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Comparison between two post-
dentin bond strength measurement 
methods
Laikuan Zhu1,2, Yuping Li3, Yung-Chung Chen4, Carola A. Carrera3, Chong Wu5 & Alex Fok3

The push-out (PO) test and the diametral compression (DC) test were performed to compare the merits 
of two post-dentin bond strength measurement methods. Compared with the push-out test, the disk in 
DC provided post-dentin bond strength measurements that were more precise. The load-displacement 
curves from the DC test were much smoother and more linear up to the point of fracture when 
compared to those from the PO test. Compared to the PO test, DC is easier to perform for determining 
the bond strength between posts and dentin. No specimen alignment is needed in the DC test, and it 
produces a smaller standard deviation in the measured bond strength. The main disadvantage of the 
DC test, however, is that finite element analysis (FEA) is required to calculate the bond strength. The 
shear bond strength given by the PO test based on the simple formula is not valid, though, and the peak 
failure load is dependent on friction at the post-dentin interface.

Teeth with extensive loss of coronal hard tissue after endodontic treatment require the placement of posts inside 
the root canals to support the restorations above1. Post loosening and root fracture are the most common rea-
sons for the failure of such endodontically treated teeth2. With the post debonded from the surrounding dentin, 
very high stresses can be created by the occlusal forces in the restored tooth, leading to root fracture3. Therefore, 
a strong and durable bond between the intracanal post and root dentin is vital for the longevity of the restored 
tooth.

The bond strength between intracanal posts and root dentin can be determined by several mechanical tests; 
for example, the microtensile test4, pull-out test5 and push-out test6. The specimens used for the microtensile test 
have to be trimmed to a complex shape, which makes them prone to pre-test failures7. In contrast, the specimens 
used for the push-out (PO) test require minimal machining, and they appear to have a more homogeneous stress 
distribution around the post circumference when examined using finite element analysis (FEA)8. Therefore, the 
PO test is commonly used for evaluating the bond strength of intracanal filling materials8–10. However, it has some 
limitations. First of all, FEA has shown that the fracture-initiating stress is tensile rather than shear, thus invalidat-
ing the formula used to calculate the bond strength. Second, the measurements it produces have a large standard 
deviation11,12. Third, PO bond strengths could be affected by geometric factors of the specimen and loading jig13. 
Further, friction between the post and dentin causes the push-out force to continue to increase after the initial 
fracture14,15. Therefore, the bond strength measured by the PO test, based usually on the maximum load, is likely 
to be an overestimate.

The diametral compression (DC) test, or the Brazilian disk test, has been widely used for measuring the tensile 
strength of brittle materials. The stress distribution and failure mode in the specimen have also been investigated 
in detail16. A modified DC test has successfully been used to measure the dentin bond strength of intracanal posts 
and direct composite restorations17,18. The bond strengths determined by this test seemed to have lower coeffi-
cients of variation (~15%).
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The purpose of this study was to compare the merits of the DC and PO tests and to try to offer an appropriate 
method to measure the bond strength of intracanal post with root dentin. The null hypothesis was that there was 
no significant difference between the two methods to measure the post-dentin interfacial bond strength.

Results
Load-displacement curves.  Load-displacement curves were obtained from all runs. Typical load-time 
curves from the two mechanical tests are presented in Fig. 1. The others were similar. Note that displacement can 
be obtained by multiplying time with the rate of loading (0.5 mm/min). The curves from the DC test were much 
smoother and more linear from the point of initial contact between the specimen and the loading member up to 
the point of fracture. In contrast, those from the PO test had many load peaks and troughs throughout the loading 
history, with the load continuing to increase following the initial failure and a gradual reduction in load capacity 
after the peak load was reached.

Bond strength of post-dentin disks.  The bond strengths for the different groups are shown in Table 1. 
The results showed that the tensile bond strengths measured by the DC test (15.39 ± 2.00–20.01 ± 2.76 MPa) 
were higher than the shear bond strength determined by the PO test (5.14 ± 2.66–8.04 ± 3.93 MPa) for both of 
the materials and pretreatments used in this study (p = 0.000). On the other hand, the coefficients of variation of 
the tensile bond strength from DC (13.00–19.46%) were much lower than those of the shear bond strength given 
by the PO test (37.04–53.15%) for each of the cases.

Resin cement produced significantly higher tensile bond strengths (19.43 ± 2.48 or 20.01 ± 2.76 MPa) than 
resin-modified glass ionomer (RMGI) (15.39 ± 2.00 or 17.42 ± 3.39 MPa) with (p = 0.000) or without (p = 0.011) 
thermal cycling (TC). After TC, the tensile bond strength of the RMGI group (15.39 ± 2.00 MPa) was signifi-
cantly lower (p = 0.028) than that of the control group (17.42 ± 3.39 MPa), but there was no significant differ-
ence (p = 0.487) in the tensile bond strength of the resin cement specimens between the TC group and the PBS 
(phosphate-buffered saline) group (20.01 ± 2.76 and 19.43 ± 2.48 MPa). The shear bond strengths given by the 
PO test, on the other hand, presented no significant difference between any of the groups (8.04 ± 3.93, 6.75 ± 2.50, 
5.87 ± 3.12 and 5.14 ± 2.66 MPa).

Failure mode analysis.  As shown in Table 2, resin cement and RMGI produced different failure modes in 
the mechanically tested specimens. With resin cement, adhesive failure between the cement and dentin was the 
most frequent failure mode in both the DC and PO tests. Without thermo-cycling, all the specimens failed at the 
cement-dentin interface. With thermo-cycling, 5% of the resin cement specimens showed mixed-mode failure, 
i.e., cohesive failure within the cement mixed with adhesive failure between the cement and dentin, in both the 
DC and PO test. In contrast, the RMGI disks showed predominantly mixed-mode failure in all four cases. The 
next major failure mode in the RMGI disks was adhesive failure between the cement and dentin, followed by 
adhesive failure between the post and cement, which was not seen in the resin cement specimens or RMGI spec-
imens after thermal cycling.

Figure 1.  Typical load-time curves from the mechanical tests. (A) from a DC test; (B) from a PO test. Note that 
displacement = time × 0.5 mm/min.

PBS TC

Resin cement Coefficients of Variation RMGI Coefficients of Variation Resin cement Coefficients of Variation RMGI Coefficients of Variation

DC 20.01 ± 2.76 13.79% 17.42 ± 3.39 19.46% 19.43 ± 2.48 12.76% 15.39 ± 2.00 13.00%

PO 8.04 ± 3.93 48.88% 6.75 ± 2.50 37.04% 5.87 ± 3.12 53.15% 5.14 ± 2.66 51.75%

Table 1.  Bond strength (MPa) of post-dentin disks for each group. The data shown are the means ± standard 
deviations. DC – diametral compression; PO – push-out test.
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Interfacial leakage.  Figure 2 shows the micro-CT images of silver nitrate penetration in the post-dentin 
disks. The RMGI disks exhibited more interfacial leakage than the resin cement ones, with or without TC. In the 
RMGI disks, the infiltrated depth of silver nitrate with and without TC was 0.19 ± 0.03 mm and 0.18 ± 0.04 mm, 
respectively. In the resin cement disks, it was 0.12 ± 0.08 mm and 0.06 ± 0.05 mm, respectively (Fig. 3).

Diametral compression test Push-out test

Failure Mode

PBS TC PBS TC

Resin cement RMGI Resin cement RMGI Resin cement RMGI Resin cement RMGI

CD 20(100) 9(45) 19(95) 5(25) 20(100) 5(25) 19(95) 7(35)

CP 0(0) 2(10) 0(0) 3(15) 0(0) 0(0) 0(0) 0(0)

Mixed 0(0) 9(45) 1(5) 12(60) 0(0) 15(75) 1(5) 13(65)

Table 2.  Number (percentage) of specimens failed with a particular fracture mode under the different 
experimental conditions. CD: adhesive failure between the cement and dentin; CP: adhesive failure between the 
cement and post; Mixed: cohesive failure within the cement mixed with adhesive failure between the cement 
and dentin/post.

Figure 2.  3D micro-CT images of AgNO3 that had infiltrated through the exposed dentin and along the post-
dentin interface. (A) Resin cement with PBS. (B) Resin cement with TC. (C) RMGI with PBS. (D) RMGI with 
TC.

Figure 3.  Depths of AgNO3 infiltration in post-dentin disks.
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SEM images of the post-dentin disks immersed in silver nitrate (Fig. 4) demonstrated that leakage started 
from the surface margin between the cement and dentin, propagated along the corresponding interface and then 
entered the dentinal tubules. Significant cracking can also be seen in the RMGI layer.

Discussion
Based on the results from this study, the null hypothesis that there would be no significant difference between the 
post-dentin bond strengths measured by the two methods should be rejected.

Although human teeth were not used in this study, there are published papers5,19–22 which show that bovine 
teeth are good substitutes for human teeth, and the former are more readily available. While the measured bond 
strengths from using bovine teeth may be slightly different from those using human teeth, the main conclusion 
that diametral compression is a better test method than the push-out test is unlikely to depend on the tooth tissue 
used.

The DC test, as an indirect tensile test, induces a tensile stress in the direction transverse to the applied 
compressive load which splits the round specimen into two halves along the loading diameter and part of the 
post-dentin interface. By using digital image correlation and measuring acoustic emission, it has been shown 
that debonding at the post-dentin interface took place before fracture of the dentin in the disk specimen17. This 
is essential for the test to be valid for bond strength measurement. The load-displacement curves obtained from 
the DC test were much smoother and more linear up to the point of fracture when compared with those from 
the PO test (Fig. 1). Therefore, it was easier to pick out the final failure load from the DC test results, from which 
the post-dentin interfacial bond strength could be calculated using the load-stress relationship determined from 
the FEA17. In contrast, there were many load peaks and troughs on the curves from the PO test, making it hard 
to identify the failure load. Previous studies14,15 showed that friction between the post and dentin resulted in a 
stick-slip motion between them during loading beyond initial failure, which led to the many peaks and troughs 
on the load-displacement curves from the PO test. Another study further showed that the maximum peak load 
was controlled by the amount of friction between the post and dentin23, indicating that the effect of the material’s 
fracture properties was secondary. This may explain the small difference in the PO bond strength between the 
different groups. More importantly, FEA has shown that the stress along the interface is far from uniform, and 
the failure initiation stress is a combination of both shear and tension, the proportions of which being dependent 
on the material properties and dimensions of the different components of the specimen18. Therefore, the bond 
strength given by the PO test based on the simple formula cannot be regarded as a true material property.

The DC test was much easier to perform compared to the PO test. As shown in Fig. 5, no alignment was nec-
essary for the specimen in the DC test provided the two parallel horizontal plates are sufficiently rigid. For the 

Figure 4.  SEM images of post-dentin disks after silver nitrate penetration. (a) RMGI with PBS. (b) RMGI with 
TC. (c) Resin cement with PBS. (d) Resin cement with TC. P, post; C, cement; D, dentin.

Figure 5.  Schematic diagrams of the mechanical tests to determine post-dentin interfacial bond strength.
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PO test, on the other hand, the plunger, the post of the disk specimen, and the hole of the support plate all needed 
to be aligned concentrically (Fig. 5). A previous study13 also showed that the diameter of the plunger affected the 
push-out bond strength measured. Moreover, Fig. 1 shows that the DC test took less time to perform than the PO 
test (60 s vs. 300 s).

As presented in Table 1, the standard deviations of the bond strength values given by the PO test were much 
higher than those given by the DC test. The coefficients of variation of the bond strength given by the DC method 
were no more than 20%, which were in accordance with those from a previous study17. In contrast, the coefficients 
of variation of the bond strength from the PO test were around 50%, which also agreed with other studies10–12. 
Therefore, the PO technique could be less discriminatory in measuring the bond strength of different restorative 
systems. Stick-slip motions due to friction are highly nonlinear and history-dependent, which may explain the 
large variability in the PO test results.

The mean values of the tensile bond strength from the DC test were higher than the shear bond strength from 
the PO test. It may be true that the shear bond strength of these restorative systems is lower than their tensile 
bond strength. However, as mentioned above, the stress distribution along the post-dentin interface in the PO test 
specimen is far from uniform, with stress concentrations occurring near the free edges. The actual failure-causing 
stress, which is tensile, could therefore be much higher than the average shear stress given by the simple formula. 
This difference in stress distribution may explain why different measurement methods could lead to different val-
ues of the same bond strength10. If the maximum tensile stress was used instead to calculate the PO bond strength, 
values closer to those given by the DC test might be obtained.

A major disadvantage of the DC test is that FEA (Fig. 6) is required to calculate the tensile bond strength 
from the failure load. In contrast, a simple formula is used with the PO test to calculate the shear bond strength. 
However, as mentioned, the stress distribution in the PO test specimen is not that of simple shear. As a result, it 
will also be affected by the geometrical and material parameters13, and FEA is required to calculate the correct 
bond strength.

Aging could affect the post-dentin bond strength. In this study, TC was used to simulate the clinical challenge 
in vitro. There were no statistically significant differences in the shear bond strengths given by the PO test between 
the groups due to the large coefficients of variation of the results, even though reduction by TC was observed. In 
contrast, the tensile bond strength of the thermo-cycled RMGI group given by the DC test was significantly lower 
than that of the group without TC. Specimens prepared with resin cement appeared to show stronger resistance to 
thermal degradation. The better discriminatory power of the DC method was mainly due to the lower coefficients 
of variation in its measured bond strength. A previous study also showed that the bond strengths of various resin 
cements to root canal dentin using fiber-reinforced composite posts were significantly reduced by TC24.

The failure-mode analysis revealed that failure occurred predominantly at the interface between the cements 
and dentin. The same result was found in other similar studies24–27. The mixed failure mode was also common 
in the RMGI specimens, probably because RMGI is relatively brittle, as shown by the cracks in the RMGI layer 
(most likely due to drying of the specimens) in the SEM images (Fig. 4). Debonding between the post and dentin 
increases the risk of failure of endodontically treated teeth3, which could be accelerated by interfacial leakage. 
Micro-CT was used to assess interfacial leakage because it is non-destructive, quantitative and 3D in its analysis. 
The results from micro-CT and SEM revealed that interfacial leakage took place between the cements and dentin, 
and the volume of silver nitrate penetration in the RMGI disks were much higher than that in the resin cement 
disks. One reason for this difference could be that RMGI is a high-shrinkage cement, which resulted in premature 
interfacial debonding during setting. Therefore, the cement-dentin interface seemed to be the weakest part of the 
restorative system, where the majority of failures initiated.

Figure 6.  FEA model for the diametral compression (DC) test. Due to symmetry, only a quarter of the disk 
needs to be modeled.
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It may be of interest to compare with the pull-out test, which is another popular test for bond strength test-
ing28–30. It is considered that pull-out test is the best test according to distribution of stress30. However, a large 
number of fiber posts have to be used to prepare specimens in pull-out test because a few millimeters of the post 
out of the root canal should be leave for pulling action, which leads to the high cost of the experiment28,29. While 
for DC test and PO test, the roots filled with fiber posts were trimmed and sliced into disks, which decreased 
the use of the fiber posts in our study. On the other side, it is true that the ‘pull-out’ test may suffer less from 
post-failure interfacial friction because of the taper of the post. However, similar to the push-out test, failure 
of its specimens is likely to be caused by tensile, rather than shear, stress around the surface margin. It is also 
well known in experimental mechanics that tensile tests are more problematic due to errors associated with 
alignment and local stresses at the attachment points. The actual stress distribution and, hence, failure load will 
therefore depend on the geometry and mechanical properties of the materials that form the specimen. As shown 
in Fig. 5, the specimens used in our study are easier to perform than the specimens used in pull-out test in other 
studies28,30. Clinically, all teeth are subjected to compressive occlusal loads, mixed with some shear or bending, 
the degree of mixture being dependent on whether they are anterior or posterior. But they are never subjected to 
simple pull-out or tensile load, except during extraction. Of course, further studies are necessary to carry out to 
compare the pull-out test with DC test in the future.

Methods
Preparation of post-dentin disks.  Forty bovine incisors, which were cleaned by removing the soft tissues 
and stored in 0.1% thymol solution at 4 ° C, were used to prepare the specimens. The crown portion above the 
cementum-enamel junction (CEJ) and a 3-mm long apical portion of the incisors were cut off with a low-speed 
diamond saw (Isomet, Buehler, Lake Bluff, IL, USA). The root canals were enlarged to a 2-mm parallel post space 
with a lower speed drill, and then the remaining roots were trimmed into cylinders with an outer diameter of 5 
mm. The cylinders were then randomly divided into two groups and inserted with the cylindrical part of fiber 
posts (RelyXTM Fiber Posts, 3M ESPE, St. Paul, MN, USA) that were luted with resin cement (RelyXTM Unicem 
2, 3M ESPE, St. Paul, MN, USA) or RMGI (RelyXTM Luting Plus, 3M ESPE, St. Paul, MN, USA), following the 
manufacturer’s protocol. Finally, the restored cylinders were sliced into 2-mm thick disks, and then stored in 
de-ionized water at 4 °C no more than 24 h before testing. The bovine teeth were obtained commercially. All 
methods were carried out in accordance with the relevant guidelines and regulations.

Thermo-cycling (TC).  Twenty post-dentin disks from each group were thermo-cycled using a two-bath 
thermo-cycler (Sabri Dental Enterprises, IL, USA) for 5000 cycles between 5 °C and 55 °C with a dwell time of 30 
s in each bath and a transfer time of 10 s between them. After TC, the disks were collected for mechanical tests. 
Control groups of post-dentin disks of the same sample size were stored in PBS buffer at 37 °C for the same dura-
tion as that of TC prior to mechanical testing.

Mechanical tests.  The interfacial bond strengths of the post-dentin disks were determined using a universal 
test machine (858 Mini Bionix II, MTS, MN, USA).

DC was performed with two parallel horizontal steel plates, as shown in Fig. 5. The load was applied in a 
stroke-control mode at a loading speed of 0.5 mm/min. The fracture loads of the disks were determined from the 
load-displacement curves.

For the PO test (Fig. 5), each disk was positioned on a metal support plate with a central opening (ø = 3 
mm) larger than the inner diameter of the disk. The post segment was loaded with a metallic cylindrical plunger 
(ø = 1.5 mm), also at a speed of 0.5 mm/min.

Bond strength calculation.  For the DC test, the relationship between the maximum post-dentin interfacial 
tensile stress and the force applied to the disk was established by using FEA, as shown in Fig. 6. 3D finite element 
models were created using the commercial software HyperMesh (version 11.0, Altair, Troy, MI, USA). The fiber 
post was considered transversely isotropic and a cement layer of 50 µm thick was also simulated in between den-
tin and fiber post. Young’s moduli for dentin, fiber post and cement were assumed to be 18.6, 9.5 and 7.7 GPa, 
respectively17. Poisson’s ratios for them were 0.31, 0.27 and 0.35, respectively17. The models were analyzed by the 
software ABAQUS (version 6.10, Rising Sun Mills, Providence, RI, USA). Due to symmetry, only a quarter of the 
disk needed to be modeled. The materials and dentin were considered homogeneous, linear elastic and isotropic. 
Appropriate boundary conditions (zero displacements in the normal direction) were prescribed along the vertical 
and horizontal diameters. A downward point load was applied at the top of the disk to simulate the external load. 
The post-dentin tensile bond strength was calculated using the failure load from the load-displacement curve.

For the PO test, the shear bond strength was calculated using the formula P/πdh, where P is the failure load, d 
is the inner diameter of the disk, and h is the height of the disk.

Assessment of interfacial leakage between post and dentin.  Micro-CT in combination with a radi-
opaque dye (silver nitrate, AgNO3) was used to assess leakage through the post-dentin margin31,32. Three freshly 
prepared disks from each group were painted with an acid-resistant nail varnish, leaving one side of the post and 
a perimeter of ~0.3-mm wide around it exposed. The painted disks were submerged into a 50% (w/w) solution 
of AgNO3. After 24 h of storage at room temperature, they were taken out for micro-CT scanning (XT H 225, 
Nikon Metrology Inc., Brighton, MI, USA). The scanning parameters were 90 kV, 90 μA, 708 ms of exposure, 720 
projections and 4 frames per projection. After scanning, 3D reconstruction was performed using the software CT 
Pro 3D (Nikon metrology, Inc., Brighton, MI, USA). A cylindrical volume of interest (VOI) was generated around 
the posts to calculate the volume of silver nitrate that had penetrated into the post-dentin disks.
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Scanning electron microscopy.  Scanning electron microscopy (SEM) was used to examine the fracture 
modes of the disks subjected to mechanical testing and the path of interfacial leakage of those immersed in 
AgNO3. It was conducted in a tabletop scanning electron microscope (TM-3000, Hitachi, Japan) at an accel-
erating voltage of 15 kV and in combo observation mode. The fractured disks were fixed on an aluminum stub 
with conductive carbon tapes. The painted post-dentin disks (n = 3 per group) treated in AgNO3 solution, as 
performed in above, were sectioned longitudinally and polished with 1200 grit sandpapers before SEM scanning 
to determine the infiltration depth.

Statistical analysis.  Assumptions of normal distribution were evaluated by Kolmogorov-Smirnov test. Two 
tailed t test was carried out by R (3.3.1, R Core Team, Vienna, Austria) to compare the bond strength between 
the groups (resin cement vs. RMGI, with or without thermal cycling). The level of statistical significance was set 
at 0.05.

Data availability statement.  Materials and data are available from the corresponding authors.
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