

0 20 40 60

25201550 10

Percentage of genes

P = 0.05 reference

P value

(b)

Transcription factor for downregulated miRNA
–Log10 (P value)

Tr
an

sc
rip

tio
n 

fa
ct

or

Percentage of genes

MAFB

HOXD8

RORA

MEF2A

ARID3A

FOXA1

NKX6-1

SP1

EGR1

POU2F1

0 20 40 60

201550 10

Percentage of genes

P = 0.05 reference

P value

(c)

Nucleus

Cytoplasm

Endosome

Lysosome

Golgi aparatus

Early endosome

Protein phosphatase type 2A complex

Golgi-associated vesicle membrane

Cyclin-dependent protein kinase holoenzyme complex

Stress fiber

(d)

Figure 2: Continued.
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the survival curves (Figure 7). In the network, we also marked
the oncogenes and tumor suppressor genes with different
colors.

For oncogenes and tumor suppressor genes in the net-
work, we conducted survival analysis and calculated the dif-
ference in five-year survival rates (Figure 8). We conducted
survival analysis on the six tumor suppressor genes
CDKN2B, DACT1, DUSP6, E2F3, IGFBP3, PLCE1, RASSF3,
and THY1 and found that E2F3, IGFBP3, and RASSF3 genes
had a significant impact on the 5-year survival rate of patients
(P < 0:05). The 5-year survival rate of the oncogene GMPS
high expression group was significantly lower than that of
the low expression group.

4. Discussion

With a high mortality rate, substantial morbidity, and the
increasing trend of the incidence rate of HCC worldwide,
the pathogenesis, disease progression, and treatment of
HCC are worthy of further study and exploration. Noncod-
ing RNA has been an intensive research topic in molecular
biology for several years and the focus of numerous studies
[17, 18]. MiRNAs, families of small noncoding RNAs, played
important roles in nearly all biological processes. Plenty of
studies indicated that the abnormal expression of miRNAs
may contribute to oncogenesis and the progression of HCC
by inhibiting target genes through the degradation of their
target mRNAs or by inhibiting translation [19, 20]. Thanks
to the well-developed microarray technology, now it is easier
to determine the expression levels of the miRNAs and
mRNAs. We can identify differentially expressed miRNAs
and genes between normal and tumor tissues and screen
miRNAs that seem to play roles in tumor onset or progres-

sion. In addition, the result of microarray analysis can help
give direction for future research.

In the study, a total of 35 miRNAs (17 upregulated and 18
downregulated) and 295 mRNAs (151 upregulated and 144
downregulated) were screened. The transcription factors for
differentially expressed miRNA were enriched in EGR1,
POU2F1, SP1, MEF2A, HOXD8, etc. GO enrichment analy-
sis of these miRNAs showed that they are significantly
enriched in “regulation of nucleobase, nucleoside, nucleotide
and nucleic acid metabolism”, signal transduction, cell com-
munication, and transport. The differentially expressed
mRNA is enriched in the reproductive structure develop-
ment, reproductive system development, and positive regula-
tion of cell adhesion. For KEGG analysis of mRNAs, they are
enriched in miRNAs in cancer, PI3K-Akt signaling pathway,
focal adhesion, and Rap1 signaling pathway. Moreover, by
constructing the miRNA-mRNA network and performing
OS analysis, we identified miRNAs including miR-99a,
miR-100, miR-125b, miR-145, miR-150, miR-324, miR-338,
and miR-425, which were found to have an impact on the
HCC survival rate. Thus, the network has been simplified.

miR-125b-5p is one of the downregulated miRNAs in
tumor tissues of HCC patients compared to normal tissues.
In the miRNA-mRNA network, it has the highest connectiv-
ity with target genes, which regulates 31 upregulated genes.
Among these, there are 2 genes in the top 100 of total 979
upregulated genes including KIF18B and RBM24. Little
research has been done on miR-125b in HCC, but some stud-
ies showed that miR-125b can affect the metastasis of gastric
cancer cells and inhibit colorectal cancer proliferation [21,
22]. Recent research reported that KIF18B promotes hepato-
cellular carcinoma progression through activating the
Wnt/β-catenin-signaling pathway [23], but the upstream
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Figure 2: Enrichment analysis of transcription factors and GO terms for differential miRNA. (a) Transcription factor (TF) enrichment
analysis for differential miRNA. (b) TF enrichment analysis for upregulated miRNA. (c) TF enrichment analysis for downregulated
miRNA. (d) The enriched GO terms in the cellular component (CC). (e) The enriched GO terms in the biological process (BP). (f) The
enriched GO terms in the molecular function (MF).
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(a)

(b)

Figure 3: The miRNA-mRNA regulatory network consists of 35 miRNAs and 295 target mRNAs. (a) Regulatory network of upregulated
miRNAs and downregulated mRNAs. (b) Regulatory network of downregulated miRNAs and upregulated mRNAs. Triangular nodes,
miRNA; elliptical nodes, mRNA; green nodes, downregulation; pink nodes, upregulation; blue nodes, tumor suppressor gene; yellow
nodes, oncogenes; purple nodes, at the same time in the list of oncogenes and tumor suppressor genes.
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regulators of KIF18B are unknown. According to the net-
work, the exact relationship between miR-125b and KIF18B
needs to be verified through experiments.

Among target genes of miR-99a, peptidase inhibitor 15
(PI15) has been reported to act as a novel blood diagnostic
marker for cholangiocarcinoma, and the plasma PI15 level
in HCC patients was clearly higher than normal [24]. How-

ever, the physiological and pathological role of plasma PI15
is still unknown. Downregulation of GMP synthetases
(GMPS), another target gene of miR-99a, can result in
reduced cell viability as a p53 repression target in HCC
[25]. Thus, the downregulation of miR-99a may inhibit
tumor proliferation by upregulating GMPS, but it still
requires experimental validation. Recent research showed
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Figure 4: Bubble plot and circle plot of the GO/KEGG analysis of differentially expressed genes in the miRNA-mRNA network. (a) Bubble
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that nuclear receptor subfamily 6, group A, member 1
(NR6A1) regulates lipid metabolism of HepG2 cells, and
the positive expression of NR6A1 is a novel marker of disease
progression and aggressiveness in prostate cancer patients

[26, 27]. Thus, the interaction between miR-99a and
NR6A1 in tumor migration and invasion could be a direction
for future research. In addition, a ceRNA network including
miR-125b and miR-99a could also be constructed.
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Figure 5: Overall survival analysis of high and low expression groups of (a) miR-99a, (b) miR-100, (c) miR-125b-1, (d) miR-125b-2, (e) miR-
145, (f) miR-150, (g) miR-324, (h) miR-338, and (i) miR-425 in HCC.

Table 1: Differentially expressed miRNAs in HCC in the TCGA database.

ID LogFC P value ID LogFC P value

hsa-mir-4686 -4.1834 4.12E-59 hsa-mir-1251 5.1093 3.16E-07

hsa-mir-490 -3.6287 2.93E-36 hsa-mir-1269a 5.4367 4.14E-07

hsa-mir-1258 -3.4329 1.10E-33 hsa-mir-6783 2.3317 7.11E-07

hsa-mir-424 -2.1563 1.88E-31 hsa-mir-514a-3 2.5705 7.32E-07

hsa-mir-4746 2.4126 2.70E-23 hsa-mir-9-3 3.3295 8.76E-07

hsa-mir-10b 3.6625 4.32E-23 hsa-mir-9-2 3.3379 1.35E-06

hsa-mir-4800 -2.1605 3.04E-21 hsa-mir-7974 2.6364 6.24E-06

hsa-mir-224 2.9886 2.26E-18 hsa-mir-135a-2 3.5473 6.50E-06

hsa-mir-34c 3.9009 1.19E-17 hsa-mir-4758 2.1997 9.23E-06

hsa-mir-183 4.0866 2.11E-16 hsa-mir-135a-1 3.0362 1.09E-05

hsa-mir-452 2.3124 4.58E-16 hsa-mir-1270 2.0524 1.32E-05

sa-mir-182 3.5976 5.59E-16 hsa-mir-509-2 2.8006 2.43E-05

hsa-mir-96 3.9076 5.07E-15 hsa-mir-520a 7.3327 3.57E-05

hsa-mir-767 8.8785 4.72E-11 hsa-mir-184 4.3001 4.22E-05

hsa-mir-190b 2.9875 1.48E-10 hsa-mir-3591 2.0458 6.92E-05

hsa-mir-105-2 9.6441 1.75E-10 hsa-mir-514a-2 2.4440 0.00012

hsa-mir-3200 2.3078 1.89E-10 hsa-mir-526b 6.6936 0.00020

hsa-mir-34b 3.8027 4.14E-10 hsa-mir-509-3 2.8453 0.0002

hsa-mir-3144 4.4032 5.12E-10 hsa-mir-509-1 2.5959 0.0006

hsa-mir-891a 6.2658 1.04E-09 hsa-mir-205 4.1754 0.00467

hsa-mir-105-1 8.9992 1.32E-09 hsa-mir-1224 2.3070 0.00717

hsa-mir-3662 2.7909 1.03E-08 hsa-mir-2114 3.2124 0.00741

hsa-mir-508 2.2759 1.03E-08 hsa-mir-519a-1 7.3346 0.01289

hsa-mir-1254-1 2.6607 1.33E-08 hsa-mir-196b 3.4244 0.01445

hsa-mir-1269b 6.4907 1.62E-07 hsa-mir-541 2.7758 0.01715

hsa-mir-514a-1 2.9022 2.37E-07 hsa-mir-577 2.5328 0.02511

hsa-mir-9-1 3.3532 2.92E-07
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Figure 6: Continued.
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For upregulated miRNA, miR-324-5P is correlated to
patients’ prognosis and has regulatory relationships with 4
genes. One research showed that miR-324-5p suppresses
HCC cell invasion, but another study reported that
lncRNA-85 promotes HCC cellular proliferation and migra-
tion by targeted binding and regulating miR-324-5p [28, 29].
Thus, the effect of miR-324-5P on tumor progression might
be different via different mechanisms. Among target genes,
the high expression of alpha-2,6-sialyltransferase 2

(ST6GAL2), one of the top 100 of all the 1236 downregulated
genes, was demonstrated to promote tumorigenesis of follic-
ular thyroid cancer via activating the Hippo signaling path-
way [30], and the downregulation of ST6GAL2 is associated
with improved patient survival in breast cancer [31], but
the effects of ST6GAL2 have not been reported yet on the
oncogenesis and the progression of HCC. Regulator of cal-
cineurin 1(RCAN1) is broadly expressed in the liver, pla-
centa, and other tissues. Overexpressed RCAN1, as a
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Figure 6: Analysis results of differential miRNA in TCGA. (a) Heatmap of differential miRNAs. (b) Volcano plot. (c) Multivariate COX
regression analysis result. (d) Survival analysis curve of miR-9-1. (e) Survival analysis curve of miR-9-2. (f) Survival analysis curve of miR-
9-3. (g) Survival analysis curve of miR-452. (h) Survival analysis curve of miR-514a-2. (i) Survival analysis curve of miR-4800.
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Figure 7: The miRNA-mRNA regulatory network consists of miRNA with OS analysis difference and their target mRNA. (a) Network of
downregulated miRNAs with OS analysis difference and their target mRNAs. (b) Network of upregulated miRNAs with OS analysis
difference and their target mRNAs. (c) Network of upregulated miRNAs in the TCGA database with OS analysis difference and their
target mRNAs in the legend. Triangular nodes, miRNAs; elliptical nodes, mRNAs; green nodes, downregulation; pink nodes, upregulation;
blue nodes, tumor suppressor gene; yellow nodes, oncogenes.
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Figure 8: Continued.
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potential target of miR-572, induced apoptosis of HCC cells
and inhibited cell proliferation and invasion [32]. The regu-
latory relationship between miR-324-5P and RCAN1 has
not been reported. Anti-Mullerian hormone receptor type 2
(AMHR2) encodes the receptor for the anti-Mullerian hor-
mone (AMH) which results in male sex differentiation.
PBX1 encodes a nuclear protein that belongs to the PBX
homeobox family of transcriptional factors. The former two
genes have a greater value of study than the latter.

MiR-425-5p promotes tumor progression in HCC [33],
gastric cancer [34], breast cancer [35] and so on. Amphiphy-
sin (AMPH) is a critical tumor suppressor that inhibits
tumor progression in breast cancer [36], osteosarcoma [37],
etc. Thus, the upregulation of miR-425 may negatively regu-
late AMPH to promote tumor progression. The relationship
between miR-425 and AMPH has been reported that miR-
425 regulates cell proliferation, migration, and apoptosis by
targeting AMPH in non-small-cell lung cancer [38]. How-
ever, the relationship needs to be validated in HCC in further
studies. There are few reports about the roles and mecha-
nisms of NEDD 4 binding protein 2-like 1 (N4BP2L1) and
protein tyrosine phosphatase receptor type N2 (PTPRN2)
for their limited value.

Some miRNAs have tumor suppressor and carcinogenic
effects, and the main mechanism is the binding of miRNA

and target mRNA. The combination of miRNA and mRNA
will cause a decrease in the expression level of target mRNA.
Some studies have also found that miRNAs can bind to target
mRNA to increase the translation of target mRNA [39].
Through these mechanisms, miRNAs can regulate the
expression of many genes and play a similar role to onco-
genes or tumor suppressor genes. In the interaction network,
we have also marked out the oncogenes and tumor suppres-
sor genes that have been identified. miRNAs and mRNAs
transcribed from these genes have potential interaction and
coexpression relationships. This can provide certain research
directions for future research.

We identified 37 differentially expressed miRNAs and
745 mRNAs in tumor tissues of HCC patients compared to
normal controls. 481 negatively regulatory pairs were used
to construct a miRNA-mRNA interaction network including
35 miRNAs and 295 mRNAs. Then, we identified 8 miRNAs
that are associated with the long-term survival rate and prog-
nosis by using survival analysis. GO and KEGG pathway
analyses revealed that the abnormal expression of miRNAs
and genes may participate in the regulation of cell adhesion
and then induce invasion and metastasis of tumor cells.
There are limitations to the study. The sample size is rela-
tively small, which may have an impact on the trustworthi-
ness and credibility of the result of microarray analysis. In a
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Figure 8: Survival analysis curves of oncogenes and tumor suppressor genes in the network. (a) CDKN2B. (b) DACT1. (c) DUSP6. (d) E2F3.
(e) IGFBP3. (f) PLCE1. (g) RASSF3. (h) THY1. (i) CDKN1B. (j) GMP3.
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further study, we can get a large sample size of differentially
expressed genes in miRNA or mRNA microarray datasets
for screening differential miRNAs and mRNAs. Further-
more, the mechanisms of miRNA–mRNA regulatory rela-
tionship in the network require validation through
laboratory-based experiments.

Data Availability

The mRNA (GSE101728) and microRNA (GSE108724)
microarray datasets during the current study are available
in the Gene Expression Omnibus database (https://www
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Additional Points

In this paper, we analyzed miRNA and mRNA microarray
datasets to identified differentially expressed miRNAs and
genes and explored their potential relationships. And we
identified the key miRNAs with survival analysis, network
analyses, and functional enrichment. This study can provide
a research direction for further study of molecular mecha-
nism. We believe this manuscript is valuable for all the
researchers who are interested in. This study includes not
only the research about tumor-related miRNAs and genes
but also the clinical research about differential miRNAs.
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