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Pluripotent stem cells are characterised by continuous self-renewal while maintaining the potential to differentiate into cells of
all three germ layers. Regulatory networks of maintaining pluripotency have been described in great detail and, similarly, there
is great knowledge on key players that regulate their differentiation. Interestingly, pluripotency has various shades with distinct
developmental potential, an observation that coined the term of a ground state of pluripotency. A precise interplay of signalling
axes regulates ground state conditions and acts in concert with a combination of key transcription factors. The balance between
these transcription factors greatly influences the integrity of the pluripotency network and latest research suggests that minute
changes in their expression can strengthen but also collapse the network. Moreover, recent studies reveal different facets of these
core factors in balancing a controlled and directed exit from pluripotency. Thereby, subsets of pluripotency-maintaining factors
have been shown to adopt new roles during lineage specification and have been globally defined towards neuroectodermal and
mesendodermal sets of embryonic stem cell genes. However, detailed underlying insights into how these transcription factors
orchestrate cell fate decisions remain largely elusive. Our group and others unravelled complex interactions in the regulation of this
controlled exit. Herein, we summarise recent findings and discuss the potential mechanisms involved.

1. Introduction

Pluripotency represents three essential features: first the
capacity of indefinite self-renewal, second the ability of
giving rise to differentiated progeny of nearly all lineages of
the mature organism, and last the generation of chimeric
embryos upon injection into the inner cell mass (ICM) of
a blastocyst [1]. The complexity of the regulatory networks,
which maintain pluripotency, has previously been described
[2]. Complex interactions between signalling axes precisely
regulate various states of pluripotency, such as the ground and
the primed state, and act in concert with a combination of key
transcription factors (TFs). Vice versa, we have gained a great
body of knowledge on key players guiding pluripotent stem
cells (PSCs) towards differentiation [3, 4]. In line, regulatory
networks both in PSCs and in the developing organism are
tightly balanced as small changes can break down the entire
pluripotency network leading to differentiation [3]. In recent

years, studies have revealed novel facets of these core factors
balancing a controlled exit of pluripotency and guiding early
steps of differentiation [5]. Herein, subsets of pluripotency-
maintaining factors have been shown to adopt new roles
during lineage specification and have been grouped into neu-
roectodermal and mesendodermal sets of embryonic stem
cell genes [5]. Accordingly, for example, Nanog, Tbx3, Klf5,
and Oct3/4 regulate the exit towards mesendoderm while
Sox2 regulates differentiation towards a neuroectodermal fate
[5]. However, detailed underlying mechanisms of how these
TFs orchestrate cell fate decisions remain largely elusive.
Aiming to close this gap of knowledge, we have recently
studied the mechanism of Tbx3 to regulate mesendodermal
fate. Briefly, we have defined novel facets of Tbx3 which
directly activates core regulators of the mesendodermal
lineage and indirectly induces differentiation via a paracrine
Nodal signalling loop [6]. Thus, our data illustrate the dual
complexity of pluripotency TFs to gate fate determination.
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In turn, the current review will at first give a brief insight
into essential signalling pathways and TFs maintaining the
self-renewal state. Secondly, we will summarise recent find-
ings of pluripotency-associated factors that have an impor-
tant impact on early lineage specification processes.

2. ESC Pluripotency and Its
Signalling Pathways

Most of the knowledge on pluripotency has been obtained
usingmouse embryonic stem cells (mESCs) as a research tool
[8–11]. In vitro pluripotency has various shadesmirroring dis-
tinct in vivo counterparts, an observation which has led to
the definition of two pluripotency states: näıve and primed
[12–14]. Herein, the early ICM of the blastocyst requires a
maturation step to obtain clonal pluripotent colonies, while
E4 and E4.5 preimplantation epiblast cells from the blastocyst
robustly give rise to näıve pluripotent cells capable of single-
cell culture [15]. To capture näıve pluripotency in vitro, cells
isolated from the ICM are cultured serum-free in the pres-
ence of leukaemia inhibitory factor (LIF) and bone morpho-
genetic protein (BMP) or under LIF/2i-culture conditions
(outlined below) [16, 17]. In contrast, cells derived from the
postimplantation epiblast are not any longer single-cell cul-
ture permissive and require distinct signalling input such as
FGF- (fibroblast growth factor-) supplementation to remain
within the pluripotent state. These cells are in vitro referred
to as epiblast stem cells (EpiSCs). They are characterised by
primed pluripotency and exhibit a slightly reduced differen-
tial potential, thus surrogating a more advanced pregastrula-
tion stage [18, 19]. A large body of knowledge has been gained
in the past years, deciphering signalling axes with an impact
on the pluripotent state. Basically, the mitogen-activated
protein kinase (MAPK) signalling pathway and glycogen syn-
thase kinase 3 (GSK3) signalling pathway negatively influence
pluripotency, while LIF/STAT3 (signal transducer and acti-
vator of transcription 3) and BMP/SMAD (mothers against
decapentaplegic) signalling are complementary beneficial [16,
17].

2.1. LIF/STAT3 Signalling. mESCs are commonly retained in
the pluripotent state by culturing them on a feeder layer com-
posed of mouse inactivated fibroblasts (MEFs) in the pres-
ence of the cytokine LIF [20–22]. LIF functions via a complex
signalling axis and finally activates core TFs, such as octamer
binding transcription factor 3/4 (Oct3/4), sex determining
region Y- (SRY-) box 2 (Sox2), and Nanog, which orchestrate
the self-renewal state [23, 24]. In vivo, their expression levels
overlap both in the ICM and in the epiblast [24], hence being
able to interact and activate pluripotency-associated genes,
while repressing lineage specific differentiation programmes.
LIF signals via three different pathways. However, its key
effect in sustaining the pluripotent state is implemented by
activating the TF STAT3 via phosphorylation [25]. STAT3,
the crucial downstream target of LIF, directly binds the distal
enhancers of Oct3/4 and Nanog [26] and further pluripo-
tency TFs [27] such as Krüppel-like factor 4 (as Klf4) [28].
Thereby it modulates their expression levels for propagation
of the murine pluripotent phenotype. In the absence of

LIF signalling, mESCs differentiate to the mesodermal and
endodermal lineage [29]. Therefore, LIF limits mESC dif-
ferentiation towards mesendoderm in favour of maintaining
the pluripotent state in a closely regulated balance with BMP
signalling [16]. Despite its essential role in self-renewal in vivo
and in vitro, LIF also participates in regulating a differentia-
tion programme driven by the extracellular-signal-regulated
kinase (ERK). The ERK signalling cascade promotes early
differentiation in vitro and in vivo [30, 31]. Thus, LIF seems
to modulate stem cell fate between self-renewal and lineage
specification by regulating expression levels of STAT3 and
ERK [32]. In summary, LIF represents a critical component
inmaintaining the self-renewal state inmESC culture by acti-
vating pluripotency-associatedTFs.Of note, LIF-dependence
can be overcome at least temporarily by chemical inhibition
of MAPK and GSK3 signalling (“2i”) but still remains bene-
ficial, an observation establishing LIF-2i as the gold standard
of serum-free mESC culture (Figure 1) [15, 33, 34].

2.2. BMP Signalling. In a serum-free cell culture LIF is solely
not able to maintain mESC pluripotency [16]. BMP4 is a
secreted signalling molecule belonging to the transforming
growth factor beta (TGF𝛽) family and represents an attested
ectoderm-antagonist [16, 35, 36]. BMP4 (and BMP2) success-
fully replaces serum requirements resulting in propagation
of pluripotency and inhibition of multilineage differentiation
in the presence of LIF. In the absence of LIF, BMP promotes
mesodermal differentiation [37] at the expense of the neural
lineage [38] (Figure 1). Further, the BMP pathway also has
the potential to promote differentiation of mESCs into the
trophoblast lineage via caudal type homeobox 2 (Cdx2)when
cultured under defined conditions [39].

In the preimplantation embryo, BMP4 becomes induced
in the ICM of the early blastocyst while its expression peaks
in the epiblast of the E4.5 blastocyst and decreases afterwards.
This decrease of BMP signalling in the postimplantation
epiblast coincides with the upregulation of Nodal/Activin
signalling and subsequent target gene expression such as
Lefty1 and Lefty2 pointing at opposing roles of Nodal and
BMP signals at various developmental stages [15, 40–42].This
in vivo observation matches the requirement of low-dose
Nodal/Activin signalling to maintain the primed state of plu-
ripotency [43]. The opposing effects of Nodal and BMP sig-
nalling are obviously relevant not only for lineage commit-
ment but also for fine tuning BMP signalling in the näıve state
involving an intracellular mechanism via SMAD7 to modu-
late SMAD1/SMAD5 levels [4, 40, 44]. In summary, LIF is
dependent on BMP signalling in a serum-free mESC culture,
while both signalling axes are strongly dependent on a precise
dosage regulation as any imbalance between both pathways
drives exit from pluripotency to various fates. In the absence
of LIF, BMP signalling directs mESCs towards the mesendo-
derm and trophoblast lineage [45, 46].

2.3. Small Molecules Capture Ground State Pluripotency. Pre-
viously, the Smith Laboratory identified two small molecules,
PD0325901 (PD03) and CHIR99021 (CHIR), which can sub-
stitute for LIF and BMP under defined culture conditions to
facilitate ground state pluripotency in mESC (2i conditions)
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Figure 1: Signalling pathways regulating pluripotency in mESCs. A schematic representation of the main extrinsic pathways (LIF, BMP,
and WNT) regulating pluripotency in mESCs. Upon LIF binding to its receptor, Gp130 phosphorylates JAK, which in turn phosphorylates
STAT3. Phosphorylated STAT3 operates as a transcription factor which sustains the pluripotency state in mESCs and further inhibits
endodermal and mesodermal differentiation. LIF further inhibits GSK3 via PI3K. GSK3 stabilises the self-renewal state by reducing the
ubiquitin dependent degradation of 𝛽-catenin. WNT proteins bind the Frizzled receptor which in turn forms a complex with LRP5/6 protein
and signal downstream via Dsh and 𝛽-catenin. 𝛽-catenin accumulates in the cytoplasm and nucleus resulting in STAT3 transcription. STAT3
is activated through JAK phosphorylation. Upon BMP4-receptor complex formation, BMP RI phosphorylates SMAD1 and SMAD5 which
then interacts with SMAD4 resulting in Id gene transcription and maintenance of the pluripotency state. Image modified after Hao [7].
Dsh: dishevelled, ERK: extracellular receptor kinase, Id: inhibitor of differentiation, JAK: Janus kinase, and mESCs: murine embryoid stem
cells. LIF: leukaemia inhibitory factor, MAPK: mitogen-activated protein kinase, Oct3/4: octamer binding transcription factor 3/4, PI3K:
phosphatidylinositide 3-kinase, SMAD1/4/5: mothers against decapentaplegic homolog 1/4/5, STAT3: signal transducers and activators of
transcription 3, RI: receptor type I, RII: receptor type II, and WNT: wingless-related MMTV integration site family.

[17]. PD03 inhibits MEK, a downstream target of FGF sig-
nalling, important for trophectodermal lineage differentia-
tion in early embryos [47]. Further, mESC pluripotency
and particularly viability is promoted by increased WNT
(wingless-type MMTV integration site family) signalling via
CHIR, a specific GSK3 inhibitor [17, 48]. Nuclear expression
level of 𝛽-catenin, the core effector of WNT signalling [49],
is regulated by a multiprotein destruction complex [50].

Herein, GSK3 inhibition stabilises the self-renewal state by
diminishing ubiquitin dependent degradation of 𝛽-catenin
and repressing Tcf3, a known transcriptional repressor of tar-
get genes [34]. Tcf3 cooccupies and represses Oct3/4, Sox2,
Nanog, and estrogen-related receptor 𝛽 (Esrrb) [51–54], sug-
gesting its role as a crucial regulator of the transcriptional
control of pluripotency in mESCs. Regarding WNT sig-
nalling and its impact on mESC pluripotency, 𝛽-catenin
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interacts with Oct3/4 [34, 55] and Sox2 [56, 57] and is
activated by Nanog via Dickkopf-related protein 1 (Dkk1)
repression [58] to reinforce the self-renewal state. Despite its
role in maintaining pluripotency, canonical WNT/𝛽-catenin
signalling participates in body axis patterning, primitive
streak and extraembryonic lineage formation, and meso-
derm specification through Brachyury [59–63]. In summary,
inhibition of MAPK and GSK3 signalling together with
LIF-supplementation under serum-free culture conditions is
capable of capturing naı̈ve pluripotency robustly from var-
ious preimplantation stages and can preserve ground state
conditions with erased lineage fates [15, 33].

3. Lineage Specific Classification of
Pluripotency Transcription Factors

Despite acting during mESC self-renewal, pluripotency-
associated factors also connect the transition from pluripo-
tency towards lineage specification [4, 5]. The pluripotent
state ismaintained by a unique network of directly interacting
TFs (including Oct3/4, Sox2, Nanog, Tbx3, and Klf4/5).
These TFs either inhibit target gene expression levels required
for lineage differentiation or sustain the expression of one
another [64–66]. However, upon differentiation, controlled
mesendodermal and neuroectodermal commitment requires
the reorganisation of the circuit to allow onset of lineage
specific programmes. Herein, extracellular clues, such as
WNT, BMP, and TGF𝛽, further impact and regulate cell
fate choice [67]. Interestingly, certain pluripotency factors
are not simply downregulated but instead their expression
is either sustained or even upregulated for a short time
window during pluripotency exit [4, 5]. This does not occur
randomly but instead is lineage and factor specific: Basically,
we can distinguish three groups: mesendoderm-class genes
(e.g., Kf4/5, Nanog, Oct3/4, and Tbx3), neuroectoderm-class
genes (e.g., Sox2), and extraembryonic-class genes (e.g., spalt-
like transcription factor 4 (Sall4)) [5]. Mechanistically, TFs
bind asymmetrically in regulatory regions on the one hand
promoting the respective lineage but on the other hand
repressing the other, thus ensuring tightly regulated cell
fate choices. In the following sections, we aim to discuss
pluripotency factors, which have recently been shown to have
such a dual function, namely, pluripotency and early cell fate
choice [68].

However, before continuingwewant to briefly summarise
the earliest embryonic cell fate decisions for better compre-
hension (Figure 2). The zygote represents the earliest stage of
the early mammalian embryo. From here, the cells undergo
several series of cleavage divisions producing the morula
[69]. Subsequently, the first cell decision occurs during the
transition from morula to blastocyst by differentiating into
two distinct lineages. The outer cell layer of the blastocyst
forms the trophectoderm, whereas the inner cells develop
to the ICM [70]. The trophectoderm proliferates further
into the extraembryonic ectoderm and trophoblast, later
giving rise to the placenta. Prior to implantation the ICM
undergoes the second cell fate decision by differentiating
into either the epiblast (later forming the primitive ecto-
derm and subsequently giving rise to the three germ layers

among others) or the primitive endoderm [69].The primitive
endoderm cells form both visceral and parietal endoderm
and finally give rise to the yolk sac [71]. Prior to mouse
gastrulation, the initially symmetrical embryo is prepatterned
by regional distinctions in gene expression profiles and levels
of signalling pathways along the embryonic axes [4]. The
formation of the primitive streak as the first obvious sign of
germ layer formation is driven by gradients of growth factor
signalling such as Nodal and canonical WNT at the posterior
pole of the embryo, accompanied by the expression of early
differentiation marker genes [4, 40]. The regulatory events
that define the timing and site of gastrulation initiation still
remain rather unclear.The formation of a transient precursor
cell population located in the region of the anterior primitive
streak reflects one of the earliest events during gastrulation.
Definitive endoderm and anterior mesoderm derivatives,
including cardiovascular and head mesenchyme progenitors,
originate from these precursors. Notably, this cell population,
referred to as mesendoderm, is marked by the expression
of marker genes such as Eomesodermin (Eomes), Forkhead-
Box-Protein A2 (Foxa2), Chordin (Chrd), Goosecoid (Gsc),
and LIM-homeobox 1 (Lhx1) [72].

3.1. Mesendodermal-Class Genes

3.1.1. Octamer Binding Transcription Factor 3/4 (Oct3/4): Indis-
pensable for Lineage and Pluripotency. Oct3/4 has gained
much attention as the key regulator of mESC pluripotency in
vitro and in vivo [73]. Oct3/4 belongs to the POU family
and, as a master regulator of pluripotency, it functions in a
complex, consisting of Nanog, Oct3/4, and Sox2 [74]. Hereby,
it crucially balances gene expression levels of the pluripotency
circuitry [75]. STAT3 is able to directly bind and regulate
Oct3/4 to maintain self-renewal [26]. Also, both have been
shown to activate similar target genes [3]. Previous work
describes Oct3/4 as a gatekeeper both for maintaining self-
renewal and also in modulating stem cell fate choice in a
dose-dependent manner [76]. In this respect, the Chambers
Laboratory demonstrated that low Oct3/4 levels, as seen
in heterozygous mESCs, were sufficient to maintain mESC
pluripotency [77]. This was especially due to elevated pro-
moter binding of Oct3/4 to pluripotency-associated factors
(e.g., Esrrb, Klf4, Nanog, and Tbx3) and increased WNT
signalling and LIF sensitivity. In contrast, elevated Oct3/4
levels destabilised the pluripotency network resulting in
FGF-dependent differentiation [77]. In this sense, alternate
partners of Oct3/4 can define the switch between pluripo-
tency and lineage commitment: while in the pluripotent
state Oct3/4 sustains Sox2 expression, the switch to activate
Sox17 instead marks a critical event during mesendodermal
differentiation.This process is triggered not only by a change
in target gene expression but in a noncell autonomous man-
ner by the secretion of paracrine factors further favouring
mesendodermal differentiation [78, 79]. Moreover, Hogan et
al. analysed the impact of Oct3/4 on regulating mESC dif-
ferentiation based on previous knowledge that mESCs differ-
entiation is the result of an interplay between transcriptional
regulation and chromatin organisation [80, 81]. In this regard,
exit from pluripotency was facilitated through intermittent
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Figure 2: Pluripotency factor expression during early embryonic development. Pluripotency factors are expressed throughout the
pluripotency state and subsequently govern early lineage decisions in mouse. (a) The early blastocyst consists of the ICM and the outer
trophectoderm. Pluripotency factors are expressed in the ICM, however, interacting with trophectodermal genes for proper lineage
development. (b)At the late blastocyst stage, the ICMsegregates into the epiblast, notably exhibiting slightly different gene expression patterns,
and into the extraembryonic endoderm, later giving rise to yolk sac. Further, the trophectoderm has formed the extraembryonic ectoderm
lineage which will generate the placenta. (c) After implantation, the primitive ectoderm, which has origins in the epiblast, forms the four
embryo-derived stem cell lineages (ectoderm, mesoderm, endoderm, and germ lineage). Notably, pluripotency factors guide early embryonic
decision according to their expression profile, respectively. ICM: inner cell mass.

homologous pairing of the Oct3/4 allele. This was mediated
by a locus initially described as the Oct/Sox-binding element
within the Oct3/4 promoter region. Besides, Oct3/4 is also
known to undergo alternative promoter binding at the stage
when loss of pluripotency occurs towards differentiation [82].

In the embryo, Oct3/4 maintains the ICM and guides
proper trophectoderm segregation upon differentiation. As
Cdx2 expression promotes the trophectoderm lineage [83],
it is not surprising that Oct3/4 was identified as a negative
regulator of Cdx2 [84]. The Oct3/4-Cdx2 complex (possibly
together with Sall4 as mentioned below) specifies lineage
formation in the early embryos by reciprocal inhibition in
vivo and in vitro [85] (Figure 2). In vivo, Oct3/4 guides
mesendodermal differentiation and further suppresses neu-
roectodermal gene expression programmes [5, 86]. Preceding
mouse development, Oct3/4 is expressed in the primitive

endoderm [87] (Figure 2). Conditional deletion of Oct3/4 in
vitro promotesmESCs to commit towards the trophectoderm
lineage via Cdx2 and Eomes [3, 73, 84, 88]. Oct3/4-deficient
mouse embryos develop to the blastocyst stage but fail to form
a consistent pluripotent ICM resulting in embryonic lethality
due to differentiation into the extraembryonic trophoblast
lineage [73].Thus, the acquisition of ICM identity is supposed
to be dependent on Oct3/4 functions [84]. Indeed, a recent
study revealed a transient ICM formation in Oct3/4-deficient
embryos, due to elevated Nanog expression levels [89].
Moreover, these embryos were lacking a functional primitive
endoderm; however, this was rescued by stage specific sup-
plementation of FGF4 [89]. This study was able to reveal a
critical role of Oct3/4 facilitating early lineage decisions in
ICM cells towards either epiblast or primitive endoderm by
attenuating Nanog expression levels and further promoting
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primitive endoderm formation in an FGF-dependentmanner
[89]. However, due to its importance in governing lineage
decisions in the early blastocyst, it is not possible to date to
isolate mESCs from Oct3/4-deficient embryos [73].

Taken together, Oct3/4 belongs to key pluripotency TFs,
which maintains mESC pluripotency. Its tightly regulated
expression levels drive proper mESC differentiation towards
mesoderm and primitive endoderm [3] by repressing the
neuroectodermal lineage fate [90]. Molecularly, this gate-
keeper function is exerted by alternate partnering and
changes in cobound factors to orchestra cell fate choice by
alternating target gene binding.

3.1.2. T-Box Transcription Factor 3 (Tbx3): Bystander in Plu-
ripotency or Just Cell Fate Regulator? Several studies have
highlighted Tbx3 to function during mESC self-renewal [2–
4, 65]. Briefly, the PI3K-AKT signalling pathway stimulates
Tbx3 resulting in upregulated key pluripotency factor expres-
sion levels (Oct3/4, Nanog, and Sox2). To balance accurate
pluripotency levels, Tbx3 expression is antagonised by the
MAPK pathway [2]. It is also able to drive the expression of
key pluripotency markers by direct promoter binding through
Nanog [65]. In addition, Tbx3 acts as a downstream activator
of WNT signalling [91]. WNT sustains the pluripotent state
together with LIF, although, in the absence of LIF, WNT
promotes cell differentiation towards primitive endoderm via
Tbx3 [91, 92]. Hence, Tbx3 has beenwidely believed to belong
to the inner core of the pluripotency circuitry, with loss of
Tbx3 leading to differentiation. In marked contrast, we have
recently identified fluctuating Tbx3 levels in mESCs: “Tbx3-
low” cells resemble the gastrulating epiblast in vivo but retain
the capacity to switch back to a Tbx3-high state. Moreover,
we could show that Tbx3 is dispensable for the induction
and maintenance of naı̈ve pluripotency. Taken together, we
delineate novel facets of Tbx3 action in pluripotency and
show an involvement of Tbx3 in the transition from the
näıve embryonic state to the prepatterned epiblast-like state.
These purely mESC-derived data are further fostered by the
observation of in vivo heterogeneity of Tbx3 in the ICM
(Russell, Liebau, Kleger, unpublished data).

However, Tbx3 also fulfills a lineage specifying role, thus
being classified as amesendodermal-class gene [5] (Figure 3).
We showed that Tbx3 is dynamically expressed during
specification of the mesendoderm lineages in differentiating
mESCs in vitro and in developing mouse and Xenopus
embryos in vivo [4]. Nodal patterns the preimplantation
embryo by interacting with the epiblast and the extraembry-
onic tissues [93]. Tbx3 overexpression promotes mesendo-
dermal specification by activating crucial lineage specifying
factors and by enhancing paracrine Nodal/SMAD2 signal-
ling. Also, Tbx3 expression has also been detected in the vis-
ceral endoderm lineage. Therefore we suggest that Tbx3 may
promote mesodermal lineage formation by activating Nodal
via visceral endodermal cells expressing Tbx3 (Figure 2).
Tbx3 is highly enriched in definitive endoderm progenitor
cells [94] and it is involved in endoderm patterning together
with chromatin-modifying enzymes [95]. The underlying
mechanism includes spatial reorganisation of chromatin,
leading to sensitisation for definitive endoderm promoting
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Sal-like 4, and Sox2: SRY- (sex determining region Y-) box 2.

signals by enabling the histone demethylase Jmjd3 to tran-
siently bind the two T-box factors: Tbx3 and Eomes.

In summary, Tbx3 is embedded in the core pluripotency
networks to sustain stemness but also strongly directs early
embryonic development by either transcriptional activation
of differentiating gene programmes or modification of chro-
matin structures.

3.1.3. Krüppel-Like Family (Klf): The Transcriptional Lineage
Inhibitors. Klfs (Klf2, Klf4, and Klf5) are conserved zinc-
finger-containing TFs implicated in various biological pro-
cesses, such as proliferation, differentiation, and development
[96]. In the early embryo they are already expressed in the
ICM [97] (Figure 2). Klfs are indispensable for self-renewal
by forming a tightly regulated molecular circuitry [64, 98].
Klf4 and Klf5 especially transcriptionally regulate expres-
sion of Nanog [98], a known inhibitor of differentiation dur-
ing pluripotency [99, 100]. However, Klf2 is mainly regu-
lated by Oct3/4, whereas Klf4 is regulated by LIF/STAT3 and
additionally by Oct3/4. Klf5 is solely activated by LIF/STAT3
leading to ground state mESC pluripotency [101]. Previous
reports suggest that LIF/STAT3 regulateNanog and indirectly
the core regulatory complex consisting of Nanog, Oct3/4, and
Sox2 through activation of Klf4, Klf5, and Sall4 [29]. Despite
their close relationship Klf4 and Klf5, they often exert oppo-
site effects in regulating gene transcription and cellular pro-
liferation in vitro and in vivo [102]. Klf4 is a negative regulator
ofmESC proliferation, whereas Klf5 acts as an activator. Also,
Klf5 and Klf4 abrogate the mutual promoter effects [103]. In
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summary, the propagation of the LIF/STAT3 reinforced self-
renewal state by Nanog is mediated by members of the Klf
family. Their overexpression reinforces the pluripotent state
in the absence of LIF [64, 104, 105], whereas their inactivation
inmESCs induces spontaneous differentiation [29].However,
due to structural and functional overlaps, Klfs are able to
compensate for each other. This was noticable as a triple
knockdown abolished Nanog promoter activity and led to
differentiation of mESCs [98], whereas single knockdowns
did not exhibit a specific phenotype [98, 106].

However, Klfs do not just ensure the self-renewal state
but are also critical components in regulating lineage spec-
ification in the early embryo. Recent work showed that
Klf4 negatively regulates the visceral lineage (especially via
GATA-binding factors 4 and 6 (GATA 4/6)) and definitive
endoderm (especially via Sox17), whereas Klf5 primarily
suppresses mesodermal differentiation (T,Mixl1 (mix paired-
like homeobox 1)) (Figure 2) [107].Thus, mESC pluripotency
is ensured by additive inhibitory effects of Klf4 and Klf5.
When we look at previous findings, Klf levels drop rapidly
upon onset of lineage specification, resulting in a diminished
lineage inhibition and subsequently in endodermal and
mesodermal lineage formation [29].Thus,mESCs are primed
upon the drop of Klfs expression levels and prepared for early
lineage differentiation. In vivo, Klf4-null mice survive early
developmental stages but die shortly after birth due to tissue
abnormalities within the smooth and cardiac muscle and
basal membrane formation problems which primarily is due
to a defective GATA4 regulation [108, 109]. A lacking gastru-
lation phenotype in Klf4-deficient mouse embryos suggests
compensatory mechanisms by the Klf family. In contrast,
Klf5-deficient embryos fail to develop further than the blasto-
cyst stage due to reduced Oct3/4 andNanog expression levels
[64, 110]. Taken together, Klfs exert a great impact in sus-
taining the self-renewal state by either interacting with core
pluripotency activating genes or inhibiting differentiation.
However, the inhibition of endodermal structures primarily
by Klf4 and mesodermal structures by its counterpart Klf5
does not just safeguard the self-renewal state but balances
accurate differentiation onset in the early mouse embryo and
in differentiating PSCs (Figure 2).

3.1.4. Nanog: Various Facets during Differentiation and Self-
Renewal. Nanog, the homeodomain TF, acts together with
Oct3/4 and Sox2 to maintain the pluripotency network
through theOct/Sox-motif [74, 98, 111, 112]. Nanog is also able
to sustain self-renewal independently from the LIF/STAT3
pathway [113], albeit at a reduced self-renewal capacity [74].
Most robust self-renewal state is promoted under continuous
Nanog overexpression and LIF stimulation [114]. However,
while Nanog has previously been shown to be dispensable
for mESC culture, it mainly functions in stabilising the
pluripotency network [115]. Previous studies hypothesised
that a switch from monoallelic Nanog expression, in a
LIF/serum setting, to a biallelic manner in 2i conditions
results in higher expression levels. Of note, this hypothesis
was disproved by recent results illustrating a steady biallelic
expression of Nanog [116, 117]. Despite direct transcriptional
regulation of pluripotency target genes, Nanog sustains the

self-renewal state by inhibiting several differential processes
in mESCs. First, a population of early mesoderm-specified
progenitors was identified, normally present in mESCs and
promoted by the BMPpathway.These primedmESCs express
pluripotency-associated TFs such as Oct3/4 and Rex1 but are
actually specified to the mesodermal fate. In the presence of
LIF, Nanog is able to respecify mesoderm-specified progeni-
tors back to pluripotentmESCs [118]. A secondmechanism of
blocking the progression of mesoderm is a direct inhibition
of SMAD1 via STAT3 activation in a LIF-containing setting
[119], which has also been demonstrated for Oct3/4 [120],
suggesting their cooperative function to sustain self-renewal.

Similarly, Nanog functions as an important determinant
during cell fate decisions at the blastocyst stage in vivo [121].
Here, it is downregulated by Cdx2 in the trophectoderm
[85], whereas it is highly expressed in the ICM [122, 123].
The early ICM of the blastocyst gives rise to the epiblast
and primitive endoderm progenitors as a first sign of lineage
choice occurring in the ICM. In the unrestricted, early
ICM of the blastocyst, Nanog expression is dependent on
transcriptional binding of Oct3/4, Sox2, and Esrrb [112, 124],
while, in the later derived epiblast, Nanog promoter binding
changes now being dependent on Activin A signalling via
SMAD2 [123, 125, 126]. We know that Nanog is essential for
both epiblast and primitive endoderm formation (Figure 2).
GATA6 is crucial in the primitive endoderm lineage in vivo
and in vitro [113, 127–129] and is transcriptionally repressed
by Nanog in epiblast-engaged cells [130]. However, recent
studies showed primitive endoderm to require epiblast cells
for proper differentiation, whereby Nanog signals through
FGF/ERK signalling (FGF4) resulting in upregulated GATA4
and Sox17 expression levels [121]. This observation has been
recently fostered by live-time imaging data using a Nanog-
reporter system in vivo, where Nanog expression marks
an irreversible commitment between the epiblast and the
primitive endodermal lineage, while rarely unidirectional
conversions from primitive endoderm to epiblast occur [131].

Elegant studies from the Vallier Laboratory combined
PSCs and developing mouse embryos to uncover the tran-
scriptional network around Nanog during pluripotency and
lineage commitment [132]. Herein, SMAD2/3 controls the
self-renewal state by interactingwith core TFs, such asOct3/4
and Nanog. Notably, endodermal differential programmes
were also shown to be downstream of SMAD2/3, demon-
strating an opposing function of SMAD2/3. As SMAD2/3
and Nanog are involved in both processes, SMAD2/3 may
be guided by distinct genes like Nanog to achieve tissue
specific functions [133]. Further, during primitive streak
formation initial pluripotent differentiation inhibitors rapidly
decline beginning with Sox2. This enables Nanog to form
complexes with SMAD2/3, which promote Eomes expres-
sion levels. Eomes further diminishes pluripotent signals
thereby ensuring sufficient Nanog expression. Subsequently,
Nanog expression levels decline making room for SMAD2/3
and Eomes thereby directing primitive streak cells towards
endodermal fate and coincidently inhibiting mesoderm for-
mation [134]. This observation receives further support
from another recent study showing that Nanog cooperates
with Activin/SMAD in recruiting histone modifiers such
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as Dpy30, a subunit of the COMPASS methyltransferase
complex, thus regulating differentiation-linked genes [132].

In line with these data, Nanog has been classified as a
mesendodermal-class gene, like Oct3/4 and Tbx3 [5] (Fig-
ure 3). All these genes reveal overlapping gene expression
levels and lineage specifying patterns, albeit we are still lack-
ing evidence demonstrating their mutual relationship during
early lineage decisions [5, 74]. Inconsistent data has been
published regarding the Nanog-lacking phenotype. Initially,
Nanog deficiency was reported to result in a failure of epiblast
formation and, concomitantly, mESCs lost their pluripotent
fate and differentiated into trophectoderm [113]. However,
this phenotype was not clearly replicable in recent studies
[130]. Instead, Nanog-deficient embryos reveal upregulated
GATA6 expression levels and fewGATA4-positive cells [130].
Therefore, Nanog mutant ICMs do not undergo apoptosis
suggesting a stabilising role of GATA6 in this regard [130]. In
summary, Nanog shows multiple facets in regulating mESC
pluripotency or by specifying lineage formation in the early
mouse embryo.

3.2. Neuroectoderm-Class Genes

3.2.1. Sex Determining Region Y- (SRY-) Box 2 (Sox2): The
Neuroectodermal Embryonic StemCell Gene. Anothermaster
regulator of mESC pluripotency is Sox2, a member of the
HMG (high-mobility group) box proteins. Sox2 maintains
stemness by directly interacting with Oct3/4 in a reciprocal
fashion. Both share the ability to bind to a unique pro-
moter region, the Oct/Sox-motif [135].This highly conserved
Oct/Sox-element is critical for transcriptional regulation of
pluripotency and located on different genes in undiffer-
entiated mESCs, such as Oct3/4, Sox2, and Nanog [112].
The proper modulation of these target genes preserves the
self-renewal state [88]. Notably, Niwas group showed that
Sox2 was dispensable for activating the Oct/Sox-element
[88]. Instead, Sox2 is important in activating pluripotency-
associated genes, which in turn regulate Oct3/4 resulting in
stable Oct3/4 expression levels. Both activate FGF4 expres-
sion in the ICM and epiblast [136] and in turn FGF4 controls
ICMmaintenance and subsequently interacts with Cdx2 and
Eomes while promoting trophectodermmaturation [85, 137].

During early lineage decisions, Sox2 is broadly expressed
in the ICM and the trophectoderm and later even in the
epiblast and in the primitive endoderm [138, 139] (Figure 2).
Interestingly, Sox2 knockout studies indicated stable or even
low Oct3/4 and Nanog expression levels and at the same
time surprisingly low trophectoderm gene (Eomes, FGF4)
expression levels [139], resulting in embryonic lethality due to
defective epiblast development during the peri-implantation
stage. Stable Nanog and Oct3/4 levels seem unusual, as Sox2
is a central member of the pluripotency-maintaining protein
complex. Nevertheless, this effect could be explained by
autoregulatory functions, which Sox2 has in common with
Oct3/4, Nanog, Sall4, and Klfs [98]. In vitro, upon reduction
of Sox2 levels, mESCs differentiate towards trophectoderm
indicating its impact in sustaining the pluripotent state.Thus,
trophectoderm differentiation could result from a secondary
loss ofOct3/4 levels due to Sox2 reduction [88].Heterozygous

Sox2 knockout mutations in mouse show severe alterations
in brain and neural cells [140], thus gaining insight into
the promoted germ layer. Sox2 induces neuroectodermal
gene expression [5] by specifically repressing Oct3/4, which
vice versa participates in cell fate choice by promoting the
mesendodermal lineage [86] (Figure 2). In summary, Sox2 is
embedded in the pluripotency network by interacting with
key pluripotent genes. However, upon onset of differentia-
tion, Sox2 promotes neuroectodermal lineage allocation by
transcriptional repression of Oct3/4 (Figure 3).

3.2.2. Gastrulation Brain Homeobox 2 (Gbx2): Another Ecto-
dermal Player? The TF Gbx2 is a direct downstream target
of LIF/STAT3. Its overexpression is able to substitute for LIF
in mESCs and to maintain self-renewal in a STAT3 deprived
mESC culture [141]. Notably, Gbx2 is able to push primed
EpiSCs back into the pluripotent state [141]. Nonetheless,
its impact on pluripotency just seems to have a supporting
character, as shown by in vitro knockdown studies, where the
pluripotent state was not fully impaired [141]. This is in line
with in vivo studies, which do not showmorphological abnor-
malities in the blastocyst [141]. In the mouse embryo, Gbx2
is expressed in the ICM and, together with Rex1 (Zfp42),
diminishes during primitive ectoderm formation [142] (Fig-
ure 2). Notably, at gastrulation stage, Gbx2 is present in all
three germ layers [143] but subsequently gets upregulated in
the neural ectoderm and underlying mesoderm and finally is
limited to the CNS (central nervous system) [144] (Figure 2).
In line, Gbx2 knockoutmice show abnormalities in hindbrain
development, neural crest patterning, and cardiovascular and
craniofacial defects and die soon after birth [143, 145].

Taken together, although Gbx2 lies downstream of
LIF/STAT3, it seems to be dispensable for mESC culture and
ICM integrity. However, during early developmental steps,
Gbx2 is committed to the ectodermal lineage fate (Figure 3)
[146].

3.3. Extraembryonic-Class Genes

3.3.1. Spalt-Like Transcription Factor 4 (Sall4). The transcrip-
tional network in preimplantation embryos was recently
extended by the spalt-like gene family member Sall4. Sall4
directly interacts with Nanog and cooccupies several gene
sites, including their own promoters, forming autoregula-
tory loops. Together, they are suggested to function as a
Sall4/Nanog-complex maintaining pluripotency by recipro-
cal regulation. The physical relationship was suggested to be
similar to the Oct3/4-Sox2 interaction encountered on many
loci in mESCs [147]. Besides, in the ICM and the epiblast,
Sall4 expression occurs simultaneously to Oct3/4 and Sox2
expression [148], revealing another contribution to the tran-
scriptional network. This was confirmed by verifying Sall4
occupation on the Oct/Sox-element in vitro and in vivo [149]
and by gene profiling analyses illustrating Sall4 cooccupying
the same target genes as Sox2 inmESCs [149]. Independently,
Sall4 can modulate Oct3/4 expression levels, the master TF
of pluripotency, and vice versa, indicating its critical role in
maintaining stemness [150]. In summary, Sall4 contributes
to the transcriptional network by direct interaction with
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the key players, Nanog, Oct3/4, and Sox2, to maintain the
self-renewal state. Moreover, Sall4 can also be recruited to
the promoters of Klf2 and Klf5, although its role contribut-
ing to mESC pluripotency through the Klf family requires
further studying. Another possible mechanism supporting
Sall4 mediated pluripotency could be the recruitment of the
strong transcriptional repressor complexNuRD (nucleosome
remodelling and deacetylase) [151]. Both Sall4 and NuRD
are expressed in mESCs and are involved in maintaining
stemness. As Sall4 associates with the NuRD complex, both
genes could act together in sustaining pluripotency. But due
to lacking evidence this hypothesis remains an assumption.

At the blastocyst stage, Sall4 regulates the ICM devel-
opment to the two blastocyst-derived stem cell lineages:
epiblast and extraembryonic endoderm (Figure 2). GATA6
is important in defining the extraembryonic endoderm,
although GATA6 mutants exhibit lineage specific defects,
a short time after blastocyst formation. Thus, GATA6 does
not seem to be a core component for primitive endoderm
initiation but rather for its maturation [152]. In this regard,
studies exhibited Sall4 to regulate extraembryonic endoderm
genes, such as GATA4, GATA6, Sox7, and Sox17 [153]. So it
can be concluded that Sall4 contributes to the transcriptional
network maintaining mESC pluripotency mediated by direct
interaction with crucial TFs [154]. In line with this, it is
not surprising that Sall4 overexpression leads to primitive
endoderm differentiation [154] and further may support
Oct3/4 in this matter [87]. Also, similar to Oct3/4, Sall4
knockdown mESCs are becoming alkaline phosphatase (AP)
negative and tend to differentiate towards the trophoblast
lineage [148, 154]. It is feasible that Sall4 cooperates with
Oct3/4 to suppress trophectoderm lineage allocation [155].
Sall4-null mice are lethal during peri-implantation [156, 157],
whereas heterozygousmice exhibit anorectal tract abnormal-
ities, heart defects, skeletal defects, and anencephaly [157].

Taken together, Sall4 is broadly connected within the
pluripotency network and has a major role in driving early
lineage decisions especially towards the extraembryonic lin-
eage (Figure 3).

3.3.2. Estrogen-Related Receptor 𝛽 (Esrrb). The estrogen-
related receptor beta (Esrrb), amember of the nuclear orphan
receptor family, is a core pluripotency member of sustaining
näıve pluripotency and is deeply embedded in the self-
renewal network interacting with several pivotal TFs [158]. It
transcriptionally interacts withNanog in a reciprocalmanner
[51] and apart from overlapping target gene profiles. Esrrb
is able to substitute for Nanog in mESCs [159]. Further,
Esrrb binds promoters of the master pluripotency factor
Oct3/4 [160] and other TFs such as Klf2 [161] and Rex1
[160]. It acts independently of LIF/STAT3 [51]. Despite its
expression levels being directly modulated by the transcrip-
tional repressor Tcf3, Esrrb mediates self-renewal effects
upon GSK3 inhibition and is also able to stabilise 𝛽-catenin
levels. Thus, in the presence of a MEK inhibitor, for example,
by the smallmolecule PD03, Esrrb overexpression can replace
GSK3 inhibitionmaintaining self-renewal inmESCs [51, 159].
Indeed, mESCs depleted from Esrrb and cultured in the
absence of LIF undergo morphological changes, reduction of

AP activity resulting in spontaneous differentiation [51, 162].
In vivo, Esrrb deletion leads to embryonic lethality during
midgestation due to placenta defects [163]. This is in line
with previous studies, which indicated the presence of Esrrb
in the trophoblast lineage [164]. Surprisingly these embryos
survive throughout gastrulation exhibiting no defects in the
ICM and epiblast [163]. Thus, we presume that Esrrb can be
compensated by other factors in this complex transcriptional
network maintaining pluripotency.

Regarding its expression profile in the ICM and tropho-
blast (Figure 2) and the fact that Esrrb enhances Cdx2 expres-
sion levels, it is also fair to assume that Esrrb acts as an impor-
tant factor in regulating lineage decisions in the early blas-
tocyst. As we know, overexpressed pluripotency factors pro-
mote differentiation. This was also shown for Esrrb, as over-
expressedmESCs are prone to differentiate towards the endo-
dermal lineage [165, 166]. Further investigations are necessary
to clarify molecular mechanisms to date, but regarding its
attested role in trophoblast specification we classified Esrrb
to be an extraembryonic-class gene (Figure 3).

3.3.3. Rex1 (Zfp42). Several studies have successfully used
all-trans retinoic acid (RA) to induce mESC differentiation
[167]. The stem cell marker Rex1 reduces RA-induced differ-
entiation thereby sustaining the self-renewal state [168–170].
During mESC pluripotency, Rex1 activity is up- or down-
regulated by Oct3/4 depending on its expression levels [171].
Also Sox2, another key pluripotency factor, is able to transac-
tivate Rex1 via Nanog [169]. Nonetheless, Rex1 is dispensable
for mESC pluripotency [172].

Endogenously, Rex1 is expressed in the ICM and in
trophoblast lineages [173] (Figure 2). Notably, unlike Oct3/4,
Rex1 is not present in all cells of the ICM. A previous study
illustrated two different subpopulations: both were positive
for Oct3/4 but only one of them was Rex1-positive [174].
Notably, they were able to convert into each other upon
LIF stimulation. The group double positive (Rex1+/Oct3/4+)
developed into primitive ectoderm and participated in
chimera formation, whereas the other group, Rex1−/Oct3/4+,
induced somatic differentiation, indicating the existence of
primed subcultures in ICM which are guided by Rex1 to
develop into either epiblast cells or primitive endoderm [174].

Overexpression of Rex1 in mESCs surprisingly results in
impaired self-renewal [175] and in vivo delayed development
through early cleavage divisions [176]. However, homozygous
Rex1 knockout in mESCs causes spontaneous differentiation
into all three primary germ layers [168, 170, 177], indicating
that Rex1 can at least reduce RA associated differentiation. To
date, there is neither a noticeable phenotype regarding Rex1-
deficient mESCs nor mice. In vivo experiments displayed
Rex1-deficient mice to be fertile and viable but their offspring
die at late gestation [172]. All in all, as the pluripotency factor
Rex1 seems to drive lineage segregation at the early blastocyst
stage especially towards the extraembryonic lineage, we
decided to position it in this section (Figure 3).

3.4. Epigenetic Modulations

Methyl-Binding Domain Protein 3 (Mbd3). Epigenetically, tran-
scriptional sustainment of mESC pluripotency is modulated
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by chromatin remodelling including histone modifications
and DNA methylation. Pluripotency is maintained by a bal-
ance between LIF/STAT3 activation and a repression through
NuRD [178]. NuRD mediated silencing in mESCs plays a
critical role in early lineage commitment into all three germ
layers [179]. Mbd3 is the key subunit of the NuRD repressor
complex network [180]. A recent publication demonstrated
Mbd3 to be dispensable for maintaining mESC pluripotency.
Also, its expression seems to diminish upon fertilisation,
therefore being absent during the early preimplantation
period, and is upregulated towards the late morula/blastocyst
stage [181]. However, according to previous work, Mbd3
exhibits a critical role repressing the trophectoderm lineage in
order to ensure mESC propagation and subsequently proper
differentiation of the epiblast [182]. Additionally, NuRD
mediated mESC self-renewal was shown to function through
epigenetic modulation of the WNT pathway [183].

As epigenetic modifications occur during ICM and pri-
mary germ layer formation, it is not surprising that Mbd3
deletion in mice leads to early embryonic lethality [184], thus
being indispensable for early embryonic development.

4. Conclusion

Näıve pluripotency implies the ability of unlimited self-
renewal and regeneration. Its complex regulatory circuity
has been studied extensively. Key players such as Oct3/4,
Nanog, and Sox2 are complemented by many TFs forming
a tightly regulated network that sustains the self-renewal
state by inhibiting genes required for differentiation. Upon
withdrawal of stemness-inducing signals, pluripotency factor
expression levels decline, giving differentiation factors the
opportunity to induce lineage allocation. These cell fate
decisions are essential for developmental processes into the
primary germ layers.

Interestingly, several members of these pluripotency-
associated factors have been identified to exert dual functions
during early embryogenesis, by also governing the transition
of pluripotency towards early lineage commitment. Here, TFs
initially maintaining pluripotency by activating self-renewal
gene programmes undergo a molecular switch resulting in
enhanced expression levels of differentiation inducing genes.
In this regard, the TFs were classified into mesendoderm-,
neuroectoderm-, and extraembryonic-class genes (Figure 3).
Notably, mesendoderm-class genes inhibit neuroectoderm
and vice versa to promote the appropriate lineage. Although
both the pluripotency circuitry and early lineage commit-
ment mechanisms have been studied in great detail, there is
still a broad gap of knowledge regarding the distinct regu-
latory complexes governing these events. By understanding
the interplay of factors and signalling pathways involved in
the early embryonic development, basic as well as clinical
science would be able to profit broadly in terms of develop-
mental steps and pathomechanistical events. Summarising,
TFs interact in network in a spatial and temporal manner to
exit pluripotency and establish different lineages in the early
embryo.
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