
1Scientific Reports | 7:43253 | DOI: 10.1038/srep43253

www.nature.com/scientificreports

Bio-inspired benchmark generator 
for extracellular multi-unit 
recordings
Sirenia Lizbeth Mondragón-González & Eric Burguière

The analysis of multi-unit extracellular recordings of brain activity has led to the development of 
numerous tools, ranging from signal processing algorithms to electronic devices and applications. 
Currently, the evaluation and optimisation of these tools are hampered by the lack of ground-truth 
databases of neural signals. These databases must be parameterisable, easy to generate and bio-
inspired, i.e. containing features encountered in real electrophysiological recording sessions. Towards 
that end, this article introduces an original computational approach to create fully annotated and 
parameterised benchmark datasets, generated from the summation of three components: neural 
signals from compartmental models and recorded extracellular spikes, non-stationary slow oscillations, 
and a variety of different types of artefacts. We present three application examples. (1) We reproduced 
in-vivo extracellular hippocampal multi-unit recordings from either tetrode or polytrode designs. (2) 
We simulated recordings in two different experimental conditions: anaesthetised and awake subjects. 
(3) Last, we also conducted a series of simulations to study the impact of different level of artefacts 
on extracellular recordings and their influence in the frequency domain. Beyond the results presented 
here, such a benchmark dataset generator has many applications such as calibration, evaluation and 
development of both hardware and software architectures.

Electrical recording of extracellular action potentials is the “gold standard” technique widely used in electro-
physiology1, where the signals are exploited to correlate neural activity with a behavioural output and/or the 
electrophysiological consequences of brain lesions or drug infusion, etc. The emergence of novel methods for 
neural analysis together with high-throughput data acquisition technologies2 provide new possibilities for the 
exploitation of brain activity at the single unit level, for example, giving instantaneous feedback for closed-loop 
interactions with brain circuits when abnormal neural signals are detected3. This approach has proven effective 
for several pathological conditions such as Epilepsy, Parkinson’s disease, or Essential Tremor4–7. From a more 
fundamental perspective, novel algorithms have been recently proposed to process these large amounts of neu-
ral data, such as semi-automatic and automatic clustering techniques, to distinguish different neural sources 
in multi-unit extracellular recordings8–12. In order to validate the performance and accuracy of these different 
algorithms or devices, reliable datasets, where the majority of the signal content is known, are essential. Ideally, 
this ground-truth reference should be a completely annotated and parameterised dataset, in which three levels 
of information should be modifiable and known in detail: the recording environment (e.g. density of active pop-
ulation of neurons or distance from neurons to recording sites), the population dynamics (e.g. firing rate, spike 
timing of each neuron and spike waveforms) and the noise content (e.g. background noise level contribution and 
number of artefacts).

There are several applications (Fig. 1) where using a parameterised dataset can be advantageous, ranging 
from algorithm design to development and evaluation of electronic devices. Moreover, parameterised datasets 
are needed to evaluate the efficiency of unsupervised classification algorithms. In recent years, several spike sort-
ing algorithms have been proposed8–12, however, it is difficult to assess their sorting efficiency since the datasets 
used to evaluate their performance were heterogeneous. These studies either used real recording datasets where 
all the events that constitute the signal were not known, or simulated datasets that did not include all the features 
encountered in real recording, such as slow oscillations and/or disturbance by artefacts. Therefore, one solution 
could be to use a fully annotated and parameterised dataset as a ground-truth reference to objectively assess the 
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performance of these different spike sorting algorithms (Fig. 1a). In the same manner, fully annotated datasets 
could also be used to challenge event detectors or noise reduction algorithms (Fig. 1b and c).

In addition, these benchmarks could be very useful for brain-computer interfaces and neural prosthetic 
devices (Fig. 1d and e). The common approach to assess the performance of such electronic devices is to use 
a large number of neural signal datasets that include a range of various features (e.g. different noise levels, a 
degree of meaningful information load, signal resolution etc.). For this purpose, parameterised datasets with 
independently modifiable features would allow the generation of a large variety of neural signal profiles in a con-
trolled manner. This approach could also enable the simulation of experiments for calibration purposes instead of 
performing labour- and cost-intensive experiments with real subjects.

Several approaches, based either on biological or purely computational models, have been proposed13 to gen-
erate reliable (in terms of biological constraints), fully annotated, and flexible benchmarks. With in-vitro biologi-
cal approaches14,15, investigators have conducted simultaneous recordings to capture intracellular signals emitted 
by some neurons located closely to extracellular electrodes. Although this approach relies on real experimental 
data, the limitation is that only a few neurons could be followed by the intracellular recordings, which represent a 
small part of the complex signal recorded at the contiguous extracellular recording sites.

Computational approaches use either compartmental or biophysically data-driven models13,16–24. The former 
are parameterisable but computationally too demanding when required to simulate a large number of neurons. 
The latter, in contrast, are computationally simpler and faster but not parameterisable given the use of signal 
templates.

A more recent solution is a hybrid approach, where compartmental and biophysically data-driven models are 
combined: while the compartmental models serve to generate the neural signal, spike template-based models, on 
the other hand, simulate the physiological background noise25. Models based on this approach are a good com-
promise between complexity and bio-realism. Their great potential relies on their ability to generate a simulated 
signal similar to that arising from a large population of single neurons, leading to a more realistic approach. These 
hybrid models could be improved by adding other features found in experimental recordings such as corrupting 
events that could affect signal quality.

In the present study, we propose a computational procedure to generate realistic neural signals based on a 
hybrid model approach, in which both real and simulated signal features are combined with a relatively low 
computational requirement. The generated datasets are fully parameterisable and include all the original features 
found in real recordings such as a variety of different types of artefact and background noise. The validation stage 
of our procedure explores the similarity between real recordings and our model-generated signals. We show that 
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Figure 1.  Examples of bio-inspired neural benchmark applications. Such benchmarks are needed in two 
contexts, on the one hand, in applications that involve fine signal processing usually executed on computers 
such as (a) neural pattern detection, (b) cluster classification algorithms and (c) signal denoising methods, and 
on the other hand in applications with direct exploitation of signals, usually executed on electronic devices, such 
as (d) brain-computer interfaces and (e) on-site decoding neural prosthetics.



www.nature.com/scientificreports/

3Scientific Reports | 7:43253 | DOI: 10.1038/srep43253

our model is easily modifiable and generates synthetic signals similar to those obtained in distinct experimental 
conditions. We also illustrate the flexibility of our simulator by modelling different types of recording configura-
tion (tetrodes and microelectrode arrays), brain tissue (such as juxtaposed layers) and experimental conditions 
(awake or anaesthetised animals). To validate our approach, we focus on reproducing hippocampal recording 
datasets that have been extensively used in previous studies14,26. With our parameterisable bio-realistic procedure, 
we can also easily simulate different experimental conditions. As an example, we show the incidence of different 
levels of artefact in anaesthetised or awake animals.

Results
Creation of a three module simulator of extracellular multi-unit signals.  Our work proposes a 
computational procedure to generate datasets that will provide neuroscientists with a ground-truth reference for 
algorithm and tool evaluation of single and multi-unit signal processing. In our approach, ground-truth from 
real and simulated signals is obtained by adding spike activity, that is, action potentials from nearby neurons and 
background noise from distant neurons (x (n)), slow oscillations (<​300 Hz) from synaptic current inputs (w (n)) 
and artefacts (a (n)) that can be expressed as:

= + +

= + +
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In equation (1) s1 (n) refers to bio-inspired simulation of electrode number 1, with n as discrete time variable 
and suffix e as the total number of simulated electrodes.

Figure 2 summarises the general approach and highlights the modifiable parameters in each individual com-
puting module. The flexibility of this approach is reflected in the creation of different benchmark datasets by 
simply adjusting the simulation parameters.

Comparison of simulated and real extracellular hippocampal recordings.  As a starting point, we 
created the contribution of the local spike activity to the signal. For this, we modified an existing simulation 
platform25 designed for a single multi-electrode (i.e. tetrode) to include multiple spatially distinct recording sites. 
The existing simulator implements a hybrid model that combines detailed compartment models of pyramidal 
cells and interneurons18,27–31 (available via the NEURON32 project) for the closest neurons to the recording sites, 
coupled with spike templates for the distant neurons, all in a 3D volume of “virtual tissue” (Fig. 3a).

The initial hybrid model25 that generated the spiking activity and background noise also gave the user, via a 
graphical interface, the option to modify various parameters to generate the datasets. These options allowed the 
user to select: a single electrode or a tetrode, a uniform (between a minimum and maximum firing rates) or expo-
nential (generalised Pareto) distribution of firing rates, and a proportion of active cells inside a cubic volume. This 
hybrid model25 was improved in our approach by including any number of recording sites with specific coordi-
nates in a volume of “virtual tissue”. We added the possibility to simulate multiple contiguous tissue volumes (e.g. 
cortical layers) with individual configurations and the possibility for the user to add customised firing rate distri-
butions by using the Distribution Fitting App in Matlab33. These modifications gave more flexibility to the original 
model and enabled us to simulate different experimental scenarios. As an example, we simulated a recording 
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Figure 2.  Configuration parameters of the benchmark dataset generator. For each computing module 
in the benchmark dataset generator, the user has rapid access to allow its modification through a unique file 
descriptor (.xml file) to easily create different datasets. The parameters are listed inside the text boxes next to 
each computing module.
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session with a multi-electrode (polytrode) array in a virtual volume containing different neuronal populations in 
the hippocampus. We targeted the stratum oriens (SO), the stratum pyramidale (SP) and the stratum radiatum 
(SR) layers of the dorsal CA1 region of the rat hippocampus with a multi-array of 32 channels (8 channels × 4 
shanks). The design of the spatial distribution of the recording sites were inspired by the Neuronexus “Buzsaki64” 
probe design (Fig. 3b). The virtual probes were positioned so that the recording sites were present across the 
three different layers. The characteristics of the neuronal population in each layer (in terms of overall firing rate, 
proportion of active neurons and neuron density) were determined by following the results reported in previous 
studies. Details of the configuration parameters for this experimental condition are summarised in Table 1 and in 
the Methods section. As shown in Fig. 3c the recording sites with the largest action potentials follow the spatial 
curve of the middle striatum pyramidal layer.

Figure 3.  A data-driven model of the neural signal simulator. (a) The extracellular action potential simulator 
was modified from25 to integrate several virtual recording sites (i.e. 4 tetrodes) with different configurations 
of hippocampal neural populations. The model computes the extracellular action potential waveforms using 
detailed compartment models of pyramidal cells for nearby neurons and uses action potential templates from 
real recordings to simulate distant neurons. The result is the contribution of close and distant neurons using the 
line source approximation (LSA) method58 in a 3D virtual volume of tissue. (b) Modelling of a portion of virtual 
rat hippocampus with a 32-channel polytrode array (8 sites x 4 shanks, dimensions follow Buszaki64 probe from 
NeuroNexus) superimposed across (following a stereotaxic view) the stratum radiatum (sr), stratum pyramidale 
(sp) and stratum oriens (so) in the CA1 region of rat hippocampus. Data for dimensions and contours of rat 
hippocampal regions were measured from Swanson’s rat brain atlas to determine the dimensions of our volume, 
particularly between the atlas levels 30- =​ 35. A parasagittal view in the Figure shows atlas level 3159  
(AP =​ −​3.70 mm relative to Bregma, ML 2–3 mm, DV 2–3 mm). (c) Signal samples from one extracellular 
virtual tetrode. (d) Polytrode simulation datasets over one second are shown for each virtual polytrode. The 
activity across channels reflects the signal location of the virtual recording sites.

Parameters
Stratum 
oriens

Stratum 
pyramidale

Stratum 
radiatum

Firing rate [Hz]60 * ~0.6 Hz ~0.4 Hz ~0.2 Hz

Percentage of active neurons49 10 10 10

Layer thickness [μ​m] 120 55 240

Population [neurons/mm3]47 11 300 272 400 1 900

Table 1.   Simulation parameters selected for the multilayer virtual volume experiment.  A random 
distribution of point sources was set for this simulation. The refractory period was 2 ms, the sampling rate was 
20 kHz. *The firing rate for each layer followed a probability distribution defined in Supplementary Fig. S3 
centred around a certain firing rate.
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The next feature of our model designed to ensure that simulations were close to real experimental signals was 
to add the contribution of non-stationary slow oscillations. In the real world an experimenter starts to work with 
unfiltered raw data before applying further analysis. Those slow oscillations usually refer to the low-frequency 
part of an extracellular voltage signal recorded inside the brain. We extracted slow oscillations (<​300 Hz) from 
real datasets containing extracellular multichannel recordings made from the CA1 hippocampal region of 
rats14,26,34,35 (and added them linearly to the neural simulations as the non-stationary low-frequency compo-
nents36. Given that local field potential (LFP) <​ 300 Hz can be contaminated by action potentials, we were aware 
that the extraction of low frequency components require a preceding exploration37 on the original data to reveal 
the degree of spike contamination in LFP. In our case, we verified that the contribution of the spectral density of 
the mean spike waveform was negligible at low frequencies (≲​300 Hz).

One element that is often omitted while developing realistic neural simulators is the inclusion of artefacts that 
contaminate real microelectrode recordings. In any extracellular data analysis, these undesired features should 
be considered, especially when it comes to unsupervised methods. Many algorithms of detection and artefact 
suppression have been previously reported, and they all require ground-truth data for evaluation and optimisa-
tion purposes. Hence, the inclusion of identified artefacts plays an important role in our neural database creation 
procedure.

For the artefact component of the benchmark generator, an artefact library was created by extracting artefact 
events from real data recordings26,38,39. The library contains spike-like sharp artefacts, grooming artefacts and 
mastication artefacts identified from different in-vivo extracellular recording experiments. The library was organ-
ised as indicated in Supplementary Fig. S1. The identification was made following multiple validation criteria 
stages that include: a test for simultaneous cross-channel appearance within an artefact gap of 300 μ​s in at least 
80% of the total number of channels, a visual waveform inspection and a time-coincident comparison with simul-
taneous video recording (Fig. 4a and b), and a threshold crossing test for the spike-like sharp artefacts (thresholds 
selected are mentioned in Supplementary Table S1). Each artefact set an has between 22 and 32 template wave-
forms leading to identification and extraction of 40 mechanical shock artefact sets in 28 channels, 20 mastication 
artefact sequences in 32 channels, and 21 grooming artefact sequences in 28 channels.

The isolated mechanical shock artefacts are characterised by large peak-to-peak amplitudes (between 
136.1064 μ​V +​/−​62.0262, see details in Supplementary Fig. S2 and Supplementary Table S2) and a peak fre-
quency region around 1000–2000 Hz (Fig. 4c and Supplementary Fig. S2). These results are in line with a study 
that describes the characteristics of artefacts that are regularly found in in-vivo neural recordings40.

The mastication artefacts are electrical alterations of the recorded brain signals that appear during chewing 
events. Solid food provokes strong contractions of the jaw muscles which result in large rhythmic noisy bursts. 
This rhythmical oral behaviour is specific to mammals41 and can be identified across channels during electrophys-
iological recordings (See Supplementary Fig. S3). Characteristic rhythmic noisy bursts of the detected chewing 
events from rat recordings presented a mean chewing rate of 6.17 bursts/s with a mean duration of 3.3 s and a 
mean chewing cycle duration of 162.5 ms (see Supplementary Table S3). The identified mean chewing cycle dura-
tion results are consistent with previous studies in rat41.

Grooming artefact sequences across channels were extracted from recordings in mice in a task where they 
were allowed to groom freely42. Identified grooming artefacts appear across channels with large amplitudes and 
a heterogeneous duration range of ~0.4–28 s. The grooming events identified (phases 1 to 4) constitute a flexi-
ble grooming chain. The beginning of each phase of stereotyped movements was annotated within the artefact 
sequences (Fig. 4c and Supplementary Table S3).

The complete process of database generation is summarised in Fig. 5 and consists of the summing of the fol-
lowing three components: (1) non-stationary low frequencies, (2) annotated and parameterised action potential 
simulations and (3) the addition of identified artefacts.

Generation of bio-realistic hippocampal benchmark databases in different experimental con-
ditions.  To challenge the accuracy and the performance of our model, we aimed to reproduce two types of 
real hippocampal extracellular multi-unit recording: in awake and in anaesthetised rodents. To mimic the mac-
roscopic population activity of hippocampal neurons used in the real recordings, we set common parameters 
for both experimental conditions (i.e. those related to the recording environment such as the selected array of 
electrodes and those related to the simulation environment such as population density) but we differentiated two 
input parameters for the simulator that best approximated the dynamics of neural populations in our two distinct 
cases: firing rate and percentage of active neurons (Table 2 summarises the parameters chosen).

Our simulations reproduced neural signals acquired from the hippocampal layer CA1 region14,26,34,35. Different 
numbers of artefacts were assigned to the neural signals according to each experimental condition since recorded 
signals in anaesthetised animals tend to be less contaminated by artefacts than in freely behaving animals. For a 
10 s simulation, an artefact rate of 1% of the signal was set for the awake condition and 0.1% for the anaesthetised 
case.

To assess the quality of our benchmark generator, we compared our simulated signals to real recordings. A 
time-domain examination showed that real and simulated signals had similar profiles in terms of amplitude and 
action potential distribution, for the two experimental conditions (Fig. 6a). We computed the averaged periodo-
gram of the power spectrum density (PSD) estimate based on simulated and real signals of anaesthetised and 
awake rodents. The results confirmed that the distribution of power versus frequency components of the recorded 
signal in anaesthetised or awake animals were accurately reproduced by our model since no difference could be 
detected between real and simulated signals (Fig. 6b).
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Interestingly, we could illustrate the utility of our parameterisable benchmark generator by looking at the effect at 
different contamination levels on electrophysiological signals. We explored the effects of application of different per-
turbation levels of artefacts using our annotated datasets for the two scenarios, in anaesthetised and awake subjects.

Our model predicted that the amount of artefact contamination would differentially affect the extracellular 
signals from anaesthetised or awake conditions. The evidence shows that, for the same level of signal contamina-
tion; the power-spectrum distribution was altered more in the anaesthetised than in the awake condition (Fig. 7). 
Action potentials contain a wide range of frequencies36,43 and the inherent higher frequencies overlap with the 
high frequency content of sharp artefacts which causes a growth in terms of power content in those frequency 
bands (as shown in Fig. 7). This phenomenon is more obvious for narrow extracellular spikes and it is easier to 

Figure 4.  Artefact Library extracted from in-vivo real recordings. Artefact extraction is based on multiple 
validation criteria. (a) The artefact events were identified during unusual physical events captured by video 
monitoring (e.g. mechanical shock to the headstage, abrupt movement of the animal, grooming events, etc). 
(b) The artefacts were identified by their time-coincidence across channels (>​80% of the total number of 
spatially distinct channels) within a width gap parameter (300 μ​s) starting from the first threshold crossing. 
(c) The library includes spike-like noise artefacts produced mainly by electronic interference or abrupt head 
movement, chewing artefacts and grooming artefacts. For the head collision artefacts each set shown in the 
figure is a superposition of waveforms corresponding to the first channel for each of the 7 tetrodes. The x 
value of the vertical axis of the scale bar is 20 μ​V, 30 μ​V and 40 μ​V for the blue, green and purple waveforms 
respectively. Mastication artefacts follow well identified rhythmic patterns (shown in Supplementary Fig. S2). 
Grooming artefacts appear across channels as high level movement artefacts with variable duration (See 
Supplementary Table 4).
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observe in contaminated recordings of anaesthetised animals, where the neural activity is lower than for the 
awake subject experiments.

The results confirmed that spikes and artefacts can be confused, both in amplitude and in frequency content. 
Thus, multiple testing that relies on other parameters should be taken into account to differentiate them, such as 
the extracellular spike width, wave shape and time appearance across channels.

Discussion
We are currently witnessing an exponential increase of neural data collection paradigms with massive simulta-
neous recordings brought forward by the progress of microfabrication techniques and integrated sensors. The 
collection and use of such large amounts of neural information has stimulated the development of a number of 
hardware and software tools. Examples are signal acquisition devices, signal processing algorithms, or software 
for the calibration of brain-computer interfaces. To date, despite the necessity of benchmark datasets to test these 
kind of applications, there are surprisingly few ground-truth datasets available, and most of these are not param-
eterisable. Thus, there is an urgent need of such benchmarks to assess the validity of recently developed toolboxes 
and algorithms aiming to analyse neural data. Evidence of this need are initiatives such as the Spike Sorting 
Evaluation Project44, which aims to gather different benchmark datasets used to compare and evaluate software.

To address this issue, we developed a bio-inspired computational approach to create annotated and parameter-
ised databases of neural signals. The innovative aspect was to combine neural signals simulated by a hybrid model 
with other components encountered in real recording such as artefact events and low frequency oscillations. To 
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Figure 5.  Generation of a ground-truth database of extracellular simulated realistic recordings. (a) Low 
frequencies extracted from real recordings using a Low Pass Butterworth Filter; (b) Neural data simulated from 
compartmental models and spike templates. (c) Annotated artefacts. (d) The addition of these three elements 
forms a completely parameterised benchmark. The action potentials are displayed in red and the artefacts in 
light blue.

Parameters Awake Anaesthetised

Firing rate [Hz]51,61,62 0.5–12 0.5–5

Percentage of active neurons49 10 4

Population [neurons/mm3]46,47 300 000 300 000

% of artefact contamination 1 0.1

Table 2.   Simulation parameters selected for both awake and anaesthetised experiments. A random 
distribution of point sources was set for both simulations. The refractory period was 2 ms, sampling rate was 
20 kHz and the simulation duration was 10 s.
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illustrate the flexibility of our methodology, we simulated two distinct experimental conditions; extracellular 
signals extracted from anaesthetised or awake rodents. We challenged our generated benchmark dataset by com-
paring the simulated signal with real experimental recordings.

Our results showed that the synthetic signals generated bore a close resemblance in terms of frequency prop-
erties and spike proportions to the recorded ones, and this held for our two different conditions. We showed that 
the addition to the simulated signal of common features encountered in real recordings (such as low frequency 
oscillations and artefacts) could have a significant impact on the spectral signature. Indeed, we found that the 
artefacts extracted tend to have a wide spectrum with dominant content at high frequencies that overlaps the 
neural spikes. These artefacts affect the frequency components in neural signals in different ways according to the 
percentage of the contamination of the signal and to the nature of the experimental setup (Figs 6 and 7).

Spectral analysis of our artefact library showed that most of the power of the signal from these events fell 
within the frequency range of 1000–3000 kHz. These values are similar to those shown for the power spectral 
density of action potential events36. Taken together, these results showed that the addition of artefact events into 
simulated signals, an innovation of our benchmark generator, is an essential component to consider as they can 
drastically corrupt the frequency domain signature of spiking activity.

Additionally, we showed an application example where we simulated a polytrode array across different virtual 
layers of tissue. Here the aim was to demonstrate how different experimental setups could be configured inde-
pendently using the same simulator and how the different generated simulations accurately captured the overall 
neural activity.

One application where our benchmark generator could be of great interest is for testing devices and anal-
ysis modules used in closed-loop experiments, in which a stimulus is delivered immediately after a feature of 
interest is detected. In this configuration, a series of devices and software analysis modules interact to form the 
closed-loop chain. Between the key elements of the chain, online sorting algorithms and on-chip real-time mod-
ules (e.g. Field Programmable Gate Arrays (FPGAs) and Complex Programmable logic devices (CPLDs)) are key 
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signals.
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elements for online analysis. To correctly evaluate and compare the performance of these systems, the use of reli-
able benchmark datasets, such as the ones presented here, are essential. Ideally, this should be done by generating 
the datasets via the simulator and streaming them directly to the acquisition systems.

The datasets generated could be useful to evaluate the performance of various tools such as denoising and 
pattern recognition modules or spike sorting algorithms, implemented either in hardware or software.

In the future, this fully annotated benchmark should be optimised to fit more experimental scenarios. Some 
parameters and features could be added or replaced depending on the experimental conditions and the cellular 
and physiological properties of the neural substrate chosen for simulation. For example, in our model, irregular 
interspike intervals reflect a random process bounded between a predefined firing-rate distribution. However, 
in real recordings, it is common to find some neurons that fire action potentials in a bursty mode45. This feature 
could be added to the model by replacing the instantaneous firing rate with a generated probability distribution 
train of burst events.

One of the most challenging features to reproduce in synthetic signals is the background noise, given that there 
are many factors that shape it. Such disturbances can proceed from the subject itself (e.g. physiological background  
noise produced by the subject’s activity, additive and variable sources of current from other cells that are capture 
by the electrodes),  the recording site (e.g. dimension, neural density, whether it be a preparation or not), the 
electronic instrumentation and the electrodes that couple to the tissue (e.g. thermal noise, shot noise, dielectric  
noise), external sources (e.g. electromagnetic and electrostatic coupling between the circuitry and external 
devices), and from the digital conversion itself (e.g. aliasing). Although there are metrics to measure their average 
contribution, it is still a major challenge to replicate every source of noise. We present here a library of common 
artefacts found during recordings that can be used to complete the benchmark datasets.
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Figure 7.  Averaged periodogram for simulations contaminated in different proportions. (a) Averaged 
periodogram PSD estimate vs frequency for the real and simulated versions of the anaesthetised paradigm.  
(b) Averaged periodogram PSD estimate vs frequency for the real and simulated versions of the awake 
paradigm. The signals (with a duration of 10 s) were contaminated with different artefact rates, starting at a 
contamination percentage of approximately 1% (+​), subsequently 10% (+​+​), and 57% (+​+​) of the signal.
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Methods
In this section, we describe in detail the three main components of our benchmark generator.

Hybrid model for neural signal simulation.  For our experiments, we fixed the parameters that define 
the recording environment for both setups: the simulation model was a 1.5 mm3 cube with known randomly 
placed neurons with 16 recording sites and an electrode diameter of 13 μ​m. We considered a population den-
sity of 300,000 neurons/mm3 46,47 for hippocampal neuronal density and a ratio of 80% pyramidal cells and 20% 
interneurons48.

We set firing rate ranges based on previous studies49,50 for the anaesthetised and the awake cases, respectively. 
Firing rates of interneurons were set by multiplying pyramidal cell average firing rates by a factor of five51,52, 
both for close and distant interneurons. The irregular interspike interval was defined by a uniform distribution 
bounded between a minimum and a maximum firing rate, respecting a refractory period. For both cases, anaes-
thetised or awake subjects, the refractory period was set at 2 ms, the sampling rate was 20 kHz and the total dura-
tion of each simulation was 10 s. The spatial distribution of the recording sites for the simulations presented here 
are illustrated in Supplementary Fig. S4.

Concerning our experiments, the level of artefact contamination of the signal was distinguished for the two 
experimental conditions, with 0.1% and 1% of the simulated signal contaminated in the anaesthetised and the 
awake animals, respectively. The number of artefacts for each channel recorded was defined by equation (2):

= ∗∆N a (2)a rate a

where arate is the average number of artefacts/s and Δ​a is the recording duration in seconds.
For each artefact event, a sample is added to the beginning and the end of the artefact waveform by curve 

fitting linear interpolation in order to smoothly add this waveform to the neural signal, this is done as follows:

= +
−
−
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0

1
1

where t0 is the sample added to the beginning of the template, t1 is the sample where the template starts, tsn is the 
sample immediately preceding t0 and Vs (tsn) corresponds to the value of that sample in μV. The set of artefacts 
was integrated over time following a uniform random distribution that uses the Mersenne Twister algorithm53 to 
generate pseudo random numbers for a Uniform Distribution.

Non-stationary slow oscillations.  We used a 10th order low-pass Butterworth filter applied in both the 
forward and reverse directions to maintain zero-phase distortion. In our design, the dataset used to extract the 
non-stationary slow oscillation component could be modified by the experimenter according to the nature of 
the signal intended to be simulated as well as the filter cut-off frequency. For our experiments, we used the real 
recording datasets previously reported14,26, low-pass filtered with a cut-off frequency of 300 Hz. Spike contamina-
tion in this frequency band was verified according to37 to have minimal effects on the extracted LFP. The resulting 
non-stationary extracted components were linearly added into the simulated signals.

Artefact library.  To extract the artefacts and create the library, we analysed neural data recorded from several 
different experiments. To detect artefacts, the signal had to cross the pre-defined amplitude threshold on at least 
80% of the channels simultaneously (within an artefact window of 300 μ​s).

The head collision artefacts were recorded from mice during a behavioural task42. The original data consisted 
of seven single tetrode files recorded with a Cheetah160 Acquisition System with a total of 28 valid channels and 
a total recording duration of 3635.6 s. Each tetrode file is the result of a previous preprocessing analysis of the raw 
data, band pass filtered between 600–6000 Hz and a preset voltage threshold described in Supplementary Table S1. 
Individual waveforms were extracted and saved with their corresponding timestamps (Supplementary Table S1 
shows the total number of detected waveforms for each tetrode file). Each waveform is 1142 μ​s in length with a 
pre-threshold period of 285 μ​s. The data was sampled at 28 kHz and stored at 32 points per waveform with their 
corresponding timestamp values and 16 bit A/D resolution.

The waveforms with shapes uncharacteristic of action potentials were marked as type 3 artefacts40 if they 
satisfied complementary verification methods (See Fig. 4). We created a library of 40 different sets of artefacts, 
where each set has between 14 and 18 artefacts recorded by the electrodes in ref. 42. In the simulation code we 
defined an average rate coefficient, that is, the number of artefacts/second of 1 and 10 for the anaesthetised and 
for the awake version of our simulations. The artefacts included present a distribution of amplitudes showed in 
Supplementary Fig. S2a.

To extract the grooming artefacts, the different grooming events were first identified from video recordings42. 
The different grooming phases were assigned according to a previous study54. Identified grooming sequences were 
paired to the simultaneous extracellular recordings for verification of the appearance of simultaneous artefacts 
across channels. The different grooming phases described in ref. 54 in the syntactic behavioural chain were anno-
tated together with the artefacts (See Supplementary Table S4) in the library.

The chewing artefacts were extracted from electrophysiological recordings in rat. In this case, the animal was 
moving freely in a square arena chasing solid food rewards. We explored the recordings using NeuroScope soft-
ware55 to visually identify abnormal augmented activity that stood out significantly from the background noise. 
We explored the data in the time-frequency domain and calculated the chewing cycle duration (1/mean chewing 
rate) and duration of the chewing sequence. We compared time-frequency analyses with the high-pass filtered 
data (300 Hz cut-off frequency) (See Supplementary Fig. S2).
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Real databases.  The reference neural databases for real signals were recorded from separate groups of awake 
and anaesthetised animals14,26,34,35,38.

Case 1: Anaesthetised subjects.  Real data consists of extracellular recordings in the hippocampus of anaesthe-
tised rat14,34,35 with experimental procedures fully described previously27,35 and have been used by various lab-
oratories as a benchmark for spike sorting algorithms. Animals (Sprague-Dawley rats) were anaesthetised with 
urethane (1.5 g/kg; Sigma). Extracellular electrodes were lowered into the CA1 layer of the hippocampus by mon-
itoring for the presence of single unit activity.

Case 2: Awake subjects.  The datasets include multichannel extracellular recordings from layer CA1 of the right 
dorsal hippocampus of Long-Evans rats during an open field task. In the task, the animal was placed on an ele-
vated square platform and was looking actively for water rewards. Full details of the surgical and experimental 
procedures in awake recording were previously reported26,45 and are only briefly described here.

Multi-layer simulation.  The overall firing rate distributions of the SO, SP and SR layers were described in 
a previous study45 and reproduced here (see Supplementary Fig. S5), using the Matlab Distribution fitting tool33 
with a logistic distribution and the following mean and scale parameters:

µ σ
µ σ

µ σ

= − . = .
= − . = .

= − . = .

0 470 0 278
0 288 0 257

0 420 0 27

so so

sp sp

sr sr

Statistical analysis.  We computed the Bartlett’s power spectrum density estimation (PSD) method50 of sim-
ulated and real signals to reduce the variance introduced by the periodogram while maintaining the frequency 
resolution56. The original benchmark datasets of 10 s duration were split into 10 non-overlapping 1 s length data 
segments. For each data segment we computed the periodogram using the discrete Fourier transform (see equa-
tion (4), where s1,1 is the data segment 1 from recorded signal from electrode 1).
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We then averaged the result of the periodograms for the 10 non-overlapping data segments:

∑=
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1,

We finally computed the standard error of the mean by computing the segment standard deviation divided by 
the square root of the sample size. We performed the local fitting on the averaged result to smooth the data and 
used the weighted linear least squares and 2n degree polynomial method57 with a span of 1% of the data.

Further information.  Neural recording data from in-vivo rodents was used to assess the quality of our sim-
ulator. These datasets were available from previous studies which have been approved by the Institutional Animal 
Care and Use Committee of Rutgers University34,35. From these studies, we used the datasets “hc1”14 and “hc2”26 
that have been made available to the community.

Software access.  Matlab code for generation and use of datasets described here, as well as the artefact 
library are available at http://bebgteam.net/resources. As previously described, the design is fully modifiable to 
simulate any specific experimental scenario that the experimenter wants to reproduce (e.g., amount of signal 
contaminated with artefacts, number of electrodes, distance between electrodes, etc.). To facilitate changes of the 
model, an XLM file and a Matlab configuration file are available where all the parameters can be rapidly modified.
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