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A B S T R A C T   

Background: Motor outcomes after stroke can be predicted using structural and functional biomarkers of the 
descending corticomotor pathway, typically measured using magnetic resonance imaging and transcranial 
magnetic stimulation, respectively. However, the precise structural determinants of intact corticomotor function 
are unknown. Identifying structure–function links in the corticomotor pathway could provide valuable insight 
into the mechanisms of post-stroke motor impairment. This study used supervised machine learning to classify 
upper limb motor evoked potential status using MRI metrics obtained early after stroke. 
Methods: Retrospective data from 91 patients (49 women, age 35–97 years) with moderate to severe upper limb 
weakness within a week after stroke were included in this study. Support vector machine classifiers were trained 
using metrics from T1- and diffusion-weighted MRI to classify motor evoked potential status, empirically 
measured using transcranial magnetic stimulation. 
Results: Support vector machine classification of motor evoked potential status was 81% accurate, with false 
positives more common than false negatives. Important structural MRI metrics included diffusion anisotropy 
asymmetry in the supplementary and pre-supplementary motor tracts, maximum cross-sectional lesion overlap in 
the sensorimotor tract and ventral premotor tract, and mean diffusivity asymmetry in the posterior limbs of the 
internal capsule. 
Interpretations: MRI measures of corticomotor structure are good but imperfect predictors of corticomotor 
function. Residual corticomotor function after stroke depends on both the extent of cross-sectional macro
structural tract damage and preservation of white-matter microstructural integrity. Analysing the corticomotor 
pathway using a multivariable MRI approach across multiple tracts may yield more information than univariate 
biomarker analyses.   

1. Introduction 

Recovery from motor impairment after stroke occurs mainly within 
the first 6 months and has significant inter-individual variability 
(Prabhakaran et al. 2008). There is a growing interest in the use of 
biomarker-based approaches to predicting recovery from motor 
impairment, which can more accurately predict motor recovery and 
outcomes compared to clinical measures alone (Kim and Winstein 2017, 

Stinear et al. 2019). Many of the biomarkers that have been explored for 
predicting motor recovery and outcomes after stroke are derived from 
neurophysiological or neuroimaging data. 

Transcranial magnetic stimulation (TMS) is a non-invasive neuro
physiological technique that can be used to assess corticomotor (cortical 
motor pathway) function. The presence of motor evoked potentials 
(MEPs) in the paretic upper limb early after stroke in response to TMS of 
the ipsilesional primary motor cortex is a predictor of good recovery and 
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outcome, even in patients with severe baseline motor deficits (Turton 
et al. 1996, Hendricks et al. 2002, Nascimbeni et al. 2006, Pizzi et al. 
2009, Byblow et al. 2015). 

Magnetic resonance imaging (MRI) can be used to obtain a range of 
structural biomarkers that are associated with upper limb recovery and 
outcome (Puig et al. 2011, Puig et al. 2013, Feng et al. 2015, Bigourdan 
et al. 2016, Buch et al. 2016, Puig et al. 2017, Habegger et al. 2018, 
Boccuni et al. 2019). For example, larger lesion loads (Feng et al. 2015, 
Boccuni et al. 2019) and lower fractional anisotropies in white matter 
tracts (Puig et al. 2011, Puig et al. 2013, Buch et al. 2016, Puig et al. 
2017) are associated with poorer motor recoveries and outcomes after 
stroke. 

Studies that include both MEP status and structural MRI biomarkers 
as potential predictors indicate that corticomotor function is more 
important than corticomotor structure for predicting upper limb out
comes after stroke (Stinear et al. 2012, Stinear et al., 2017a; Stinear 
et al., 2017b, Buetefisch et al. 2018). Since structure and function are 
linked, one might wonder if structural information obtained via MRI is 
able to indicate corticomotor function. Research to date has been unable 
to classify MEP status accurately using individual structural MRI metrics 
(Stinear et al., 2017a; Stinear et al., 2017b). However, it may be possible 
to classify MEP status using multivariable MRI data and supervised 
machine learning algorithms. Support vector machine is a commonly 
used machine learning algorithm that solves binary classification 
problems by calculating a decision boundary. Support vector machine 
has previously been used to predict future motor outcomes and recovery 
in the upper limb after stroke using demographic, clinical, imaging, and 
neurophysiological variables (Lee et al. 2013, Rehme et al. 2015, Gug
gisberg et al. 2017). Support vector machine can also be used for cross- 
sectional investigation of corticomotor structure–function relationships 
by using MRI metrics of corticomotor structure to classify a measure of 
corticomotor function such as MEP status. 

This study aimed to investigate whether structural MRI metrics can 
be used to classify upper limb MEP status early after stroke using support 
vector machine, in an analysis of retrospective data. Our hypothesis was 
that MRI metrics would accurately, but not perfectly, classify MEP 
status. 

2. Methods 

2.1. Participants 

The study data were drawn from a pool of patients admitted to our 
hospital between December 2009 and July 2019, who were enrolled in 
one of five different longitudinal studies (Stinear et al. 2014, Stinear 
et al., 2017a; Stinear et al., 2017b, Cirillo et al. 2020, two unpublished). 
Exclusion criteria for all studies were age less than 18 years, bilateral or 
cerebellar stroke, and impaired cognition or communication precluding 
informed consent. Shoulder abduction finger extension (SAFE) scores 
out of 10 were assessed within 5 days of stroke (median 3 days, range 2 – 
5 days) using Medical Research Council strength grading (Stinear et al. 
2012). Inclusion criteria for the present analysis were ischemic stroke or 
primary intracerebral haemorrhage with initial moderate to severe 
upper limb weakness, and MEP status, T1- and diffusion-weighted MRI 
data available at baseline. Patients with a SAFE score of 5 or more were 
excluded from the present analysis to produce a balanced sample of MEP 
positive and MEP negative patients. All studies were approved by the 
Health and Disability Ethics Committees, and all participants provided 
written informed consent. 

2.2. Transcranial magnetic stimulation 

Transcranial magnetic stimulation was used to assess MEP status of 
the paretic upper limb as early as possible after stroke (median = 9 days, 
range = 4 – 23 days). Details and video of the most up-to-date protocol 
are available (Smith et al. 2020). Magnetic stimuli were delivered using 

a MagStim 200 (MagStim, United Kingdom) connected to a 70 mm 
figure-of-eight coil, oriented to induce a posterior-anterior current in the 
hand and arm area of the ipsilesional primary motor cortex. Recording 
electrodes (Ambu, Denmark, or 3 M, Canada) were placed over the 
target muscles of the paretic arm in a belly-tendon montage and a 
reference electrode (3 M, Canada) was placed on the lateral epicondyle 
of the humerus. One study had extensor carpi radialis as the single target 
muscle (Stinear et al. 2014), one study had first dorsal interosseous as 
the single target muscle (Cirillo et al. 2020), and three studies had both 
extensor carpi radialis and first dorsal interosseous as target muscles 
(Stinear et al., 2017a; Stinear et al., 2017b, two unpublished). The 
electromyography signals were sampled at 2 kHz, amplified with a gain 
of 1000, bandpass filtered between 10 and 1000 Hz or 20 Hz – 1000 Hz 
using a CED 1902 amplifier and CED Micro1401 mkII data acquisition 
unit (Cambridge Electronic Design, United Kingdom). The assessor 
tested various stimulation sites with the coil oriented to induce a 
posterior-to-anterior current flow in the ipsilesional primary motor 
cortex. If no MEPs were observed, the stimulation intensity was 
increased gradually, up to 100% of stimulator output. In three studies, if 
MEPs were not observable at rest, further stimuli were delivered while 
the patient attempted voluntary activation of both upper limbs in order 
to facilitate a response (Stinear et al., 2017a; Stinear et al., 2017b, two 
unpublished). Patients were categorised as MEP positive if MEPs of any 
amplitude were consistently observed in any of the target muscles, 
either at rest or with voluntary activation (Smith et al. 2020). 

2.3. Magnetic resonance imaging 

T1- and diffusion-weighted MRI were acquired using a Siemens 
Skyra 3 T or Avanto 1.5 T scanner as early as possible after stroke 
(median = 10 days, range = 4 – 22 days). The acquisition parameters for 
each study are provided in Table 1. Lesion masks were manually drawn 
in participant T1 space by an individual rater (BC) who was blind to 
stroke severity, MEP status, and clinical outcome. The skull-stripped 
diffusion-weighted images were corrected for movement, 
susceptibility-induced distortions, and eddy currents (Andersson et al. 
2003, Andersson and Sotiropoulos 2016). 

All MRI metrics (except for total lesion volume) were each measured 
in eight different tracts of interest: seven from the publicly available 
sensorimotor area tract template (SMATT) (Archer et al. 2018), 
including primary motor cortex (M1), primary somatosensory cortex 
(S1), sensorimotor (M1 + S1 combined), ventral premotor cortex, dorsal 
premotor cortex, supplementary motor area, and pre-supplementary 
motor area tracts, plus an inhouse template of the posterior limbs of 
the internal capsule (Stinear et al. 2012). Each participant’s T1 was 
registered to standard 1 mm Montreal Neurological Institute T1 space 
with a 12 degrees of freedom affine transformation (Jenkinson et al. 
2002), followed by a nonlinear transformation (Woolrich et al. 2009). 
The inverse of these warps was applied to the tracts of interest to 
transform them into participant T1 space. 

An overview of the T1-based MRI metrics is provided in Supple
mentary Table 1. Weighted lesion load and maximum cross-sectional 
lesion overlap in each of the tracts of interest, along with total lesion 
volume, were derived from T1-weighted images. Weighted lesion load 
was determined by dividing the number of lesion voxels overlapping the 
tract of interest by the total number of voxels in the tract. Maximum 
cross-sectional overlap was obtained by calculating the percentage of 
lesion voxels overlapping the tract of interest for each axial slice and 
taking the largest value out of all axial slices. Total lesion volume was 
calculated as the total number of 1 mm isometric voxels in the lesion 
mask in T1 space. 

An overview of the diffusion-based MRI metrics is provided in Sup
plementary Table 2. Diffusion-weighted images were processed to 
obtain maps of fractional anisotropy, axial diffusivity, mean diffusivity, 
radial diffusivity, normalised eigenvalue ratio (Armitage and Bastin 
2000), volume fraction (Alexander et al. 2000), scaled relative 
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anisotropy (Conturo et al. 1996, Kingsley and Monahan 2005), ultimate 
anisotropy scaled to the diffusion ellipsoid volume, surface area, or both 
(UAvol, UAsurf, and UAvol,surf) (Ulug and van Zijl 1999, Kingsley and 
Monahan 2005), ellipsoidal area ratio (Xu et al. 2009, Kang et al. 2010), 
gamma variate anisotropy (Armitage and Bastin 2000), GAA (Pipe and 
Farthing 2003, Correia et al. 2011), geodesic anisotropy (Batchelor et al. 
2005, Correia et al. 2011), and local diffusion homogeneity (Gong and 
Zang, 2013). The diffusion metric maps were transformed to patient T1 
space using a 6 degrees of freedom affine transformation (Jenkinson 
et al. 2002). The mean values in each tract in patient T1 space were used 
to calculate asymmetry indices for each diffusion metric using the for
mula (contra – ipsi) / (contra + ipsi). All image processing was carried 
out using the FMRIB Software Library 6.0.1 (Woolrich et al. 2009). 
Calculation of diffusion features was performed using the FMRIB Soft
ware Library 6.0.1 and Python 3.7. 

2.4. Support vector machine 

Support vector machine (SVM) classifiers were trained using Matlab 
version R2020b (MathWorks, Massachusetts) with linear and radial 
basis function kernels. The input features included 17 T1-based metrics 
(weighted lesion loads and maximum cross-sectional lesion overlaps in 
the 8 tracts of interest, plus total lesion volume), 120 diffusion-based 
metrics (15 different diffusion tensor metrics in the 8 tracts of inter
est), and age in years, for a total of 138 input features. The input features 
were scaled to their respective maximum, and the target variable was 
empirical MEP status (MEP + or MEP-). The SVM was trained using 10- 
fold cross-validation, where the data were partitioned randomly into 10 
folds, and classifications for each fold were obtained using an SVM 
model trained on the remaining nine folds. The partitions were stratified 
by the ground truth and made consistent across all training iterations. 
The kernel scaling factor and soft margin parameter were optimised 
using a logarithmic grid-search with 0.001, 0.01, 0.1, 1, 10, 100, and 
1000 as possible values. Feature selection was performed using forward 
selection, where features were iteratively added to the model if they 
improved the cross-validated model accuracy, until the cross-validation 
accuracy no longer improved. To evaluate classifier performance, 
overall cross-validation accuracy, sensitivity, specificity, positive pre
dictive value (PPV), negative predictive value (NPV), and the area under 

the receiver operating characteristic curve (AUC) were calculated and 
interpreted as excellent (90 – 100%), good (80 – 90%), moderate (70 – 
80%) or poor (50 – 70%). 

3. Results 

Ninety-one patients were included in this analysis: 84 patients with 
SAFE scores less than 5, and 7 patients with an unknown SAFE score 
(Table 2). TMS was used to assess MEP status between 4 and 23 days 
post-stroke, and MRI was acquired between 5 and 22 days post-stroke. 
The time between TMS and MRI sessions was up to 9 days, with a me
dian of 2 days. Forty-seven patients were MEP positive, while 44 

Table 1 
MRI acquisition parameters for the included studies.    

T1-weighted Diffusion-weighted 
n Scanner TR (ms) TE (ms) TI (ms) Flip (◦) Sequence Resolution (mm) Flip 

(◦) 
TR (ms) TE (ms) Volumes 

27 Avanto 11  4.94 n/a 15 FLASH3D 1.8 × 1.8 × 3.0 90 6600–6700 101 30 gradients 
2 averages 
2 b0 

39 Avanto 13  4.76 n/a 25 FLASH3D 1.8 × 1.8 × 3.0 90 6500–6700 99–101 30 gradients 
2 averages 
2 b0 

7 Skyra 1900  2.07 900 9 FLASH3D MPRAGE 2.0 × 2.0 × 2.0 78 3600 92 30 gradients 
3 b0  

3 Skyra 23  2.46 n/a 23 FLASH3D 2.0 × 2.0 × 2.0 78 3600 92.4 64 gradients 
8 AP b0 
3 PA b0 

11* Avanto 2200  2.97 900 8 FLASH3D MPRAGE 1.8 × 1.8 × 3.0 90 3400 90 64 gradients 
2 averages 
8 AP b0 
3 PA b0 

4* Skyra 2200  2.45 900 8 FLASH3D MPRAGE 2.0 × 2.0 × 2.0 78 3600 92.4 64 gradients 
8 AP b0 
3 PA b0 

* Bottom two rows are different acquisitions from the same study. All T1 images were acquired with 1.0 × 1.0 × 1.0 mm resolution. Diffusion-weighted images were 
obtained using echo-planar imaging with a b value of 2000 s/mm2. MRI – magnetic resonance imaging; n – sample size; TR – repetition time; TE – echo time; TI – 
inversion time; Flip – flip angle; AP – anterior-posterior phase encoding; PA – posterior-anterior phase encoding; FLASH – fast low-angle shot; MPRAGE – 
magnetisation-prepared rapid gradient echo. 

Table 2 
Demographic and clinical characteristics of the study participants.  

Age (y) 71 (35 – 97) 

Sex (f) 49 (54%) 
NIHSS 9 (0 – 21) 
SAFE score 1 (0 – 4) 
Baseline FM-UE 11 (4 – 53) 
MEP+ 47 (52%) 
Hemisphere (left) 32 (35%) 
Dominant side affected 32 (35%) 
Handedness (right) 82 (90%) 
Haemorrhage 6 (7%) 
Thrombolysis 12 (13%) 
Thrombectomy 3 (3%) 
Previous stroke 9 (10%) 
Smoker 7 (8%) 
Diabetes 21 (23%) 
Hypertension 53 (58%) 
Dyslipidaemia 38 (42%) 
Atrial fibrillation 18 (20%) 
Previous cardiac event 22 (24%) 
TMS day 8 (4 – 23) 
MRI day 11 (5 – 22) 
Days between TMS and MRI 2 (-9 – 9) 

Values are median (range), or n (%). 
NIHSS – National Institutes of Health Stroke Scale; SAFE – shoulder 
abduction finger extension; FM-UE – Fugl-Meyer Upper Extremity; 
MEP+ – motor evoked potential present; TMS – transcranial mag
netic stimulation. 

B. Chong et al.                                                                                                                                                                                                                                   



NeuroImage: Clinical 33 (2022) 102935

4

patients were MEP negative. An overlay of the lesion masks is provided 
in Fig. 1. 

The radial basis function kernel SVM correctly classified MEP status 
for 74 out of 91 patients, with a cross-validation accuracy of 81.3%. 
There were three final model solutions, all of which included UAsurf 
asymmetry in the supplementary motor tract and volume fraction 
asymmetry in the pre-supplementary motor tract as model features. 
Model 1 also included sensorimotor tract maximum cross-sectional 
lesion overlap. Model 2 included ventral premotor tract maximum 
cross-sectional overlap. Model 3 included mean diffusivity asymmetry in 
the posterior limbs of the internal capsule. Optimum hyperparameters 
were a kernel scaling factor of 10 and a soft margin parameter of 1000 
for all three model solutions. 

All three models had good AUC (Fig. 2) and sensitivity, moderate 
specificity and NPV, while PPV ranged from moderate to borderline 
moderate/good (Table 3). Model 3 had the highest AUC of 83.4%. Of the 
incorrect predictions, false positives were more common than false 
negatives (Table 4). Furthermore, eight of the false positives and three of 
the false negatives were consistent throughout all three models, indi
cating that the incorrect classifications were often for the same patients. 
When stratifying patients by time between TMS and MRI (0 – 3 days 
versus 4 – 9 days), Model 1 performed better for patients who had in
tervals of 0 – 3 days, while Model 3 performed better for patients with 
intervals of 4 – 9 days, and Model 2 performed similarly regardless of 
interval between TMS and MRI (Supplementary Table 3). Linear kernel 
SVM did not perform as well, achieving a maximum cross-validation 
accuracy of 79.1%. There were no obvious clinical differences be
tween the patients who were correctly or incorrectly classified for either 
model. 

4. Discussion 

This study investigated whether structural data obtained from T1- 
and diffusion-weighted MRI could be used to classify MEP status, a TMS 
measure of corticomotor function, in patients early after stroke. This is 
the first study to use machine learning to classify MEP status after stroke, 
and one of few studies that use multivariable MRI data for classification 
after stroke. To date, most studies that use MRI metrics for regression or 
classification problems do so using univariate approaches. 

While a previous study was unable to predict MEP status using in
dividual MRI metrics (Stinear et al., 2017a; Stinear et al., 2017b), the 
present study demonstrates that an SVM approach using multiple 
structural MRI metrics can accurately predict MEP status. This indicates 
that corticomotor structure and function are significantly interrelated, 
and that structure can predict function to an extent. The two structural 
metrics that featured in all final SVM models were supplementary motor 
tract UAsurf asymmetry and pre-supplementary motor tract volume 
fraction asymmetry. Additional features included either maximum 
cross-sectional lesion overlap in the sensorimotor (Model 1) or ventral 
premotor tracts (Model 2), or mean diffusivity asymmetry in the pos
terior limbs of the interior capsule (Model 3). 

Interestingly, maximum cross-sectional lesion overlap was included 
in the final feature combinations, while weighted lesion load was not. 

Both of these metrics measure the macrostructural overlap between the 
lesion and the tract of interest, with a key difference; maximum cross- 
sectional lesion overlap is dependent on the single axial slice with the 
greatest lesion overlap, while weighted lesion load reflects the overall 
extent of damage to the tract along its full length. Our results indicate 
that the maximum severity of cross-sectional tract damage may be more 
relevant than the overall extent of tract damage for corticomotor 

Fig. 1. Lesion map of all patients (flipped to left hemisphere) in standard T1 1 mm space.  

Fig. 2. Receiver operating characteristic curves for motor evoked potential 
classification. 

Table 3 
Performance measures for final SVM models.   

Accuracy Sens Spec PPV NPV AUC 

Model 1  81.3  89.4  72.7  77.8  86.5  82.8 
Model 2  81.3  85.1  77.3  80.0  82.9  81.8 
Model 3  81.3  87.2  75.0  78.8  84.6  83.4 

SVM – support vector machine; sens – sensitivity; spec – specificity; PPV – 
positive predictive value; NPV – negative predictive value; AUC – area under the 
receiver operating characteristic curve. Model 1 features: UAsurf asymmetry in 
the supplementary motor tract, volume fraction asymmetry in the pre- 
supplementary motor tract, and sensorimotor tract maximum cross-sectional 
overlap. Model 2 features: UAsurf asymmetry in the supplementary motor 
tract, volume fraction asymmetry in the pre-supplementary motor tract, and 
ventral premotor tract maximum cross-sectional overlap. Model 3 features: 
UAsurf asymmetry in the supplementary motor tract, volume fraction asymmetry 
in the pre-supplementary motor tract, and mean diffusivity asymmetry in the 
posterior limbs of the internal capsule. 
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functional integrity. This can be explained by the fact that a lesion across 
the width of a tract will affect a larger number of axons than a lesion of 
the same size along the length of the tract, due to the longitudinal 
arrangement of axons. 

Of the final model features derived from diffusion-weighted imaging, 
UAsurf and volume fraction are measures of diffusion tensor anisotropy, 
while mean diffusivity is a measure of the overall extent of diffusion. All 
three of these metrics are sensitive to white matter microstructure such 
as axonal membranes and myelin, a general feature of diffusion tensor 
metrics (Sen and Basser 2005, Schmierer et al. 2008). The strong pres
ence of these diffusion metrics in the final SVM models emphasises that 
the retention of corticomotor function after stroke is dependent on the 
preservation of white matter microstructural integrity. Age did not 
survive feature selection, which suggests that the MRI metrics important 
for determining corticomotor function are not dependent on age. 

The importance of the supplementary, pre-supplementary, and pre
motor tract structural integrity towards corticomotor function is an 
interesting finding, considering that MEPs have long been known to 
arise from the primary motor cortex (Hallett 2007). However, the results 
of the present study do not necessarily mean that MEPs arise from non- 
primary motor tracts, as there are structural overlaps between each of 
these tracts and the M1 tract, particularly at the level of and inferior to 
the internal capsule. The various tract combinations identified in this 
study may have produced a fuzzy delineation of the M1 tract that better 
accounted for inter-individual anatomical variability compared to a 
standalone M1 tract template. 

We note that the specific feature combinations identified in this 
study are not the key takeaway from this research, as future studies 
applying these methods to a new dataset may identify different combi
nations of tracts and metrics. Instead, the present study indicates that 
analysing the corticomotor pathway using a multivariable approach 
across multiple different tracts may be better than measuring an indi
vidual MRI biomarker from a single region of interest. The combination 
of both T1- and diffusion-based MRI metrics allows the SVM to account 
for both macro- and microstructural aspects of corticomotor pathway 
injury, which a univariate MRI biomarker analysis cannot. Furthermore, 
including measures across multiple different overlapping tracts may 
help to account for inter-individual anatomical variability and slight 
variations in tract fitting. 

The SVM could not correctly predict MEP status for 19% of patients. 
Prediction errors included both false positives and false negatives, 
indicating that some patients with relatively high corticomotor struc
tural integrity can be MEP negative, and some patients with relatively 
poor corticomotor structural integrity can be MEP positive, of which the 
former was more common. This finding indicates that there are aspects 
of corticomotor function that cannot be predicted by the MRI measures 
of corticomotor structure examined in this study. Other non-structural 
factors such as corticomotor excitability and tonic inhibition may also 
influence the function of structurally intact corticomotor tracts (Cirillo 
et al. 2020). 

A limitation of the present study is the time between TMS and MRI 

assessments, which varied between participants. On average, there was 
a 2-day gap between TMS and MRI assessments. In some patients, TMS 
preceded MRI by up to 9 days, while in others, MRI preceded TMS by up 
to 9 days. More closely spaced assessments could reduce the con
founding effect of time and improve prediction accuracies. However, 
while Model 3 performed better for patients with small time gaps (0 – 3 
days), Model 1 was more accurate for patients with larger gaps (4 – 9 
days), and Model 2 accuracy was unaffected by TMS-MRI time gap. 

Another limitation is that the SMATT template tracts were developed 
from scans in healthy young adults rather than people after stroke 
(Archer et al. 2018). Our dataset included MRI scans from stroke pa
tients with varied acquisition parameters, such as magnetic field 
strength, pulse timing, image resolution, and gradient directions. 
Importantly however, all the imaging metrics in this study are inde
pendent of image intensity and therefore robust against intensity vari
ations between different scanning acquisitions. The variety of 
acquisitions increases the generalisability of this work to a wider range 
of clinical settings where scanning protocols may differ. 

In conclusion, this study demonstrates that structural MRI metrics 
can be used in combination with SVM to accurately classify MEP status 
in stroke patients with moderate to severe upper limb weakness. Re
sidual corticomotor function after stroke appears to be dependent on 
both the extent of macrostructural cross-sectional tract damage and 
preservation of white matter microstructural integrity. Analysing the 
corticomotor pathway using a multivariable MRI approach in combi
nation with machine learning can provide more information than uni
variate biomarker analysis, as the former can account for different 
aspects of structural damage and inter-individual anatomical variability. 
The structural determinants of corticomotor function after stroke are 
still not fully understood and could see further investigation. Future 
research could also use multivariable MRI data in combination with 
machine learning techniques as an alternative to single biomarker 
analyses. 
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Table 4 
Cross-tabulation of predicted versus actual MEP status.   

Ground truth  
MEP+ MEP- 

Model 1 predictions   
MEP+ 42 12 
MEP- 5 32 
Model 2 predictions   
MEP+ 40 10 
MEP- 7 34 
Model 3 predictions   
MEP+ 41 11 
MEP- 6 33 

MEP – motor evoked potential. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.nicl.2021.102935. 

References 

Alexander, A.L., Hasan, K., Kindlmann, G., Parker, D.L., Tsuruda, J.S., 2000. A geometric 
analysis of diffusion tensor measurements of the human brain. Magn Reson Med. 44 
(2), 283–291. https://doi.org/10.1002/1522-2594(200008)44:2<283::aid- 
mrm16>3.0.co;2-v. 

Andersson, J.L., Skare, S., Ashburner, J., 2003. How to correct susceptibility distortions 
in spin-echo echo-planar images: application to diffusion tensor imaging. 
NeuroImage. 20 (2), 870–888. https://doi.org/10.1016/s1053-8119(03)00336-7. 

Andersson, J.L.R., Sotiropoulos, S.N., 2016. An integrated approach to correction for off- 
resonance effects and subject movement in diffusion MR imaging. NeuroImage. 125, 
1063–1078. https://doi.org/10.1016/j.neuroimage.2015.10.019. 

Archer, D.B., Vaillancourt, D.E., Coombes, S.A., 2018. A Template and Probabilistic Atlas 
of the Human Sensorimotor Tracts using Diffusion MRI. Cereb Cortex. 28 (5), 
1685–1699. https://doi.org/10.1093/cercor/bhx066. 

Armitage, P.A., Bastin, M.E., 2000. Selecting an appropriate anisotropy index for 
displaying diffusion tensor imaging data with improved contrast and sensitivity. 
Magn Reson Med. 44 (1), 117–121. https://doi.org/10.1002/1522-2594(200007) 
44:1<117::aid-mrm17>3.0.co;2-d. 

Batchelor, P.G., Moakher, M., Atkinson, D., Calamante, F., Connelly, A., 2005. A rigorous 
framework for diffusion tensor calculus. Magn Reson Med. 53 (1), 221–225. https:// 
doi.org/10.1002/mrm.20334. 

Bigourdan, A., Munsch, F., Coupe, P., Guttmann, C.R., Sagnier, S., Renou, P., 
Debruxelles, S., Poli, M., Dousset, V., Sibon, I., Tourdias, T., 2016. Early Fiber 
Number Ratio Is a Surrogate of Corticospinal Tract Integrity and Predicts Motor 
Recovery After Stroke. Stroke. 47 (4), 1053–1059. https://doi.org/10.1161/ 
strokeaha.115.011576. 

Boccuni, L., Meyer, S., D’Cruz, N., Kessner, S.S., Marinelli, L., Trompetto, C., Peeters, A., 
Van Pesch, V., Duprez, T., Sunaert, S., Feys, H., Thijs, V., Nieuwboer, A., 
Verheyden, G., 2019. Premotor dorsal white matter integrity for the prediction of 
upper limb motor impairment after stroke. Sci Rep. 9 (1), 19712. https://doi.org/ 
10.1038/s41598-019-56334-w. 

Buch, E.R., Rizk, S., Nicolo, P., Cohen, L.G., Schnider, A., Guggisberg, A.G., 2016. 
Predicting motor improvement after stroke with clinical assessment and diffusion 
tensor imaging. Neurol. 86 (20), 1924–1925. https://doi.org/10.1212/ 
wnl.0000000000002675. 

Buetefisch, C.M., Revill, K.P., Haut, M.W., Kowalski, G.M., Wischnewski, M., Pifer, M., 
Belagaje, S.R., Nahab, F., Cobia, D.J., Hu, X., Drake, D., Hobbs, G., 2018. Abnormally 
reduced primary motor cortex output is related to impaired hand function in chronic 
stroke. J Neurophysiol. 120 (4), 1680–1694. https://doi.org/10.1152/ 
jn.00715.2017. 

Byblow, W.D., Stinear, C.M., Barber, P.A., Petoe, M.A., Ackerley, S.J., 2015. Proportional 
recovery after stroke depends on corticomotor integrity. Ann Neurol. 78 (6), 
848–859. https://doi.org/10.1002/ana.24472. 

Cirillo, J., Mooney, R.A., Ackerley, S.J., Barber, P.A., Borges, V.M., Clarkson, A.N., 
Mangold, C., Ren, A., Smith, M.-C., Stinear, C.M., Byblow, W.D., 2020. 
Neurochemical balance and inhibition at the sub-acute stage after stroke. 
J Neurophysiol 123 (5), 1775–1790. https://doi.org/10.1152/jn.00561.2019. 

Conturo, T.E., McKinstry, R.C., Akbudak, E., Robinson, B.H., 1996. Encoding of 
anisotropic diffusion with tetrahedral gradients: a general mathematical diffusion 
formalism and experimental results. Magn Reson Med. 35 (3), 399–412. https://doi. 
org/10.1002/mrm.1910350319. 

Correia, M.M., Newcombe, V.F.J., Williams, G.B., 2011. Contrast-to-noise ratios for 
indices of anisotropy obtained from diffusion MRI: A study with standard clinical b- 
values at 3T. NeuroImage. 57 (3), 1103–1115. https://doi.org/10.1016/j. 
neuroimage.2011.03.004. 

Feng, W., Wang, J., Chhatbar, P.Y., Doughty, C., Landsittel, D., Lioutas, V.A., Kautz, S.A., 
Schlaug, G., 2015. Corticospinal tract lesion load: An imaging biomarker for stroke 
motor outcomes. Ann Neurol. 78 (6), 860–870. https://doi.org/10.1002/ana.24510. 

Gong, G., Zang, Y.-F., 2013. Local diffusion homogeneity (LDH): an inter-voxel diffusion 
MRI metric for assessing inter-subject white matter variability. PLoS One. 8 (6), 
e66366. https://doi.org/10.1371/journal.pone.0066366. 

Guggisberg, A.G., Nicolo, P., Cohen, L.G., Schnider, A., Buch, E.R., 2017. Longitudinal 
Structural and Functional Differences Between Proportional and Poor Motor 
Recovery After Stroke. Neurorehabil Neural Repair. 31 (12), 1029–1041. https:// 
doi.org/10.1177/1545968317740634. 

Habegger, S., Wiest, R., Weder, B.J., Mordasini, P., Gralla, J., Hani, L., Jung, S., 
Reyes, M., McKinley, R., 2018. Relating Acute Lesion Loads to Chronic Outcome in 
Ischemic Stroke-An Exploratory Comparison of Mismatch Patterns and Predictive 
Modeling. Front Neurol. 9, 737. https://doi.org/10.3389/fneur.2018.00737. 

Hallett, M., 2007. Transcranial magnetic stimulation: a primer. Neuron. 55 (2), 187–199. 
https://doi.org/10.1016/j.neuron.2007.06.026. 

Hendricks, H.T., Zwarts, M.J., Plat, E.F., van Limbeek, J., 2002. Systematic review for the 
early prediction of motor and functional outcome after stroke by using motor-evoked 
potentials. Arch Phys Med Rehabil. 83 (9), 1303–1308. https://doi.org/10.1053/ 
apmr.2002.34284. 

Jenkinson, M., Bannister, P., Brady, M., Smith, S., 2002. Improved optimization for the 
robust and accurate linear registration and motion correction of brain images. 
NeuroImage. 17 (2), 825–841. https://doi.org/10.1016/s1053-8119(02)91132-8. 

Kang, X., Herron, T.J., Woods, D.L., 2010. Validation of the anisotropy index ellipsoidal 
area ratio in diffusion tensor imaging. Magn Reson Imaging. 28 (4), 546–556. 
https://doi.org/10.1016/j.mri.2009.12.015. 

Kim, B., Winstein, C., 2017. Can Neurological Biomarkers of Brain Impairment Be Used 
to Predict Poststroke Motor Recovery? A Systematic Review. Neurorehabil Neural 
Repair. 31 (1), 3–24. https://doi.org/10.1177/1545968316662708. 

Kingsley, P.B., Monahan, W.G., 2005. Contrast-to-noise ratios of diffusion anisotropy 
indices. Magn Reson Med. 53 (4), 911–918. https://doi.org/10.1002/mrm.20433. 

Lee, J.D., Chang, T.C., Yang, S.T., Huang, C.H., Wu, C.Y., 2013. The potential predictors 
of motor performance outcomes after rehabilitation for patients with stroke. Applied 
Mechanics and Materials. 284–287, 1656–1660. https://doi.org/10.4028/www. 
scientific.net/AMM.284-287.1656. 

Nascimbeni, A., Gaffuri, A., Imazio, P., 2006. Motor evoked potentials: Prognostic value 
in motor recovery after stroke. Funct Neurol. 21 (4), 199–203. 

Pipe, J.G., Farthing, V.G., 2003. A correlative measure for processing multiangle 
diffusion-weighted images. Magn Reson Med. 49 (3), 536–542. https://doi.org/ 
10.1002/mrm.10399. 

Pizzi, A., Carrai, R., Falsini, C., Martini, M., Verdesca, S., Grippo, A., 2009. Prognostic 
value of motor evoked potentials in motor function recovery of upper limb after 
stroke. J Rehabil Med. 41 (8), 654–660. https://doi.org/10.2340/16501977-0389. 

Prabhakaran, S., Zarahn, E., Riley, C., Speizer, A., Chong, J.Y., Lazar, R.M., Marshall, R. 
S., Krakauer, J.W., 2008. Inter-individual variability in the capacity for motor 
recovery after ischemic stroke. Neurorehabil Neural Repair. 22 (1), 64–71. https:// 
doi.org/10.1177/1545968307305302. 

Puig, J., Blasco, G., Daunis, I.E.J., Thomalla, G., Castellanos, M., Figueras, J., Remollo, S., 
van Eendenburg, C., Sanchez-Gonzalez, J., Serena, J., Pedraza, S., 2013. Decreased 
corticospinal tract fractional anisotropy predicts long-term motor outcome after 
stroke. Stroke. 44 (7), 2016–2018. https://doi.org/10.1161/strokeaha.111.000382. 

Puig, J., Blasco, G., Schlaug, G., Stinear, C.M., Daunis, I.E.P., Biarnes, C., Figueras, J., 
Serena, J., Hernandez-Perez, M., Alberich-Bayarri, A., Castellanos, M., Liebeskind, D. 
S., Demchuk, A.M., Menon, B.K., Thomalla, G., Nael, K., Wintermark, M., 
Pedraza, S., 2017. Diffusion tensor imaging as a prognostic biomarker for motor 
recovery and rehabilitation after stroke. Neuroradiol. 59 (4), 343–351. https://doi. 
org/10.1007/s00234-017-1816-0. 

Puig, J., Pedraza, S., Blasco, G., Daunis, I.E.J., Prados, F., Remollo, S., Prats-Galino, A., 
Soria, G., Boada, I., Castellanos, M., Serena, J., 2011. Acute damage to the posterior 
limb of the internal capsule on diffusion tensor tractography as an early imaging 
predictor of motor outcome after stroke. Am J Neuroradiol. 32 (5), 857–863. https:// 
doi.org/10.3174/ajnr.A2400. 

Rehme, A.K., Volz, L.J., Feis, D.L., Eickhoff, S.B., Fink, G.R., Grefkes, C., 2015. Individual 
prediction of chronic motor outcome in the acute post-stroke stage: Behavioral 
parameters versus functional imaging. Hum Brain Mapp. 36 (11), 4553–4565. 
https://doi.org/10.1002/hbm.22936. 

Schmierer, K., Wheeler-Kingshott, C.A.M., Tozer, D.J., Boulby, P.A., Parkes, H.G., 
Yousry, T.A., Scaravilli, F., Barker, G.J., Tofts, P.S., Miller, D.H., 2008. Quantitative 
magnetic resonance of postmortem multiple sclerosis brain before and after fixation. 
Magn Reson Med. 59 (2), 268–277. https://doi.org/10.1002/mrm.21487. 

Sen, P.N., Basser, P.J., 2005. A model for diffusion in white matter in the brain. 
Biophysical journal. 89 (5), 2927–2938. https://doi.org/10.1529/ 
biophysj.105.063016. 

Smith, M.C., Ackerley, S.J., Monigatti, E.J., Scrivener, B.J., Stinear, C.M., 2020. 
Determining the Functional Status of the Corticospinal Tract Within One Week of 
Stroke. J Vis Exp. 156 https://doi.org/10.3791/60665. 

Stinear, C.M., Barber, P.A., Petoe, M., Anwar, S., Byblow, W.D., 2012. The PREP 
algorithm predicts potential for upper limb recovery after stroke. Brain. 135 (Pt 8), 
2527–2535. https://doi.org/10.1093/brain/aws146. 

Stinear, C.M., Byblow, W.D., Ackerley, S.J., Barber, P.A., Smith, M.C., 2017a. Predicting 
Recovery Potential for Individual Stroke Patients Increases Rehabilitation Efficiency. 
Stroke. 48 (4), 1011–1019. https://doi.org/10.1161/strokeaha.116.015790. 

Stinear, C.M., Byblow, W.D., Ackerley, S.J., Smith, M.-C., Borges, V.M., Barber, P.A., 
2017b. PREP2: A biomarker-based algorithm for predicting upper limb function after 
stroke. Ann Clin Transl Neurol. 4 (11), 811–820. https://doi.org/10.1002/acn3.488. 

Stinear, C.M., Petoe, M.A., Anwar, S., Barber, P.A., Byblow, W.D., 2014. Bilateral 
priming accelerates recovery of upper limb function after stroke: a randomized 
controlled trial. Stroke. 45 (1), 205–210. https://doi.org/10.1161/ 
strokeaha.113.003537. 

Stinear, C.M., Smith, M.C., Byblow, W.D., 2019. Prediction Tools for Stroke 
Rehabilitation. Stroke. 50 (11), 3314–3322. https://doi.org/10.1161/ 
strokeaha.119.025696. 

Turton, A., Wroe, S., Trepte, N., Fraser, C., Lemon, R.N., 1996. Contralateral and 
ipsilateral EMG responses to transcranial magnetic stimulation during recovery of 
arm and hand function after stroke. Electroencephalogr Clin Neurophysiol. 101 (4), 
316–328. https://doi.org/10.1016/0924-980X(96)95560-5. 

Ulug, A.M., van Zijl, P.C., 1999. Orientation-independent diffusion imaging without 
tensor diagonalization: anisotropy definitions based on physical attributes of the 
diffusion ellipsoid. J Magn Reson Imaging. 9 (6), 804–813. https://doi.org/10.1002/ 
(sici)1522-2586(199906)9:6<804::aid-jmri7>3.0.co;2-b. 

Woolrich, M.W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., 
Beckmann, C., Jenkinson, M., Smith, S.M., 2009. Bayesian analysis of neuroimaging 
data in FSL. NeuroImage. 45 (1 Suppl), S173–S186. https://doi.org/10.1016/j. 
neuroimage.2008.10.055. 

Xu, D., Cui, J., Bansal, R., Hao, X., Liu, J., Chen, W., Peterson, B.S., 2009. The ellipsoidal 
area ratio: an alternative anisotropy index for diffusion tensor imaging. Magn Reson 
Imaging. 27 (3), 311–323. https://doi.org/10.1016/j.mri.2008.07.018. 

B. Chong et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.nicl.2021.102935
https://doi.org/10.1016/j.nicl.2021.102935
https://doi.org/10.1002/1522-2594(200008)44:2<283::aid-mrm16>3.0.co;2-v
https://doi.org/10.1002/1522-2594(200008)44:2<283::aid-mrm16>3.0.co;2-v
https://doi.org/10.1016/s1053-8119(03)00336-7
https://doi.org/10.1016/j.neuroimage.2015.10.019
https://doi.org/10.1093/cercor/bhx066
https://doi.org/10.1002/1522-2594(200007)44:1<117::aid-mrm17>3.0.co;2-d
https://doi.org/10.1002/1522-2594(200007)44:1<117::aid-mrm17>3.0.co;2-d
https://doi.org/10.1002/mrm.20334
https://doi.org/10.1002/mrm.20334
https://doi.org/10.1161/strokeaha.115.011576
https://doi.org/10.1161/strokeaha.115.011576
https://doi.org/10.1038/s41598-019-56334-w
https://doi.org/10.1038/s41598-019-56334-w
https://doi.org/10.1212/wnl.0000000000002675
https://doi.org/10.1212/wnl.0000000000002675
https://doi.org/10.1152/jn.00715.2017
https://doi.org/10.1152/jn.00715.2017
https://doi.org/10.1002/ana.24472
https://doi.org/10.1152/jn.00561.2019
https://doi.org/10.1002/mrm.1910350319
https://doi.org/10.1002/mrm.1910350319
https://doi.org/10.1016/j.neuroimage.2011.03.004
https://doi.org/10.1016/j.neuroimage.2011.03.004
https://doi.org/10.1002/ana.24510
https://doi.org/10.1371/journal.pone.0066366
https://doi.org/10.1177/1545968317740634
https://doi.org/10.1177/1545968317740634
https://doi.org/10.3389/fneur.2018.00737
https://doi.org/10.1016/j.neuron.2007.06.026
https://doi.org/10.1053/apmr.2002.34284
https://doi.org/10.1053/apmr.2002.34284
https://doi.org/10.1016/s1053-8119(02)91132-8
https://doi.org/10.1016/j.mri.2009.12.015
https://doi.org/10.1177/1545968316662708
https://doi.org/10.1002/mrm.20433
https://doi.org/10.4028/www.scientific.net/AMM.284-287.1656
https://doi.org/10.4028/www.scientific.net/AMM.284-287.1656
http://refhub.elsevier.com/S2213-1582(21)00379-X/h0130
http://refhub.elsevier.com/S2213-1582(21)00379-X/h0130
https://doi.org/10.1002/mrm.10399
https://doi.org/10.1002/mrm.10399
https://doi.org/10.2340/16501977-0389
https://doi.org/10.1177/1545968307305302
https://doi.org/10.1177/1545968307305302
https://doi.org/10.1161/strokeaha.111.000382
https://doi.org/10.1007/s00234-017-1816-0
https://doi.org/10.1007/s00234-017-1816-0
https://doi.org/10.3174/ajnr.A2400
https://doi.org/10.3174/ajnr.A2400
https://doi.org/10.1002/hbm.22936
https://doi.org/10.1002/mrm.21487
https://doi.org/10.1529/biophysj.105.063016
https://doi.org/10.1529/biophysj.105.063016
https://doi.org/10.3791/60665
https://doi.org/10.1093/brain/aws146
https://doi.org/10.1161/strokeaha.116.015790
https://doi.org/10.1002/acn3.488
https://doi.org/10.1161/strokeaha.113.003537
https://doi.org/10.1161/strokeaha.113.003537
https://doi.org/10.1161/strokeaha.119.025696
https://doi.org/10.1161/strokeaha.119.025696
https://doi.org/10.1016/0924-980X(96)95560-5
https://doi.org/10.1002/(sici)1522-2586(199906)9:6<804::aid-jmri7>3.0.co;2-b
https://doi.org/10.1002/(sici)1522-2586(199906)9:6<804::aid-jmri7>3.0.co;2-b
https://doi.org/10.1016/j.neuroimage.2008.10.055
https://doi.org/10.1016/j.neuroimage.2008.10.055
https://doi.org/10.1016/j.mri.2008.07.018

	Investigating the structure-function relationship of the corticomotor system early after stroke using machine learning
	1 Introduction
	2 Methods
	2.1 Participants
	2.2 Transcranial magnetic stimulation
	2.3 Magnetic resonance imaging
	2.4 Support vector machine

	3 Results
	4 Discussion
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Acknowledgements
	Funding
	Appendix A Supplementary data
	References


