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Abstract

Introduction:Abnormal retinal changes are increasingly recognized as an early patho-

logical change inAlzheimer’s disease (AD). Althoughamyloid betaoligomers (Aβo) have
been shown to accumulate in the blood and retina of AD patients and animals, it is not

knownwhether the early Aβo deposition precedes their accumulation in brain.

Methods and results:Using nanobodies targeting Aβ1-40 andAβ1-42 oligomerswewere

able to detect Aβ oligomers in the retina and blood but not in the brain of 3-month-old

APP/PS1 mice. Furthermore, Aβ plaques were detected in the brain but not the retina
of 3-month-old APP/PS1mice.

Conclusion: These results suggest that retinal accumulation of Aβo originates from

peripheral blood and precedes cognitive decline and Aβo deposition in the brain. This

provides a very strong basis to develop and implement an “eye test” for early detection

of AD using nanobodies targeting retinal Aβ.
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1 INTRODUCTION

The importance of amyloid beta oligomer (Aβo) detection has gained

momentum and experimental studies using humanAlzheimer’s disease

(AD) samples have shown that this form can be detected as much as

twodecadesbefore clinical onset ofAD.1–4 Aβocanpotentially become

a strong biomarker for early AD detection and could provide accurate

biochemical information about various preclinical stages of AD. Sev-

eral investigators have shown experimentally that blood-borne Aβo is

a viable biomarker for human AD. A study by Nakamura et al.5 has
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identified high-performance plasma Aβ biomarkers using a combina-

tion of immunoprecipitation and mass spectrometry and suggested

that plasma Aβ ratio can predict brain Aβ burden. Plasma Aβ precursor
protein (APP)669–711/Aβ1–42 and Aβ1–40/Aβ1–42 were correlated with

brain Aβ levels determined by Aβ positron emission tomography (PET)

imaging.

Ocular disturbances are an early complaint in AD patients6–8 with

reported changes in color vision, contrast sensitivity, visual memory

and perception,9–11 nerve damage, and loss of nerve fibers.12 Gan-

glion cell loss13 and thinning of the retinal nerve fiber layer (RNFL)14,15
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have also been reported. A recent study by Coppola et al.16 reported

that RNFL thinning was associated with neurodegenerative progres-

sions in mild cognitive impaired (MCI) and AD patients compared to

cognitively healthy individuals. Similar color vision and contrast sen-

sitivity deficits were shown in a murine model of AD. In addition

to neuronal changes in the retina, alteration of retinal blood flow

and morphology has also been noted.17 Importantly, Aβ deposits in

the retina of AD patients were identified by histology18 and in vivo

imaging of MCI and AD patients.19 Subsequent studies have corrobo-

rated these findings and showed accumulation of Aβ and hyperphos-

phorylated tau (p-tau) in the retina of AD patients20–22 and animal

models.23

Nanobodies are camelid-derived antibody fragments with unique

biological features, including lack of light chains, smaller size (more

diffusible in tissues), hydrophilic (soluble in aqueous solution), highly

stable, and more resistant against chemical denaturation.24 Previous

studies reported that nanobodies targeting Aβ and neurofibrillary tan-
gles inmice brain parenchyma are able to cross the blood-brain barrier

(BBB).25 Another study demonstrated that nanobodies specific for Aβ
oligomers prevent neurotoxicity and fibril formation.26 Moreover, Van-

desquille et al. showed that nanobodies were able to detect cerebral

Aβ plaque deposits via magnetic resonance imaging (MRI) after intra-

venous injection.27

In the current study, we used nanobody anti-Aβ1-40 (PrioAD12)

and anti-Aβ1-42 (PrioAD13) oligomer antibodies28 to measure the lev-

els of Aβo in the brain and retina of the APP/PS1 mice25 at 3 to

4 months of age with immunohistochemistry (IHC), before behav-

ioral changes and appearance of cognitive deficits. We showed that

retinal Aβ1-40 and Aβ1-42 oligomer levels were significantly higher in

APP/PS1 mice compared to age-matched WT controls. Furthermore,

immunofluorescence (FL) analysis confirmed our IHC results and sur-

prisingly resulted in the detection of large amounts of Aβo in the 18-

month-old APP/PS1 age group. We also confirmed the localization of

both Aβ1-40 and Aβ1-42 oligomers to neuronal late-endosomal com-

partments in the retina and brain29 that was associated with acti-

vated astrocytes andmicroglia in APP/PS1mice. Of importance, Aβ1-40
and Aβ1-42 levels in whole blood quantified by western blotting with

the nanobodies were elevated in 3- and 18-month-old APP/PS1 mice

compared to wild-type (WT) controls. The observation that Aβo was

detectable in the retina and blood but not in the brain of young

APP/PS1 mice suggests that deposition of retinal Aβo might origi-

nate from the blood. Taken together, our results provide an important

milestone in achieving an “eye” and/or blood-based screening test for

AD.

2 METHODS

2.1 Animals and ethics statement

All procedures followed the requirements of the National Health and

Medical Research Council of Australia statement for the use of ani-

mals in research andwere approved by theWestern SydneyUniversity

RESEARCH INCONTEXT

1. Systematic review: Although several experimental stud-

ies have demonstrated the presence of blood-borne

amyloid beta oligomers (Aβo) decades before clini-

cal Alzheimer’s disease (AD) and neuropathology have

ensued, few studies have focused on the early detection

of Aβ oligomers in the retina and other eye structures.

2. Interpretation: The results of this study involving the

double-transgenic APP/PS1 AD mouse model showed

that Aβo could be detected simultaneously in blood and

retina before its deposition in the brain and appearance

of cognitive decline.

3. Future directions: Future research in this field should aim

to establish a routine clinical optical retinal and/or blood-

based test for the detection of human AD before cogni-

tive decline and neuropathology have ensued. The ability

to detect AD before clinical disease will potentially facili-

tate implementation of effective therapies.

Animal Ethics Committee (ACEC # A12905). Mice were housed with

free access to water and standard rodent chow (Gordon’s Specialty

Stock Feeds). APP/PS1 mice have the APP Swedish mutation K595N

andM596L30 and PSEN1with L166Pmutation controlled by the Thy1

promoter (ww.alzforum.org). Cognitive impairment is usually observed

after 7 months.31,32 The APP/PS1 mouse model has high brain levels

of Aβ1-42 over Aβ1-40, which increases with age.33,34 Age-matchedWT

littermates were used as a control.

2.2 Immunohistochemistry

APP/PS1 mice (n = 28) and WT littermates (n = 20) were first eutha-

nized (Advanced Anesthesia Specialists, DarvallVet) before perfusion

with saline followed with 10% neutral buffered formalin. Formalin

fixed paraffin embedded blocks (FFPE) were prepared using 10%

neutral buffered formalin as a fixative followed by graded ethanol

and xylene. 6μm thick brain and eye tissue sections were cut using a

microtome (Thermo Fisher Scientific). Sections were then deparaf-

finized with xylene and rehydrated through graded alcohols and finally

washedwith deionized water.

Sections were pretreated using the 2100 antigen retriever (Aptum

Biologics Ltd) to expose the target epitopes. Sections were then

treated with 90% formic acid for 5 minutes at room temperature

followed by cell membrane permeabilization, which was achieved

by using 1% triton X for 1 minute prior to addition of 0.3% H2O2

for 15 minutes to inactivate endogenous peroxidases. Sections were

then blocked with Protein Block Serum-Free (Agilent) for 15 minutes.

Sections were then stained for 1 hour with the following primary

antibodies in phosphate-buffered saline (PBS): anti-Aβ1-40 (PrioAD12),
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anti-Aβ1-42 (PrioAD13) antibodies (1:500),28 ormouse anti-Aβ purified
4G8 antibody (1:500; BioLegend). After washing with PBS, sections

were incubated for 1 hour at room temperature with secondary

antibodies in PBS:horseradish peroxidase (HRP)-conjugated anti-

llama immunoglobulin G (IgG; Bethyl Laboratories) or anti-mouse

IgG (Sigma-Aldrich). Sections were then washed in PBS (x3) before

addition of DAB substrate chromogen system and incubated for 5 to

10 minutes. Slides were then counterstained with hematoxylin for 1

minutes. The Olympus VS 120 Slide Scanner was used to visualize

images and the Olympus OlyVIA and Olympus cellSens imaging

software were used for analysis.

2.3 Immunofluorescence co-localization studies

Double immuno-labeling was achieved by two different fluores-

cent labels, each having a separate emission wavelength. Sections

were incubated overnight with anti-Aβ1-40 (PrioAD12), anti-Aβ1-42
(PrioAD13) or 4G8 antibody at 4◦C. Sections were also incubated

with camelid antibodies and mouse anti-lysosomal-associated mem-

brane protein 2 (LAMP2, Stressgen Bioreagents Corp) antibody

to assess whether Aβo localizes to lysosomes/late endosomes.

Sections derived from the 3- to 4-month-old group were incu-

bated with camelid antibodies and GFAP or Iba1 (Thermo Fisher

Scientific). Finally, sections were incubated with camelid-derived

antibodies and anti-NeuN mAb, clone A60 (MilliporeSigma) to con-

firm the intra-neuronal localization of the Aβos. All the sections

were incubated overnight at 4◦C. After washing with PBS, sec-

tions were then incubated with goat anti-llama IgG conjugated

to fluorescein isothiocyanate (FITC; Bethyl Laboratories, Inc) and

donkey-anti-mouse IgG conjugated to Texas Red (Sigma-Aldrich)

for 2 hours at 4◦C. Sections were then mounted using fluorescence

mounting media (Agilent) then visualized using an Olympus VS 120

slide scanner with a standard FITC/Texas Red double band-pass

filter set.

2.4 Image quantification

For the quantification of the age-dependent accumulation of Aβ plaque
(Aβp) and Aβo, we used three sections derived from the 3- to 4-month-

oldAPP/PS1 (n=8) andWT (n=8)mice aswell as the17- to18-month-

old APP/PS1 (n=8) andWT (n=8)mice. Three different hippocampus,

cerebral cortex, and retinal sections were analyzed. Immunohisto-

chemical signal intensitywasvisualizedby capturingbright field images

using the Olympus VS 120 slide scanner. Images were analyzed using

OlyVIA software.35,36 Age-dependent accumulation of Aβp and Aβo
in APP/PS1 mice was quantified using cellSens image processing soft-

ware. The mean intensity of particles was calculated in several brain

and retinal regions from each age group and the result was presented

as percentage intensity and expressed asmean± standard error of the

mean.

2.5 Immunoprecipitation and western blot
analysis of Aβo in whole blood

To measure blood levels of Aβo in APP/PS1 mice, we performed

immunoprecipitation to enrich/isolate Aβ from 3 to 4- and 17 to

18-month-old mice as described.37 Samples were loaded on pre-

cast gels (Bio-Rad) and electrophoresed and 1 μg/mL of nanobody

Aβ1-40 (PrioAD12), Aβ1-42 (PrioAD13) anti-oligomer antibodies28 or

A11 rabbit-anti-Aβo antibody (MilliporeSigma) was added followed by

anti-llama (Bethyl Laboratories) or anti-rabbit IgG (Sigma-Aldrich)HRP

conjugated antibody. The resulting digital images were analyzed with

ImageJ processing program for the densitometry analysis and values

between the transgenic APP/PS1 andWT controls were compared.

2.6 Statistical analyses

Statistical analyses were performed using SAS Enterprise Guide ver-

sion 8.2. A natural logarithm transformation was applied to the mea-

surements. Shapiro-Wilk test was used to determine normality. Group

differences were analyzed by Wilcoxon-Mann-Whitney test due to

non-normality. The blood-borne Aβo performance at 3 to 4 months

when predicting Aβp at 17 to 18 months in both brain and eye was not

performed because these data were not measured on the same animal

over time. There were 36 comparisons overall so a Bonferroni correc-

tion of 0.05/36 = 0.0014 was applied, meaning P-values less than this

were considered statistically significant.

3 RESULTS

3.1 Immunodetection of Aβ plaques and
oligomers in the brain and retina of APP/PS1 mice
using single-domain antibodies

In this study, we wanted to test the hypothesis that retinal Aβo accu-

mulation precedes neurobehavioral deficits but also predates brain

deposition of both Aβo and Aβp in young APP/PS1 mice using single-

domain camelid-derived anti-Aβo antibody fragments and the 4G8

anti-Aβp antibody (Table 1 andFigures 1–4).Of note, the single-domain

antibody fragments, called PrioAD12 and PrioAD13, were previously

shown to bind to Aβ1-40 and Aβ1-42, respectively.28 Here, we showed

widespread intra-neuronal Aβ1-40 and Aβ1-42 oligomers in the retinal

inner nuclear layer (INL), outer nuclear layer (ONL), and ganglion cell

layer (GCL) of the 3-month-old APP/PS1 mice (Figure 1C & F); in con-

trast, no Aβo depositions were seen in the brains at the same age (Fig-

ure 1A, B, D, E), indicating that retinal Aβo accumulation precedes

its appearance in the brain. Furthermore, no 4G8-specific Aβp was

found in the brain and retina of the 3-month-old APP/PS1 mice (Fig-

ure 1G, H, I). Interestingly, both Aβ1-40 and Aβ1-42 were detected at 8

months of age in the cerebral cortex andhippocampusofAPP/PS1mice
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TABLE 1 Age-dependent accumulation of Aβ oligomers and plaques in the blood, retina and brain of APP/PS1mice

Age groups (months) PRIOAD12 (Aβ1-40) or PRIOAD13 (Aβ1-42) 4G8 (Aβ plaques)

Blood Retinal layers Brain Retinal layers Brain

Cerebral cortex Hippocampus Cerebral cortex Hippocampus

3–4 (n= 16) Present Present Absent Absent Absent Absent Absent

8–11 (n= 16) Nd* Present Present Present Present Present Present

17–18 (n= 16) Present Absent Absent Absent Present Present Present

Abbreviations: Aβ, amyloid beta; Nd, Not determined.

F IGURE 1 Immunohistochemical staining of amyloid beta (Aβ) in the brain and retina of 3-month-old APP/PS1mice. Immunohistochemical
staining with anti-Aβ1-40 and anti-Aβ1-42 oligomer nanobodies and 4G8 anti-Aβ plaque antibody of 3-month-old APP/PS1mice.
Immunohistochemical staining with anti-Aβ1-40 (PrioAD12) and anti-Aβ1-42 (PrioAD13) nanobodies of a 3-month-old APP/PS1mice did not
demonstrate Aβ1-40 depositions in the (A) cerebral cortex and (B) hippocampus as well as Aβ1-42 depositions in the (D) cerebral cortex and (E)
hippocampus. Aβ1-40 and Aβ1-42 depositions were observed in the (C, F) ganglion cell layer (GCL), inner nuclear layer (INL), and outer nuclear layer
(ONL) of the retina. The photomicrographwas derived from peripheral region of the retina—away from the optic disc. Immunohistochemical
staining with 4G8 antibody of 3-month-old APP/PS1mice did not display characteristic extracellular Aβ plaques in the (G) hippocampus, (H)
cerebral cortex, and (I) retina. Representative of all affectedmice in this age group

(Figure 2A, B, D, E) as well as in the retina similar to 3-month-old

APP/PS1 mice (Figure 2C, F). 4G8-specific Aβp was also observed in

the cerebral cortex, hippocampus, and INL of the retina at 8 months

(Figure 2G, H, I). Both Aβo and Aβp were detectable in the cere-

bral cortex, hippocampus, and retinal layers of 11-month-old APP/PS1

mice (Figure 3A-I). Finally, no Aβo were detected in 18-month-old

APP/PS1mice (Figure 4A, B, C, D, E, F), whereas extensive, widespread,

and conspicuous Aβp was observed in the cerebral cortex, hippocam-

pus (Figure 4 G, H), and retinal INL (Figure 4 I). No Aβo or Aβp
deposits were seen in age-matched WT littermates (data not shown).

Overall our data confirm that Aβo deposits first appear in the retina

months before they are detectable in the brain and support the
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F IGURE 2 Immunohistochemical staining of amyloid beta (Aβ) in the brain and retina of 8-month-old APP/PS1mice. Immunohistochemical
staining with anti-Aβ1-40 and anti-Aβ1-42 oligomer nanobodies and 4G8 anti-Aβ plaque antibody of 8-month-old APP/PS1mice.
Immunohistochemical staining with anti-Aβ1-40 (PrioAD12) and anti-Aβ1-42 (PrioAD13) nanobodies of 8-month-old APP/PS1mice showed
presence of Aβ1-40 depositions in the (A) cerebral cortex and (B) hippocampus as well as Aβ1-42 depositions in the (D) cerebral cortex and (E)
hippocampus. Aβ1-40 and Aβ1-42 depositions were observed in the (C, F) ganglion cell layer (GCL), inner nuclear layer (INL), and outer nuclear layer
(ONL) of the retina. The photomicrographwas derived from peripheral region of the retina—away from the optic disc. Immunohistochemical
staining with 4G8 antibody of 8-month-old APP/PS1mice displayed extensive extracellular Aβ plaque staining in the (G) hippocampus, (H) cerebral
cortex, and (I) retina. Representative of all affectedmice in this age group

proposition that the retinal oligomers probably originate from the

blood.38 These results also validate our previous findings that showed

Aβp burden increased over the course of the disease in both brain and
retina, whereas Aβo levels appeared to decrease in an age-dependent

manner.39

3.2 Quantitative analysis of Aβ plaques and
oligomers in the brain, retina, and whole blood of
APP/PS1 mice using single-domain antibodies

Age-dependent retinal and brain accumulation of Aβp and Aβo in the

3- to 4-month-old APP/PS1 mice (n = 8) and WT littermates (n = 8)

was quantified and compared to Aβp and Aβo levels in the 17- to 18-

month-old APP/PS1 mice (n = 8) and WT littermates (n = 8; Tables 2

and3; Figure5). Threedifferent areasof retina, hippocampus, andcere-

bral cortex of each section (32 x 3 sections) were analyzed. Figure 5

shows the normalized intensity of retinal and brain Aβ as measured

by the cellSens image processing software and the values for Aβ1-40

(PRIOAD12antibody), Aβ1-42 (PRIOAD13antibody), and total Aβ (4G8
antibody).We found that the normalized intensity of retinal Aβ1-40 and
Aβ1-42 oligomers were significantly higher in 3- to 4-month-old com-

pared to the 17- to 18-month-old APP/PS1 mice (P = .0002; Tables 2

and 3), whereas normalized intensity of brain Aβp was significantly

higher in the retina and brain of 17- to 18-month-old compared to the

3- to 4-month-old APP/PS1mice (P= .0002; Tables 2 and 3; Figure 5).

Several studies have demonstrated the presence of Aβo in plasma

of patients with MCI and AD;5,40,41 plasma levels may also predict the

brain Aβ burden. In this study, we hypothesized that Aβo accumula-

tion in blood might also precede retinal accumulation or at least occur

simultaneously with retinal accumulation. Here, we used fresh whole

blood in blood lysis buffer to enrich Aβo. Initially and after lysingwhole
blood derived fromAPP/PS1mice, anti-oligomer-A11-coated immuno-

magnetic microbeads were used to isolate Aβ from APP/PS1 mice and

WT littermates (APP/PS1, n= 16, andWT, n= 16). After western blot-

ting, anti-Aβ1-40 (PrioAD12) or anti-Aβ1-42 (PrioAD13) oligomer single-

domain antibodies were used to immunodetect Aβo isoforms in 3- and

18-month-old APP/PS1 andWTmice. Anti-Aβ1-40 PrioAD12 displayed
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F IGURE 3 Immunohistochemical staining of amyloid beta (Aβ) in the brain and retina of 11-month-old APP/PS1mice. Immunohistochemical
staining with anti-Aβ1-40 and anti-Aβ1-42 oligomer nanobodies and 4G8 anti-Aβ plaque antibody of 11-month-old APP/PS1mice.
Immunohistochemical staining with anti-Aβ1-40 (PrioAD12) and anti-Aβ1-42 (PrioAD13) nanobodies of 11-month-old APP/PS1mice showed
presence of Aβ1-40 oligomer depositions in the (A) cerebral cortex and (B) hippocampus as well as Aβ1-42 oligomer depositions in the (D) cerebral
cortex and (E) hippocampus. Aβ1-40 and Aβ1-42 depositions were observed in the (C, F) ganglion cell layer (GCL), inner nuclear layer (INL), and outer
nuclear layer (ONL) of the retina. The photomicrographwas derived from peripheral region of the retina—away from the optic disc.
Immunohistochemical staining with 4G8 antibody of 11-month-old APP/PS1mice displayed extensive extracellular Aβ plaque staining in the
(G) hippocampus, (H) cerebral cortex, and (I) retina. Representative of all affectedmice in this age group

a two-band pattern ranging between10 and15 kDa in the 3-month-old

APP/PS1 mice, whereas only one band at 10 to 15 kDa was seen in the

18-month-old APP/PS1 age group (Figure S1A, B in supporting infor-

mation). In contrast, anti-Aβ1-42 PrioAD13 showed only one band at 10
to 15 KDa in both the 3- and 18-month-old APP/PS1 age groups (Fig-

ure S1A, B). Furthermore, we also used A11 rabbit anti-Aβo antibody

to immuno-compare Aβ1-40 and Aβ1-42 levels detected with PrioAD12
and PrioAD13. In both age groups A11 displayed a different band pat-

tern compared to the single-domain antibodies and rangedbetween70

and 80 kDa (Figure S1A, B).We then performed densitometric analysis

of scanned western blot membranes.42 Table 2 shows the normalized

intensity of whole-blood Aβ as measured by ImageJ software and the

values for Aβ1-40 (PRIOAD12 antibody) and Aβ1-42 (PRIOAD13 anti-

body). Levels of both Aβ1–40 and Aβ1–42 oligomers were not signifi-

cantly higher compared to theWT levels in the 3-month age group (P=

.0286) when a Bonferroni correction was applied. However, when the

statistical analysis was performed using paired t-tests (P-values below

.05 were deemed significant in this case) to compare levels of both

Aβ1–40 and Aβ1–42 oligomers in APP/PS1 versusWT, these were signif-

icant (P < .05; Figure 6). Levels of Aβ1-40 increased significantly from 3

to 18 months while Aβ1-42 decreased by at least three-fold in the 18-

month-old APP/PS1 mice (Figure 6). These results also highlight the

high binding affinity of the camelid-derived single domain antibodies

for detection of Aβ1-40 and Aβ1-42 oligomers in whole blood.

3.3 Co-localization of Aβ oligomers and plaques
in the retina and brain of APP/PS1 mice

TodeterminewhetherAβ1-40 orAβ1-42 oligomers co-localizedwithAβp
in different anatomical regions and structures of the retina and brain,

we co-stained brain and retinal sections with 4G8 antibody with either

anti-Aβ1-40 (PrioAD12) or anti-Aβ1-42 (PrioAD13) oligomer single-

domain antibodies (Figure 7). We did not observe any co-localization

in the brain and retina of the 3-month-old APP/PS1mice (Figure 7A-F)

but confirmed the presence of Aβ1-40 or Aβ1-42 oligomer in the reti-

nal layers (Figure 7C, F). However, both retinal Aβp and Aβ1-40 or

Aβp and Aβ1-42 were shown to co-localize in the GCL, IPL, and INL of
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F IGURE 4 Immunohistochemical staining of amyloid beta (Aβ) in the brain and retina of 18-month-old APP/PS1mice. Immunohistochemical
staining with anti-Aβ1-40 and anti-Aβ1-42 oligomer nanobodies and 4G8 anti-Aβ plaque antibody of 18-month-old APP/PS1mice.
Immunohistochemical staining with anti-Aβ1-40 (PrioAD12) and anti-Aβ1-42 (PrioAD13) nanobodies of 18-month-old APP/PS1mice did not show
presence of Aβ1-40 depositions in the (A) cerebral cortex and (B) hippocampus as well as Aβ1-42 in the (D) cerebral cortex and (E) hippocampus.
Aβ1-40 and Aβ1-42 depositions were not observed (C, F) in the ganglion cell layer (GCL), inner nuclear layer (INL), and outer nuclear layer (ONL) of
the retina. The photomicrographwas derived from peripheral region of the retina—away from the optic disc. Immunohistochemical staining with
4G8 antibody of 18-month-old APP/PS1mice displayed extensive extracellular Aβ plaque staining in the (G) hippocampus and (H) cerebral cortex
and (I) plaques were observed in the retina (white arrows). Representative of all affectedmice in this age group

the 8-month-old APP/PS1 age group (Figure 7I, L). Furthermore, co-

accumulation of Aβp and Aβ1-40 or Aβp and Aβ1-42 was also seen in

the cerebral cortex and hippocampus (Figure 7G, H, J, K), noticeably

higher levels of Aβo in this age group compared to plaques. Aβp in

11-month-old APP/PS1mice wasmarkedly increased while Aβ1-40 and
Aβ1-42 oligomers decreased in the brain (Figure 7M, N, P, Q). High lev-

els of Aβ1-40 andAβ1-42 oligomerswere consistently found in the retina

(Figure 7O, R). Finally, 18-month-old APP/PS1 mice showed that both

Aβ1-40 and Aβ1-42 co-localized with Aβp in the cerebral cortex and hip-
pocampus and in the retinal GCL, INL, and ONL (Figure 7S-X). Surpris-

ingly, high levels of Aβ1-40 and Aβ1-42 oligomers were observed in the

retina and brain of 18-month-old APP/PS1mice (Figure 7S-X), perhaps

confirming the hypothesis that plaques act as a reservoir for the toxic

Aβo.43 WTage-matched littermates did not showany co-localizationof

Aβpwith Aβ1-40 or Aβ1-42 (data not shown).

4 DISCUSSION

Behavioral assessment of theAPP/PS1ADmousemodel demonstrated

that memory decline and cognitive deficits start after 7 months of

age.32 Althoughour studydidnot includebehavioral assessments,mice

appeared healthy until 10months of age. Of importance, we show that

increased Aβo in blood and retinal accumulation of Aβo was observed
at 3 months in APP/PS1 mice in the absence of Aβp accumulation

in the retina and before appearance of both Aβo and Aβp in brain.

The accumulation of blood and retinal Aβo occur at a very early age,

likely months before the expected memory and cognitive deficits in

APP/PS1 mice. These data indicate that these assemblies are likely to

be responsible for the toxic effects associated with AD,44,45 can be

detected before AD onset,46 and might originate from the blood.38

Several diagnostic strategies have been developed for early AD detec-

tion, including systems for the detection of Aβo in plasma40 and in

the cerebrospinal fluid (CSF).47 The experimental value of detecting

blood-borne Aβ biomarkers has gained considerable momentum;48,49

however, a decade of research efforts in this area has not yet led to

a clinical diagnostic due to the complexity and lack of reproducibil-

ity of these approaches.50 Nonetheless, pursuing a blood-detection

approach might have great diagnostic value.51 A recent study combin-

ing immunoprecipitation and mass spectrometry led to the identifica-

tion of high-performance blood-borne Aβs derived from human MCI

and AD.5 Similarly, using our unique camelid single-domain anti-Aβ1-40
or anti-Aβ1-42 oligomer antibody, we were able to detect both Aβ1-40
and Aβ1-42 oligomer in whole blood derived from 3- to 18-month-old
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TABLE 3 Age-dependent retinal and brain accumulation of Aβp
and Aβo in the 3- to 4-month-old APP/PS1mice were quantified and
compared to Aβp and Aβo levels in the 17- to 18-month-old APP/PS1
mice. Bonferroni correction of 0.05/36= 0.0014was applied, meaning
P-values less than this value were considered statistically significant

Antibody Group Log N Age (month) Difference

z P

PRIOAD12 APP/PS1 EYE 8 3–4 vs. 17–18 –3.3106 .0002

PRIOAD13 EYE –3.3106

4G8 EYE 3.5336

4G8 BRAIN 3.5366

Abbreviations: Aβ, amyloid beta; Aβo, amyloid beta oligomers; Aβp, amyloid

beta plaques.

F IGURE 5 Age-dependent accumulation of amyloid beta (Aβ)
oligomers and Aβ plaques. Quantification of the age dependent
accumulation of cerebral and retinal Aβ oligomers and Aβ plaques with
nanobodies: Immunodetection and quantification of retinal and
cerebral Aβ1-40 and Aβ1-42 with PrioAD12 and PrioAD13 nanobodies
in the cerebral cortex and hippocampus and retina of 3- to
4-month-old (n= 8) and 17- to 18-month-old (n= 8) APP/PS1mice
using cellSens software image analysis after immunohistochemical
staining. Total Aβ plaque burden (Aβp) was quantified in the cerebral
cortex and hippocampus and retina of 3- to 4-month-old (n= 8) and
17- to 18-month-old (n= 8) APP/PS1mice.Wilcoxon-Mann-Whitney
test was performed and normalized intensity of both Aβ1-40 and Aβ1-42
oligomers were significantly higher in the retina of 3- to 4-month-old
compared to the 17- to 18-month-old age group APP/PS1mice (P=
.0002) whereas Aβp loadwas significantly higher in brain and retina of
the 17- to 18-month-old age group compared to the 3- to 4-month-old
age group (P= .0002). Error bars represent interquartile range

APP/PS1 mice via immunoprecipitation followed by western blotting.

Aβ1-40 and Aβ1-42 oligomer levels were significantly higher compared

to WT mice in the 3-month-old age group, while their levels were ele-

vated for Aβ1-40 oligomers and reduced for Aβ1-42 oligomers in the

18-month-old age group compared to the 3-month-old age group. The

F IGURE 6 Quantification of amyloid beta (Aβ) oligomers in blood.
Quantification of the age-dependent accumulation of blood-borne Aβ
oligomers with nanobodies. Immunodetection and quantification of
blood-borne Aβ1-40 and Aβ1-42 with PrioAD12 and PrioAD13
nanobodies in whole blood of 3- to 4-month-old (n= 8) and 17- to
18-month-old (n= 8) APP/PS1mice using ImageJ software analysis
after western blotting. The normalized intensity was calculated in
three independent experiments for each age group and the final result
was presented asmedian intensity. Paired t-tests were performed and
P-values below .05were considered significant. Levels of both Aβ1–40
and Aβ1–42 oligomers were significantly higher in the 3- to 4-month
age group. Aβ1-40 oligomer level increased significantly from 3 to 4 to
17 to 18months whereas Aβ1-42 oligomer level decreased by at least
three-fold in the 17- to 18-month-old APP/PS1mice. Error bars
represent interquartile range

reduction of Aβ1-42 in the older age groupmirrors the biological behav-

ior of this assembly inhumanAD inwhichplasmaAβ1-42 or totalAβ1-42/
Aβ1-40 ratio is used as a strong predictor of amyloid-PET status.51,52

Although the levels of blood-borne Aβ levels were significantly higher
in APP/PS1 compared to the levels in the WT littermates, the west-

ern blot technique has its limitations and might generally lead to false

positives.53

We have previously shown a strong inverse correlation between

retinal Aβo and brain Aβp deposition.39 This previous study provided

the rationale for assessing and comparing age-dependent accumula-

tion of Aβo in the retina, whole blood, and brain. In this current study,

the 3- to 4-month-old APP/PS1 age group displayed extensive accumu-

lation of Aβo deposits in the ONL, INL, and GCL of the retina, whereas

the brain remained free of Aβo deposition. In addition, Aβ plaqueswere
completely absent in both brain and retina in this age group. Retinal

Aβo deposition was lower with age, and was no longer detected in the
17- to18-month-old age groupusing IHC. In contrast, cerebral Aβowas
first detected at 8 months of age in our APP/PS1 mice and remained

unchanged in 11-month-old mice, but was undetectable in 18-month-

old APP/PS1 mice. Consistent with our previous study,39 retinal Aβp
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F IGURE 7 Co-localization of amyloid beta (Aβ) oligomers and plaques. Immunofluorescence co-localization of cerebral and retinal Aβ
oligomers and Aβ plaques in different APP/PS1 age groups. Cerebral and retinal co-staining with anti-Aβ1-40 (PrioAD12) and anti-Aβ1-42
(PrioAD13) nanobodies (GREEN) and 4G8 antibody (RED) of 3- (A-F), 8- (G-L), 11- (M-R), and 18-month-old (S-X) APP/PS1mice. No distinctive
oligomers co-localized with plaques in the brain cortical region (A, D) and in the hippocampus (B, E). Large number of oligomers found in the (C, F)
retinal ganglion cell layer (GCL), inner nuclear layer (INL), and outer nuclear layer (ONL) but no co-localization observed in the 3-month-old mice
(white arrows). Then Aβ1-40 (G, H) and Aβ1-42 (J, K) oligomers co-localized with plaques in the brain cortical region and hippocampus, respectively,
and in the retinal GCL and INL (I, L) of the 8-month-old mice (white arrows), respectively.With age progression, Aβ1-40 (M, N) and Aβ1-42 (P, Q)
oligomers co-localized with plaques in the brain cortical region and hippocampus, respectively, and in the retinal INL (O, R) of the 11-month-old
mice (white arrows). Finally, in 18-month-old APP/PS1mice, Aβ oligomers co-localized with plaques in the brain cortical region (S, V) and in the
hippocampus (T,W) and also in the retinal GCL, INL, andONL (U, X) of the 18-month-old mice, respectively (white arrows). Representative of all
affectedmice in all age groups
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was first detected in 8- to 11-month-old APP/PS1 and increased in the

18-month age group. The lack of detection of Aβo in older animals sup-

ports the hypothesis of Aβo conversion to plaques as the disease pro-

gresses. This is highly speculative as this “conversion” from oligomers

to plaques has not been demonstrated at amolecular level; however, in

our study, themere fact thatAβoarepresent in the retina andnot in the
brain provides momentum to pursue this diagnostic strategy in vivo.

Taken together, and acknowledging the limitations of the study in rela-

tion to the lack of data related to animal behavior in our current study,

these results suggest that retinal Aβo accumulation precedes its cere-

bral deposition and that its simultaneous presence in the blood at high

levels strongly suggests that retinal Aβo originate from the blood,18,54

albeit a lymphatic and/or a CSF origin cannot be ruled out.55 Of note,

fluorescence assessment also showed presence of cerebral Aβo depo-
sitions forming the dense core of the Aβp plaques in the 18-month age

group. This data strengthens the hypothesis of Haass et al.43 suggest-

ing that Aβ plaquesmight act as a reservoir for Aβ oligomers.

In this study, we established that Aβo could be detected simultane-

ously in the blood and retina of APP/PS1mice before their appearance

in the brain. Aβo neuroinvasion appears to originate from blood before

reaching the retina probably via “leaky” blood–ocular barriers.56 A

study byMorin et al.57 reported that APP is synthesized in retinal gan-

glion cells and transported to the optic nerve in small transport vesi-

cles. It can be speculated that blood-borne Aβo deposition in the retina
might initiate a seeding reaction leading to aggregation and spread

to the brain.38 The ability to detect Aβo concurrently in the blood

and retina using nanobodies that specifically bind Aβ1-40 and Aβ1-42
oligomers before cognitive decline and neuropathology are evident

offers a real possibility to establish a screening platform (retinal imag-

ing ofAβo) and a reference diagnostic testing platform (blood testing of

Aβo).
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