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Abstract

With the global-scale loss of biodiversity, current restoration programs have been often

required as part of conservation plans for species richness and ecosystem integrity. The

restoration of pelagic-oriented cisco (Coregonus artedi) has been an interest of Lake Michi-

gan managers because it may increase the diversity and resilience of the fish assemblages

and conserve the integrity of the ecosystems in a changing environment. To inform restora-

tion, we described historical habitat use of cisco by analyzing a unique fishery-independent

dataset collected in 1930–1932 by the U.S. Bureau of Fisheries’ first research vessel Fulmar

and a commercial catch dataset reported by the State of Michigan in the same period, both

based on gear fished on the bottom. Our results confirmed that the two major embayments,

Green Bay and Grand Traverse Bay, were important habitats for cisco and suggest that the

Bays were capable of supporting cisco to complete its entire life cycle in the early 20th cen-

tury as there was no lack of summer feeding and fall spawning habitats. Seasonally, our

results showed that cisco stayed in nearshore waters in spring, migrated to offshore waters

in summer, and then migrated back to nearshore waters in fall. The results also suggest that

in summer, most ciscoes were in waters with bottom depths of 20–70 m, but the highest

cisco density occurred in waters with a bottom depth around 40 m. We highlight the impor-

tance of embayment habitats to cisco restoration and the seasonal migration pattern of

cisco identified in this study, which suggests that a restored cisco population can diversify

the food web by occupying different habitats from the exotic fishes that now dominate the

pelagic waters of Lake Michigan.

Introduction

With the global-scale loss of biodiversity in the Anthropocene [1], restoration programs are

commonly a required component of conservation planning that seeks to increase species
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richness and ecosystem integrity [2, 3]. For freshwater ecosystems, the restoration of native

fishes could be a core component because fishes are not only functionally important in the

food web but also economically important by supporting provisioning services [4]. To inform

the restoration of native fishes, most frameworks delineate populations or stocks based on

genetics and/or ecology [5, 6] and then assess existing biotic and/or abiotic threats [7–10],

including the potential for habitat limitation [11–13].

The linkage between habitat and native fish restoration is based on the conservation princi-

ple that sustainable fish populations require a network of diverse habitats that support each life

history stage [14], and, ideally, a diverse population structure across the landscape [15, 16].

Most of this research has been conducted in lotic ecosystems, with a focus on effects of increas-

ing habitat connectivity [e.g., 17–19]. Relatively less research [e.g., 20, 21] has been conducted

linking habitat to native fish restoration in lentic ecosystems, despite their vulnerability to

anthropogenic alterations (e.g., draining of coastal wetlands, hardening of shorelines, nutrient

or contaminant loading). As lake ecosystems naturally include a diversity of habitats including

tributaries, coastal wetlands or embayments, nearshore littoral zones, and offshore profundal

and pelagic zones, the underlying requirement for diverse and connected habitats to sustain

fish populations parallels that of lotic ecosystems.

Managers across the Laurentian Great Lakes have prioritized restoration of native corego-

nines so as to increase the diversity and resilience of the fish assemblages and conserve the

integrity of the ecosystems in a changing environment [22]. Coregonines were once abundant

and diverse across the Great Lakes [23]. In Lake Michigan (Fig 1), for example, lake whitefish

(Coregonus clupeaformis) and an assemblage of ciscoes (Coregonus spp.; subgenus Leucichthys)
served as forage for native predators, such as lake trout (Salvelinus namaycush) and burbot

(Lota lota) and supported commercial fisheries beginning in the 19th century [24].

As described by Koelz [26], the Lake Michigan assemblage of ciscoes comprised seven species

of deepwater ciscoes (C. alpenae, C. hoyi, C. johannae, C. kiyi, C. nigripinnis, C. reighardi, and C.

zenithicus) and one species of cisco (C. artedi) that occurred in shallower waters and shoals. Of

the latter, Koelz [26] described cisco as the most widely distributed and diverse of the species in

the basin—describing three subspecies—but only the “typical” artedi occurred in Lake Michigan.

By the late 1960s, however, only one species of deepwater cisco (C. hoyi) persisted in Lake Michi-

gan, and shallow-water cisco was extremely rare [24]. To avoid confusion, hereafter, we used the

common name “cisco” (or ciscoes) for C. artedi including its subspecies and “deepwater ciscoes”

for the assemblage of seven deepwater Coregonus species described by Koelz [26].

Several studies [24, 27, 28] have attributed the decline of cisco across the Great Lakes to

overfishing, habitat degradation, and adverse effects of three exotic species: sea lamprey (Petro-
myzon marinus), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus).
Today, these stressors have been reduced in Lake Michigan because of management efforts,

such as improvement of water quality [29], which has reduced hypoxia and presumably

increased egg survival [30], suppression of sea lamprey [31], and reduction of rainbow smelt

and alewife populations through predator stocking [32].

To determine whether habitat could yet limit cisco recovery, knowledge of historical habitat

use for multiple life stages remains critical. What we know regarding historical habitat use of

cisco in Lake Michigan is primarily based on accounts from the fishery, through descriptions

by Koelz [26] and through historical commercial fishery records. These sources have depicted

a cisco population that was concentrated in Green Bay (Fig 1). During 1946–1958, a 13-year

period between the end of World War II and the collapse of cisco commercial fisheries, 88–

95% of the catch occurred in Green Bay [33, 34]. Additional historical descriptions of habitat

derive from Michigan Department of Natural Resources reports, which reported spawning

runs of cisco in some Lake Michigan tributaries [35, 36].
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Fig 1. Lake Michigan map. The shaded area in the locator map depicts the Great Lakes watershed. White circles are the Fulmar sampling stations

pooled across all seasons in 1930–1932. The map was generated by using a geographic information system (GIS) software ArcGIS version 10.4 (http://
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To describe historical habitat use of cisco in Lake Michigan, we analyzed data from a unique

fishery-independent dataset collected in 1930–1932 by the first vessel dedicated to aquatic

research on the Great Lakes—the U.S. Bureau of Fisheries R/V Fulmar [37]—together with the

commercial catch data reported to the State of Michigan in the same period. The Fulmar sur-

vey (Fig 2) was originally designed as an experiment to resolve a controversy among the four

states around Lake Michigan over mesh-size limits for bottom-set gill nets employed in the

fisheries of deepwater ciscoes. Although the original goal of establishing a common mesh-size

limit was never achieved [38], the Fulmar investigation generated an extensive dataset, which

has been analyzed to describe the growth, abundance, and community structure of various

deepwater ciscoes [39–44] and to determine habitat use by lake trout [45], burbot [45], and

deepwater ciscoes [46]. The State of Michigan started to collect and report monthly commer-

cial catch and fishing effort by (fishery) statistical district in the Great Lakes in 1929 [47]. Spa-

tially, these two datasets complement each other between 1930 and 1932, as the Fulmar survey

did not cover Grand Traverse Bay while the commercial catch outside of State of Michigan

waters were not reported by statistical district. Therefore, analyzing both of the Fulmar dataset

and the spatially resolved commercial catch dataset could make it possible to describe the his-

torical habitat use of cisco throughout Lake Michigan. The objectives in this study were to (1)

describe cisco’s historical habitat use by size class and season, (2) generate maps that predict

historical distribution of cisco, and (3) document historical distribution of cisco when fish

were expected to be gravid.

Materials and methods

Study area

Lake Michigan (Fig 1) is bordered by the states of Michigan, Wisconsin, Illinois, and Indiana

and can be divided into three sub-basins: Green Bay (area 4,450 km2, average depth 17 m),

Grand Traverse Bay (area 720 km2, average depth 55 m), and the main Basin (area 52,720 km2,

average depth 91 m). In terms of trophic status, southern Green Bay is still considered eutro-

phic, despite years of phosphorus abatement [48], while both Grand Traverse Bay and the

main basin are considered oligotrophic [29, 49].

Data

Data collected from the Fulmar surveys were recorded in notebooks (Fig 2C) and are now

archived at the U.S. Geological Survey’s Great Lakes Science Center. The Fulmar catch and

biological data resulted from 363 bottom-set gill-net lifts distributed throughout the main

basin and Green Bay between April and November in 1930–1932 (Fig 1). Each lift included

1–7 gangs of linen gill nets. Each gang comprised 3–5 panels each having a length of 155 m, a

height of 1.5 m, and a (stretch-) mesh size of either 60, 64, 67, 70, or 76 mm. The information

associated with sampling operations included date, location (latitude and longitude), bottom

depth (starting and ending bottom depths of each gill-net set), and number of nights out. The

digitization of the Fulmar data notebooks was started in the late 1990s [45] and finished in this

study. We provide the Fulmar dataset in a supporting information file (S1 Datasets).

Summaries of monthly catch reports submitted by commercial fishermen to the State of

Michigan were hand tabulated and archived as originals or microfiche at the U.S. Geological

www.esri.com/software/arcgis/). The GIS map layer for the Fulmar sampling stations was generated in this study. The GIS map layers for Lake Michigan

bathymetry, political boundaries, the Great Lakes, and the Great Lakes watershed were obtained from Great Lakes Aquatic Habitat Framework’s [25]

public domain spatial database (https://glahf.org/data/).

https://doi.org/10.1371/journal.pone.0231420.g001
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Fig 2. Selected photos for the Fulmar survey (credit: U.S. Geological Survey). (A) The U.S. Bureau of Fisheries research

vessel Fulmar. (B) Researchers onboard taking and recording biological measurements. (C) Data notebooks. These
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Survey’s Great Lakes Science Center. In the analyses, we used monthly catch and fishing effort

for (fishery) statistical districts MM-1 to MM-8 (Fig 3). Although catch and effort were

reported for eight gear types, we only used data for bottom-set gill nets (with mesh sizes of

about 70-mm) and pound nets, which comprised the bulk (>93%) of annual cisco catch from

the State of Michigan in 1930–1932, the period of study. We also provide the commercial

catch dataset used in the analyses in a supporting information file (S1 Datasets).

Statistical analyses for the Fulmar data

We used generalized additive models (GAMs) with a Tweedie error distribution and a natural

logarithmic link function [50] to assess whether cisco catch in the Fulmar surveys varied with

mesh size, season, and bottom depth, while adjusting for sampling effort and, if needed, spatial

photos, which are archived at the U.S. Geological Survey’s Great Lakes Science Center, are in public domain as they were

taken by U.S. federal employees to show how U.S. federal employees carried out research.

https://doi.org/10.1371/journal.pone.0231420.g002

Fig 3. The four Lake Michigan regions defined in this study and the State of Michigan’s (fishery) statistical

districts (MM-1–MM-8). The four regions, including Green Bay, Grand Traverse Bay, northern main basin, southern

main basin, are marked in different colors and the State of Michigan’s fishery statistical districts are cross-hatched. The

map was generated by using a geographic information system (GIS) software ArcGIS version 10.4 http://www.esri.

com/software/arcgis/). The GIS map layers for Lake Michigan and the State of Michigan’s statistical districts were

obtained from Great Lakes Aquatic Habitat Framework’s [25] public domain spatial database (https://glahf.org/data/).

https://doi.org/10.1371/journal.pone.0231420.g003
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variability. We chose GAMs with a Tweedie error distribution because of its capability to

model a count response variable (number of cisco caught in this study), even if it is over dis-

persed [50] as a non-linear function of categorical variables (e.g., mesh size, season), continu-

ous variables (e.g., bottom depth), and spatial variables (latitude and longitude).

We then used Akaike’s Information Criterion (AIC) to evaluate which of the 12 candidate

GAMs used for modeling the Fulmar data (hereafter, FulmarGAMs) were the most parsimo-

nious (refer to Wood [50] for calculating AIC for GAMs). In the simplest FulmarGAM,

Model 1, cisco catch was a function of mesh size, season, and bottom depth, together with a

function (fe) for fishing effort adjusted in accordance with sampling duration (nights out) and

the number of panels of gill nets with that mesh size

Model 1 : lnðCatchÞ ¼ Meshþ Seasonþ sdðDepthÞ þ fe ð1Þ

where Catch is cisco catch in number of fish,Mesh is a categorical variable for mesh size, Sea-
son is a categorical variable for three seasons defined later, and sd(Depth) is a smoothing func-

tion for bottom depth (i.e., the average depth for the two ends of each gill-net set in m). The

function fe was expressed as fe = sn(Night) + o(LNP), where sn(Night) is a smoothing function

for sampling duration in number of nights out and o(LNP) is the natural logarithm of the

number of gill-net panels included as an offset variable (i.e., a variable with a GAM coefficient

constrained to one). We defined seasons as spring (April–June), summer (July–September),

and fall (October–November) based on thermal stratification patterns observed in Lake Michi-

gan during the Fulmar surveys [51]. As the pilot analyses showed clear differences in catch

rates and size selectivity across gill nets with different mesh sizes, we included the categorical

variableMesh not only as an adjustment factor for the difference in catch rates across mesh

sizes, but also as a proxy of cisco size class. Consequently, in terms of habitat use, Model 1

hypothesized that cisco had the same bottom-depth preference across size classes and seasons.

In the following three FulmarGAMs, Models 2–4, we extended Model 1 by accounting for

interactions betweenMesh and Depth, between Season and Depth, or both

Model 2 : lnðCatchÞ ¼ Meshþ Seasonþ smdðMesh� DepthÞ þ fe ð2Þ

Model 3 : lnðCatchÞ ¼ Meshþ Seasonþ ssdðSeason� DepthÞ þ fe ð3Þ

Model 4 : lnðCatchÞ ¼ Meshþ Seasonþ smd þ ssd þ fe ð4Þ

where smd(Mesh × Depth) indicates that a smoothing function of bottom depth is fitted for

each of the mesh sizes, ssd(Season × Depth) indicates that a smoothing function of bottom

depth is fitted for each of the three seasons, and, as used in Model 4, smd and ssd are shorthand

notations for smd(Mesh × Depth) and ssd(Season × Depth), respectively. In terms of habitat use,

Model 2 hypothesized that cisco’s bottom-depth preference varied across size classes but not

across seasons, Model 3 hypothesized that cisco’s bottom-depth preference varied across sea-

sons but not across size classes, and Model 4 hypothesized that cisco’s bottom-depth prefer-

ence varied across size classes and seasons.

In the next set of four FulmarGAMs (Models 5–8), we extended Models 1–4 by adding a

categorical variable Basin for the two sub-basins that were sampled—Green Bay and the main

basin of Lake Michigan

Model 5 : lnðCatchÞ ¼ Meshþ Seasonþ Basinþ sd þ fe ð5Þ

Model 6 : lnðCatchÞ ¼ Meshþ Seasonþ Basinþ smd þ fe ð6Þ
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Model 7 : lnðCatchÞ ¼ Meshþ Seasonþ Basinþ ssd þ fe ð7Þ

Model 8 : lnðCatchÞ ¼ Meshþ Seasonþ Basinþ smd þ ssd þ fe ð8Þ

where sd, as used in Model 5, is the shorthand notation for sd(Depth). In addition to what Mod-

els 1–4 hypothesized for cisco’s habitat preference, Models 5–8 further hypothesized that cisco

preferred Green Bay over the main basin, or vice versa.

In the final set of four FulmarGAMs (Models 9–12), we extended Models 5–8 to account

for spatial variability by adding a Gaussian-process smoothing function sg(Lat, Lon)

Model 9 : lnðCatchÞ ¼ Meshþ Seasonþ Basinþ sd þ sgðLat; LonÞ þ fe ð9Þ

Model 10 : lnðCatchÞ ¼ Meshþ Seasonþ Basinþ smd þ sg þ fe ð10Þ

Model 11 : lnðCatchÞ ¼ Meshþ Seasonþ Basinþ ssd þ sg þ fe ð11Þ

Model 12 : lnðCatchÞ ¼ Meshþ Seasonþ Basinþ smd þ ssd þ sg þ fe ð12Þ

where Lat is latitude, Lon is longitude, and, in Models 10–12, sg is the shorthand notation for

sg(Lat, Lon). In addition to what Models 5–8 hypothesized for cisco’s habitat preference, Mod-

els 9–12 further hypothesized that cisco preferred certain regions within each sub-basin (i.e.,

within Lake Michigan main basin and/or within Green Bay).

We used the package “mgcv” version 1.8–28 [52] in R version 3.6.1 [53] to perform the

GAM analyses. In the package, smoothing functions are estimated using nonparametric,

penalized-spline methods, in which the degrees of freedom of each smoothing function are

estimated by fitting to observations. We used the thin-plate regression spline [50] as the

smoothing basis for functions sd, smd, ssd, and sn. We set the Gaussian-process smoothing func-

tion sg to have a spherical correlation structure [50], in which spatial auto-correlation was pre-

cluded if two points were separated by >90 km, a value based on the maximum migration

distance for cisco observed in Lake Michigan between 1929 and 1931 [54]. We used the

restricted-maximum-likelihood method to estimate parameters and smoothing functions in

all 12 FulmarGAMs [50]. For every FulmarGAM, we calculated ΔAIC as the difference

between its AIC and the minimum AIC across all 12 Fulmar GAMs. We reported estimated

degrees of freedom, ΔAIC, and the deviance explained each FulmarGAM and considered the

GAMs with ΔAIC <4 as the most parsimonious [46, 55].

Statistical analyses for the commercial catch data

Because the commercial catch dataset did not include as much spatiotemporal information

associated with fishing operations as the Fulmar dataset, we developed only one commercial-

catch GAM (Model 13) that incorporated all available information that could be used to derive

GAM predictor variables. Specifically, our commercial-catch GAM was based on a gamma

error distribution and a natural logarithmic link function [50] to assess whether the commer-

cial cisco catch varied with season and region, while adjusting for fishing gear and effort. This

commercial-catch GAM (Model 13) was expressed as

Model 13 : lnðComCatchÞ ¼ Seasonþ Regionþ Gear þ seðGear � EffortÞ ð13Þ

where ComCatch is commercial cisco catch in tonnes, Season is a categorical variable as
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defined in Eq (1), Region is a categorical variable for the four regions (Fig 3), Gear is a categori-

cal variable for gill nets and pound nets, Effort is fishing effort reported in total gill-net length

(km) or number of pound-net lifts, and se(Gear × Effort) indicates that a smoothing function

of fishing effort is fitted for each gear type. We chose a gamma error distribution because the

response variable (ComCatch) was continuous, positive, and right skewed. We divided the

main basin into two regions at 44˚N and included a total of four regions in the analyses: Green

Bay, Grand Traverse Bay, northern main basin, and southern main basin (Fig 3). Among the

State of Michigan’s statistical district, MM-1 data were used for Green Bay, MM-4 data were

used for Grand Traverse Bay, lumped MM-3 and MM-5 data were used for the northern main

basin, and lumped MM-7 and MM-8 data were used for the southern main basin (Fig 3). Due

to very low fishing efforts, which were zero in most months during the study period, MM-2

and MM-6 data were not included in the analyses. As before, we used the package “mgcv” ver-

sion 1.8–28 [52] in R version 3.6.1 [53] to perform the GAM analyses, in which we used the

thin-plate regression spline as the smoothing basis for the function se and the restricted-maxi-

mum-likelihood method to estimate parameters and se [50].

Maps for historical cisco distribution

We used the geographic information system (GIS) software ArcGIS version 10.4 (http://www.esri.

com/software/arcgis/) to generate the maps for cisco distribution in Lake Michigan in 1930–1932.

The cisco distribution was indicated by the predictions of the selected Fulmar-GAM for cisco

catch. To generate the GIS map layers for predicted cisco catch, we obtained the Fulmar-GAM

inputs for Lake Michigan bathymetry from Great Lakes Aquatic Habitat Framework’s [25] public

domain spatial database (https://glahf.org/data/), which included information for latitude, longi-

tude, and bottom depth at a grid resolution of 30 × 30 m2. Due to no Fulmar survey being con-

ducted in Grand Traverse Bay (GTB), the predicted cisco catch in this sub-basin was based on the

results of the statistical analyses, which could be one of the following three scenarios:

1. The selected Fulmar GAM is one of Models 1–4: This allows us to predict GTB catch with-

out making any assumption.

2. The selected Fulmar GAM is one of Models 5–8: This allows us to predict GTB catch by

treating GTB as either Green Bay or the main basin, which could be informed by results of

the commercial-catch GAM (Model 13) that was fitted to data collected in Green Bay, GTB,

and the main basin.

3. The selected Fulmar GAM is one of Models 9–12: This allows us to predict GTB catch by

using the corresponding model in Models 5–8 and following the same method as described

in scenario 2. Specifically, Models 5–8 are the same as Models 9–12 without the Gaussian-

process smoothing function sg. A model including sg to extrapolate catch in GTB could not

be used because it is not reasonable to assume that cisco preferred the same region in GTB

as in either Green Bay or the main basin. For example, it is not reasonable to assume that

cisco preferred northern GTB because they preferred northern Green Bay.

Historical distribution of cisco in the gravid season

We used ArcGIS version 10.4 to generate a map for historical distribution of cisco in the gravid

season. Due to data limitations, we could not achieve our initial target of generating a map for his-

torical distribution of cisco in the spawning season. The Fulmar survey categorized maturity into

one of the five stages: immature, mature, gravid (or nearly ripe), ripe, and spent. However, no

cisco was recorded as ripe or spent, which precluded the generation a map of historical

PLOS ONE Historical habitat use of cisco in Lake Michigan, 1930–1932

PLOS ONE | https://doi.org/10.1371/journal.pone.0231420 April 8, 2020 9 / 21

http://www.esri.com/software/arcgis/
http://www.esri.com/software/arcgis/
https://glahf.org/data/
https://doi.org/10.1371/journal.pone.0231420


distribution of cisco in the spawning season. In the map for historical distribution of cisco in the

gravid season, we generated a GIS map layer to show the Fulmar stations with cisco presence or

absence during the gravid season. The gravid season was defined as beginning on the earliest date

a gravid cisco was caught and ended at the latest date (November 19) for a Fulmar lift.

Results

Fulmar data summary

The Fulmar survey consisted of 361 gill-net lifts made between June 26 and November 15 in

1930, between May 6 and November 19 in 1931, and between April 21 and September 13 in

1932. Although the combined catch of cisco and deepwater ciscoes was recorded from every

lift, the catch was not always enumerated by species. As a result, catch data for cisco were avail-

able only for 291 of the 361 lifts. Among the 291 lifts that could be included in the statistical

analyses, we excluded data from 76-mm mesh in 176 lifts due to low catch rates—only three

ciscoes were caught in panels of this mesh size. We also excluded data from three summer lifts

in 1930 with sampling durations of 16–18 nights. These gangs were retrieved late due to engine

malfunction as described in the Fulmar’s scientific logs, which were also archived at U.S. Geo-

logical Survey’s Great Lakes Science Center.

Finally, we included data from gangs in 288 lifts in the statistical analyses (Table 1). These

lifts were made in Green Bay and the main basin in all three seasons, although the number of

lifts made in Green Bay in fall was relatively small (N = 4). These lifts were made at comparable

bottom depths across seasons, ranging from 24 to 142 m in spring, from 18 to 155 m in sum-

mer, and from 29 to 170 m in fall. A total of 10,867 ciscoes were caught in these lifts, total

lengths were measured for 4,007 ciscoes, and maturity was recorded for 3,304 ciscoes. The size

of caught ciscoes increased with the mesh size. The average total length ± standard deviation

of ciscoes from 60-mm mesh was 280 ± 17 mm (N = 1,299), from 64-mm mesh was 300 ± 23

mm (N = 1,495), from 67-mm mesh was 306 ± 29 mm (N = 904), and from 70-mm mesh was

325 ± 34 mm (N = 309).

Statistical analyses for the Fulmar data

Models 11 and 12 were the most parsimonious (i.e., ΔAIC <4) among all 12 candidate GAMs,

but Model 11 was judged to be superior because its estimated degrees of freedom were smaller

than those of Model 12 (Table 2). Model 11 explained 78% of the deviance and every term in

the model was significant at p< 0.001 level, except for the smoothing functions of bottom

depth for spring (p = 0.672) and fall (p = 0.028) and the Gaussian-process smoothing function

for Green Bay (p = 0.003). With adjustments for sampling effort and spatial variability, Model

11 showed that cisco catch was decreasing with increasing mesh size (Fig 4A), was higher in

summer and fall than in spring (Fig 4B), was higher in Green Bay than in the main basin (Fig

4C), was decreasing with bottom depth in spring and fall (Fig 4D and 4F), and was increasing

with bottom depth when it was less than about 40 m but decreasing with bottom depth when it

was greater than about 40 m (Fig 4E). These results support the following hypotheses for

Table 1. Number of bottom-set gill-net lifts included in the statistical analyses.

Season Sub-basin Total

Green Bay Main basin

Spring 27 55 82

Summer 11 152 163

Fall 4 39 43

https://doi.org/10.1371/journal.pone.0231420.t001
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historical habitat use by cisco in Lake Michigan: (1) cisco preferred Green Bay over the main

basin and (2) the bottom-depth preference of cisco varied across seasons but not across size

classes. Model 11 also included significant Gaussian-process smoothing functions (p = 0.003

for the Green Bay function and p< 0.001 for the main basin function), which supports the

hypothesis that cisco preferred certain regions within Green Bay and within the main basin.

Statistical analyses for the commercial catch data

The commercial-catch GAM had 12.2 estimated degrees of freedom and explained 87% of the

deviance, and every term in the model was significant at p< 0.001 level. With adjustments for

fishing effort, the model showed that commercial cisco catch was higher in spring and fall than

in summer (Fig 5A), higher in Green Bay and Grand Traverse Bay than in the main basin, and

higher in the southern than in the northern main basin (Fig 5B).

Maps for historical cisco distribution

We generated maps for historical cisco distribution in Lake Michigan by season (Fig 6) by

using predicted cisco catch based on the most parsimonious FulmarGAM. As the commer-

cial-catch GAM suggests that cisco catch in Grand Traverse Bay was more similar to the catch

in Green Bay than in the main basin, cisco catch in Grand Traverse Bay was predicted by

using Model 7 and treating Grand Traverse Bay as Green Bay.

Historical distribution of cisco in the gravid season

A total of six gravid ciscoes were recorded in the Fulmar data and were caught on October 16

(N = 1), October 30 (N = 1), November 5 (N = 3), and November 6 (N = 1). Hence, October

Table 2. Results for the selection of Generalized Additive Models (GAM) fitted to the Fulmar data.

ΔAIC edf Deviance explained (%)

Basic models

Model 1: ln(Catch)~ Mesh + Season + sd + fe 101.1 16.9 72.5

Model 2: ln(Catch)~ Mesh + Season + smd + fe 121.0 27.1 72.4

Model 3: ln(Catch)~ Mesh + Season + ssd + fe 86.5 24.9 74.0

Model 4: ln(Catch)~ Mesh + Season + smd + ssd + fe 84.9 29.3 74.4

Models accounting for sub-basin preference

Model 5: ln(Catch)~ Mesh + Season + Basin + sd + fe 79.3 16.6 73.5

Model 6: ln(Catch)~ Mesh + Season + Basin + smd + fe 81.3 19.0 73.6

Model 7: ln(Catch)~ Mesh + Season + Basin + ssd + fe 35.6 19.9 75.7

Model 8: ln(Catch)~ Mesh + Season + Basin + smd + ssd + fe 33.7 24.4 76.2

Models accounting for sub-basin preference and spatial variability

Model 9: ln(Catch)~ Mesh + Season + Basin + sd + sg + fe 41.1 27.5 76.1

Model 10: ln(Catch)~ Mesh + Season + Basin + smd + sg + fe 44.0 29.9 76.1

Model 11: ln(Catch)~ Mesh + Season + Basin + ssd + sg + fe 2.6 30.3 78.0

Model 12: ln(Catch)~ Mesh + Season + Basin + smd + ssd + sg + fe 0.0 35.7 78.5

ΔAIC, difference between the Akaike’s information criterion (AIC) of a GAM and the AIC of Model 12, which had the minimum AIC across the 12 candidate GAMs;

edf, estimated degrees of freedom, the total degrees of freedom of all categorical variables and smoothing functions; Catch, catch in number of cisco;Mesh, categorical

variable of mesh size (60, 64, 67, or 70 mm); Season, categorical variable of season (spring, summer, or fall); Basin, categorical variable of sub-basin (Green Bay or the

main basin); sd, smoothing function of bottom depth; smd, smoothing function of bottom depth by mesh size; ssd, smoothing function of bottom depth by season; sg,
Gaussian-process smoothing function, which accounts for spatial auto-correlation; fe, fishing-effort adjustment function of number of nights out and number of gill-net

panels.

https://doi.org/10.1371/journal.pone.0231420.t002
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16 was defined as the beginning of the gravid season. From October 16 to November 19, the

latest date for a Fulmar lift, a total of 124 ciscoes were caught in 13 of 30 gill-net lifts. However,

maturity was recorded for only 15 (6 gravid and 9 mature) of the 124 ciscoes caught in just 4 of

the 13 gill-net lifts producing cisco. As shown in Fig 7, the 13 gill-net lifts with cisco were

located in the central-western and southwestern main basin. No gill-net lifts were made in

Green Bay and in a large area of northern main basin from October 16 to November 19 during

the Fulmar survey.

Discussion

Historical habitat use of cisco

The fishery-independent data from the Fulmar supported previous findings from Smith [34]

and Hile and Buettner [47], based on commercial catch records, that cisco was markedly more

abundant in Green Bay than in the main basin of Lake Michigan in all seasons. One somewhat

surprising finding, however, was that when accounting for effort, commercial catch in Grand

Fig 4. The relationships between number of cisco caught (Catch) and gill-net mesh size (Mesh), season (Season), habitat type (Basin), and bottom depth (Depth),

with adjustments for sampling effort and spatial variability, based on the selected generalized additive model fitted to the Fulmar data. The points in panels a–c

and solid lines in panels d–f represent the predicted values. The error bars in panels a–c and dotted lines in panels d–f represent +/− one standard error. Ticks above the

horizontal axis represent the relative sample size in panels a–c and the distribution of data points in panels d–f.

https://doi.org/10.1371/journal.pone.0231420.g004
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Traverse Bay was just as high as in Green Bay historically, which reinforces the importance of

embayments to cisco populations.

In addition, the Fulmar data indicated that in Lake Michigan, cisco migrated to deeper

waters in summer, and inhabited shallower waters in spring and in fall. This pattern of shifting

to deeper waters in summer is consistent with historical observations by Lake Michigan fishers

Fig 5. The relationships between commercial cisco catch in tonnes (ComCatch) and season (Season) and Lake

Michigan region (Region), with adjustments for gear type and fishing effort, based on the generalized additive

model fitted to the State of Michigan’s commercial catch data collected in 1930–1932. The points represent the

predicted values and the error bars represent +/− one standard error. Ticks above the horizontal axis represent the

relative sample size.

https://doi.org/10.1371/journal.pone.0231420.g005

Fig 6. Maps for historical cisco distribution in Lake Michigan by season, 1930–1932. Cisco catch was predicted by using the selected generalized additive model fitted

to the Fulmar data and was standardized to per panel of gill net with a 60-mm mesh size and a sampling duration of four nights. The maps were generated by using a

geographic information system (GIS) software ArcGIS version 10.4 (http://www.esri.com/software/arcgis/). The GIS map layers for predicted cisco catch were generated

in this study. The GIS map layers for Lake Michigan was obtained from Great Lakes Aquatic Habitat Framework’s [25] public domain spatial database (https://glahf.org/

data/).

https://doi.org/10.1371/journal.pone.0231420.g006
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[26]. The results suggest, too, that cisco was mostly distributed in waters with bottom depths

between 20 and 70 m, and the highest cisco density occurred in waters with bottom depth

around 40 m in summer. Again, this finding is consistent with historical observations by fish-

ers, who reported that cisco was caught in summer at bottom depths between 20–45 m across

Lake Michigan [26]. One plausible explanation for this pattern of seasonal migrations is that

cisco actively searched for water temperatures close to 10˚C, the preferred thermal optimum

[56], and avoided water temperatures greater than 17˚C [34, 56, 57]. Given that the

Fig 7. Historical distribution of cisco in the gravid season in Lake Michigan. Circles are Fulmar stations sampled

from October 16, the earliest date when a gravid cisco was caught, to November 19, the latest date for a Fulmar lift

between 1930 and 1932. Closed circles are sampling stations where ciscoes were caught, and open circles are sampling

stations where no cisco was caught. The map was generated by using a geographic information system (GIS) software

ArcGIS version 10.4 (http://www.esri.com/software/arcgis/). The GIS map layer for historical distribution of cisco in

the gravid season was generated in this study. The GIS map layers for Lake Michigan was obtained from Great Lakes

Aquatic Habitat Framework’s [25] public domain spatial database (https://glahf.org/data/).

https://doi.org/10.1371/journal.pone.0231420.g007
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thermocline in summer typically intersects with the bottom of the lake at between 20 and 40

m, cisco likely dispersed into these deeper waters to avoid warmer epilimnetic waters and to

locate waters closer to 10˚C [51].

The results provided strong evidence that Green Bay and Grand Traverse Bay (hereafter,

the Bays) were historically important habitats. Although local fishers had long speculated that

cisco migrated from Green Bay to the main basin in spring [58], some areas in the Bays could

have suitable habitats for cisco in summer. In Green Bay, about 15% of the surface area is

between 30 and 50 m in depth (Fig 1), and Grand Traverse Bay offers abundant deeper waters

relatively nearshore [see discussion in 59]. Early studies in Green Bay also showed that at least

some cisco remained in Green Bay over summer. For example, Koelz [26] reported that cisco

was abundant there in August 1920, and Smith [34] caught cisco in Green Bay with suspended

gill nets throughout May to October 1952. Additionally, Goodyear et al. [60] documented that

spawning habitats were available for cisco in both Bays. All together, these suggest that the

Bays were capable of supporting cisco to complete its entire life cycle in the early 20th century.

The results also hint that habitat degradation had already occurred in Green Bay by the

1930s. In fall, the selected FulmarGAM indicated that cisco preferred shallower waters but the

extrapolated prediction showed that cisco was more abundant in the deeper outer Green Bay

than in the shallower inner Green Bay. Pollution was reported as a factor affecting fish habitat

in Lake Michigan as early as in the late nineteenth century [61]. In inner Green Bay, low dis-

solved oxygen (<1 mg/L) conditions under ice were first reported in 1938 and were associated

with large inputs of nutrients and organic matters from the watershed where paper-making

was concentrated [62]. However, the hypoxia problem could have lasted for years, but was not

observed until 1938 when a systematic water-quality survey was first conducted in Green Bay

[62]. Wells and McLain [24] also suggested that habitat degradation in Green Bay could have

been a factor contributing to the marked decline of cisco commercial catch between around

1900 and 1920.

Sampling biases

Bottom-set gill nets are not the ideal gear for sampling fish like cisco that often inhabit the

pelagic waters of large lakes. Much of current understanding on the habitat of Great Lakes

cisco populations derives from fishery-independent data in Lake Superior, where cisco

remains relatively abundant in both embayments and offshore waters. Early studies by Dryer

[63] and Selgeby [64] both reported low cisco catch rates in bottom-set gill nets except during

the fall spawning season. Stockwell et al. [65] hypothesized that cisco in Lake Superior became

more pelagic-oriented at larger sizes. This hypothesis was supported by Gorman et al. [66],

who showed that both small (total length <185 mm) and large (total length>250 mm) ciscoes

exhibited diel vertical migration, and during the day, large ciscoes inhabited the deep- and

mid-hypolimnetic zones while small ciscoes were bottom-orientated. The diel vertical migra-

tion of cisco in Lake Superior was associated with the capture ofMysis diluviana for food and

the avoidance of lake trout predation [67, 68]. As bothMysis diluviana and lake trout were his-

torically abundant in Lake Michigan [24], large ciscoes (total length>250 mm; which com-

prised 98% of the Fulmar catch) in historical Lake Michigan could have similar diel vertical

migration patterns as observed contemporarily in Lake Superior. Therefore, the finding of

lower cisco catch rates with increasing mesh sizes could be explained by larger, less-abundant

ciscoes being more pelagic and the predicted distribution in fall could be the least biased given

the higher catch rates from bottom-set gill nets in the season.

The behavior and habitat preference of cisco might not be the same in Lake Michigan and

Lake Superior. Koelz [26], however, reported that cisco in Lake Michigan in summer could be

PLOS ONE Historical habitat use of cisco in Lake Michigan, 1930–1932

PLOS ONE | https://doi.org/10.1371/journal.pone.0231420 April 8, 2020 15 / 21

https://doi.org/10.1371/journal.pone.0231420


pelagic as in Lake Superior, although cisco in Lake Superior could spend more time near the

surface due to cooler temperatures. After adjusting for mesh size and the other variables, the

selected FulmarGAM showed that average cisco catch was only 16% lower in summer than in

fall, suggesting that the large ciscoes in Lake Michigan still encountered bottom-set gill nets at

comparable rates in summer and in fall. While the selected FulmarGAM showed that average

cisco catch was 63% lower in spring than in fall, the commercial-catch GAM showed that aver-

age catch in spring and fall were about the same. One possible reason for the low spring catch

of cisco in the Fulmar data was that the nets were set too deep. In the 1930s, commercial

pound nets were set at waters around 11 m in depth and commercial bottom-set gill nets were

set at waters of all depths [34]. As about 74% of the commercial cisco catch was from pound-

net fisheries in 1930–1932, it was assumed that, more likely, cisco inhabited waters<18 m in

depth in the spring, where the Fulmar survey did not sample.

In the main basin of Lake Michigan, relative catch rates in the north and south revealed

opposite patterns in the Fulmar (more abundant in the north) and commercial catch (more

abundant in the south) data. This discrepancy may have been caused, in part, by the differ-

ences in fishing depths as the Fulmar survey typically fished in deeper waters (targeting deep-

water ciscoes) than the commercial cisco fisheries. Interestingly, the commercial catch data

available by county across all four Lake Michigan states in 1903 [69] suggest that cisco was

abundant throughout the main basin. However, historical commercial catch reports from the

State of Michigan (archived at the U.S. Geological Survey’s Great Lakes Science Center)

showed that cisco fisheries collapsed around 1940 in the southern main basin and then around

1960 in more northerly waters.

Implications for spawning habitat

The Fulmar data contained limited information about cisco spawning habitat because the

field season (mid-April to mid-November) did not extend into the height of the spawning

season, usually between mid-November and early December in Lake Michigan [26], and the

sampling stations in fall (all > 29 m in bottom depth) did not extend to shallower waters

where cisco spawning was reported [59]. As cisco did not migrate extensively [54], the distri-

bution of cisco in the gravid season (Fig 7) could confirm the reported spawning sites in cen-

tral-western and southwestern waters of the main basin [60]. Although there was no cisco

caught during the gravid season at the seven stations in the southeastern main basin, the

small number of lifts (N = 7) may have limited the ability to confirm reported spawning sites

in this region [60]. Nonetheless, the distribution of cisco in the gravid season provides fur-

ther evidence that cisco could spawn throughout Lake Michigan as suggested in Goodyear

et al. [60].

Management implications

Globally, setting realistic goals for restoration and conservation in the face anthropogenic-

driven environmental changes can prove challenging [2]. Similar to many aquatic ecosystems

around the world, watershed land covers and species compositions across the Great Lakes

have dramatically changed from their historical states [70]. Since 2010, the U.S. Environmental

Protection Agency has invested more than $2.4 billion dollars towards improving water qual-

ity, restoring habitat and native species, and reducing the impact of exotic species (see: https://

www.glri.us/action-plan). Cisco restoration in Lake Michigan remains in the early planning

stages, as managers consider what strategies would be most effective and seek improved under-

standing of how cisco restoration may increase the biological integrity of the fish community,

an overarching goal of Lake Michigan fishery managers [71]. Our work informs managers and
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future possible restoration strategies by describing the historical habitat use of cisco and sug-

gesting where a fully restored Lake Michigan population should be abundant. We highlight

the importance of embayment habitats as the historical fishery-independent and fishery data

revealed that the highest densities of cisco occurred in Green Bay and Grand Traverse Bay,

from spring to fall.

The seasonal migration pattern identified in this study suggests that a restored cisco popula-

tion can diversify the food web by occupying different habitats from those of alewife and rain-

bow smelt, the dominant exotic prey fishes in pelagic waters of Lake Michigan. The analyses

suggest cisco migrated to deeper waters during summer, likely in search of cooler, and more

optimal water temperatures. In contrast, Wells [72] reported that the alewife was concentrated

in waters with bottom depths of 55–91 m over winter and migrated to nearshore waters (bot-

tom depth <27 m) between spring and fall while the rainbow smelt stayed in nearshore waters

throughout the year. However, no evaluation can be made on the extent to which cisco

migrated from embayments to the main basin in summer, when optimal water temperatures

would have been more plentiful in the main basin.

This paper provides a benchmark for historical habitat use of adult ciscoes, but further

research is needed to understand the factors that may be impeding an even more rapid recov-

ery of cisco in Lake Michigan. Over the past decade, cisco numbers have been increasing, with

the highest density occurring in and around Grand Traverse Bay, but very low densities persist

in Green Bay [59]. One ongoing research question is how ciscoes today compare to those (i.e.,

C. artedi artedi) in this study. For example, some morphological differences are apparent [23,

73]. Functionally, the large ciscoes in Grand Traverse Bay today feed primarily on prey fish

[74], whereas historically ciscoes fed primarily on plankton [26, 75]. Managers are evaluating

whether extant ciscoes in Lake Michigan will continue to expand and diversify or if other man-

agement actions are needed to increase both the abundance and diversification of ciscoes to

enhance their recovery and long-term stability [16]. Broadly speaking, habitat uses of cisco for

spawning and at larval and juvenile stages remain poorly understood in Lake Michigan and in

the other Great Lakes, although Oyadomari and Auer [76] described the habitat use of larval

ciscoes in Lake Superior. A more complete description and understanding for habitat use of

cisco at each life stage would reveal whether the Lake Michigan ecosystem can still provide

habitat connectivity through ontogeny and sustain abundant cisco populations in key histori-

cal regions, such as Green Bay.
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