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Abstract

This study examined the status of oxidative stress in 599 couples undertaking in vitro fertilization (IVF) treatment and its 
association with reproductive hormones, smoking, and outcomes. Oxidative stress biomarkers such as malondialdehyde, 
8-hydroxy-2-deoxyguanosine, hydrogen peroxide (H2O2), catalase (CAT), and total antioxidant capacity (TAC) were 
determined in follicular fluid and seminal plasma. Tail moment (TM) was used to evaluate DNA damage in the sperm and 
granulosa cells. Reproductive hormones in serum and cotinine (COT) in urine, follicular fluid, and seminal plasma samples 
were determined. Separate multivariate linear regression was used to assess associations between levels of each oxidative 
stress biomarker and each hormone and smoking parameter (modeled as natural log-transformed). The findings indicate 
that some oxidative stress and DNA damage biomarkers played a role in disrupting certain reproductive hormones in 
women and their male partners either by overproducing reactive oxygen species or reducing antioxidant defense capacity. 
Although women were nonsmokers, COT levels > 50 and 10 µg/L in urine and follicular were observed in 5.7 and 1.7%, 
respectively. Levels of follicular fluid COT were positively associated with H2O2 and TM. We used log-binomial multivariate 
regression to estimate relative risks for the association between oxidative stress/DNA damage and IVF binary outcomes 
(fertilization rate > 50%, biochemical pregnancy, clinical pregnancy, and live birth). An increase in the CAT levels of follicular 
fluid was associated with a 48 and 41% decrease in the risk of poor fertilization rate (≤50%) and unsuccessful live birth, 
respectively. After the models were adjusted for hormonal factors, the associations remained the same, except that the 
elevated TAC in follicular fluid became significantly associated with a decrease of 42% in the risk of poor fertilization rate 
(≤50%). The higher antioxidant activity (CAT and TAC) in follicular fluid might positively impact specific IVF outcomes.

Lay summary

Oxidative stress occurs when antioxidant molecules are insufficient in the body to destroy free radicals that can damage 
the cells, proteins and DNA, causing different health conditions, including infertility. The role of oxidative stress in 
female infertility has not received as much attention as male infertility, and research is still limited. This study explored 
whether the overproduction of free radicals can impact the success of in vitro fertilization (IVF) treatment using several 
biological markers such as hydrogen peroxide, catalase, and total antioxidant capacity. Our findings revealed that the 
high antioxidant levels in the fluid surrounding the egg were linked with a high fertilization rate. Additionally, oxidative 
stress status in couples was associated negatively with several reproductive hormones and smoking status. Biomarkers of 
oxidative stress and DNA damage might have potential applications in evaluating IVF patients’ clinical characteristics such 
as causes of infertility, hormonal profile, fertilization rate, implantation and live birth.
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Introduction

Oxidative stress is the result of an imbalance between 
reactive oxygen species (ROS) formation and enzymatic and 
non-enzymatic antioxidants, which may play a complex 
role in the pathogenesis of a range of human diseases, 
including neurodegenerative, cardiovascular, metabolic 
disorders, and cancer (Raghunath et  al. 2018). The role 
of ROS in the etiology of male and female infertility has 
also been reported (Agarwal et al. 2012a, 2014). Some of 
the factors that have been implicated in ROS production 
are related to the modern lifestyle, for example, smoking, 
unhealthy eating habit, and lack of exercise, as these 
factors are associated with excess inflammation, oxidative 
stress, and ultimately DNA damage (Moller et al. 2014, da 
Silva 2016). Additionally, many environmental pollutants 
can induce ROS production, and thereby inducing a state 
of oxidative stress, which can impair testicular function 
(Asadi et al. 2017) and contribute to oocyte dysfunction 
(Devine et al. 2012) and also cause epigenetic modifications 
of gametes (Dattilo et al. 2016).

ROS such as superoxide anions, hydrogen peroxide 
(H2O2), and the hydroxyl free radical are formed as 
by-products of oxygen metabolism (Sharma et al. 2017). 
The presence of excess ROS can cause damage to lipids, 
proteins, and nucleotides (Freinbichler et  al. 2011). 
Notably, ROS’s overproduction has been found to 
significantly impact the success of in vitro fertilization 
(IVF) (Bedaiwy et  al. 2012, Askoxylaki et  al. 2013). A 
recent study revealed improved IVF outcomes in women 
under a moderate degree of oxidative stress (Rosen et al. 
2019). Further, ROS measurement in seminal plasma 
has been suggested to have diagnostic and prognostic 
value in male infertility assessment (Venkatesh et  al. 
2011) since 30–80% of infertile men have elevated ROS 
levels (Agarwal & Allamaneni 2011). DNA is one of ROS’s 
most common targets, which has been associated with 
cellular transformation and genome instability. However, 
8-oxo-2’-deoxyguanosine (8-OHdG) is widely used as a 
biomarker for oxidative modifications of DNA bases (Lee 
& Pervaiz 2011). Additionally, 8-OHdG is considered as a 
specific, quantitative biomarker to determine the extent 
of the oxidative DNA damage caused by ROS in human 
sperm (Shen & Ong 2000), as oxidative damage is known 
to reduce spermatogenesis and sperm function, and 
eventually, lead to male infertility (Agarwal et  al. 2014, 
Guerriero et  al. 2014). Sperm DNA damage is a helpful 
biomarker for diagnosing male infertility and predicting 
assisted reproduction outcomes (Lewis et al. 2013, Simon 
et  al. 2017). The alkaline comet assay has been proven 

to be a relatively simple and versatile tool for assessing 
DNA damage and determining the efficacy of DNA repair 
mechanisms (Gunasekarana et al. 2015). Oxidative stress 
might disturb the hypothalamus-pituitary-gonadal axis 
functions via its action on the reproductive hormones 
(Darbandi et al. 2018). For example, one study has shown 
that ROS generation induced by lead poisoning resulted 
in testosterone (T) suppression via impairment of the 
hypothalamus-pituitary-gonadal axis (Gandhi et al. 2017).

ROS role in female infertility has not received as 
much attention as in male infertility, and there is minimal 
research on the topic (Ruder et al. 2008). ROS might play 
an essential role in the initiation of apoptosis in antral 
follicles by depleting glutathione, which is usually required 
for male pronucleus formation at the time of fertilization 
and embryonic development to the blastocyst stage 
(Devine et al. 2012). Cumulus cells play an essential role 
in oocyte maturation, ovulation, and fertilization (Zhuo 
& Kimata 2001). Animal studies have found the cumulus–
oocyte complex to be useful for testing the genotoxicity of 
environmental agents with the comet assay (Einaudi et al. 
2014, Greco et al. 2015). However, these findings have not 
been confirmed in human studies.

Furthermore, oxidative stress may impact the 
production of steroid hormones, such as follicle-
stimulating hormone (FSH) and estradiol (E2), produced 
by granulosa cells, and subsequently lower the quality of 
oocytes and the success rate of IVF outcome (Seino et al. 
2002, Avila et al. 2016).

In the present study, we measured several biomarkers 
of oxidative stress in follicular fluid and seminal plasma 
and DNA damage in sperm and granulosa cells in 599 
couples undergoing IVF treatment to assess the potential 
relationships of these biomarkers with reproductive 
hormones, smoking status, and IVF outcomes.

Materials and methods

Study population

A total of 599 women and their male partners who were 
undergoing IVF treatment at King Faisal Specialist Hospital 
and Research Centre (KFSH&RC), Riyadh, Saudi Arabia 
were enrolled between 8 March 2015 and 15 January 2017 
for treatment. The women’s age range was 19–48 years old, 
and their male partners’ age range was 25–73 years old. 
The main reasons for IVF treatment were female factors 
(16.4%), male factors (47.7%), combined male and female 
factors (14.7%), and preimplantation genetic diagnosis 
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(PGD) (14.4%). The cause of infertility was not evident 
in 6.8% of the cases. The couples signed an informed 
consent form at the recruitment time approved by the 
KFSH&RC Research Ethics Committee (RAC#2132024). 
Urine, follicular fluid, and seminal plasma samples were 
collected from each couple. Figure 1 depicts the data for 
the study population.

Sample collection

Spot urine samples
All the enrolled couples provided their urine samples 
during clinic visits either in the morning or afternoon 
in a sterile 100 mL polypropylene cup 2 to 3 days before 
follicle aspiration. The samples were aliquoted and stored 
at −20°C until the analysis of cotinine (COT).

Follicular fluid samples
Follicular aspirates without major blood contamination 
were obtained from each of the female participants. The 
follicular aspirate was poured into 60 mm Falcon dishes 
(Beckton Dickinson Labware, Franklin Lakes, New Jersey, 
USA), and cumulus–oocyte complexes were transferred 
to another dish containing Multipurpose Handling 
Medium (Irvine Scientific, Santa Ana, CA). The remaining 
granulosa cells and follicular fluids, which are usually 
discarded after this process, were separated and transferred 
to 1.5 mL vials and 15 mL conical tubes, respectively. 
The follicular fluid samples were centrifuged at 800 g for  
5 min, and the supernatant was collected into 2 mL 
labeled polypropylene plastic tubes and stored at −20°C 
for malondialdehyde (MDA), 8-OHdG and ROS assays, as 

well as COT assay. The granulosa cells were transferred 
into 1.5 mL cryogenic vials (Corning® Incorporated, NY, 
USA) and centrifuged at 800 g for 5 min to separate the 
supernatant. The pellet was re-suspended in 150 µL of 
calcium- and magnesium-free PBS (Sigma Chemical Co.), 
and the vials were immediately placed in isopropanol 
progressive Nalgene® Mr Frosty freezing container (Sigma-
Aldrich) at −80°C overnight, immersed in liquid nitrogen 
after 24 h, and used later for the comet assay.

Semen samples
On the same day, oocyte retrieval was performed, semen 
samples were collected by masturbation (following the 
semen collection instructions given to the patients) and 
allowed to liquefy for 15–30 min at room temperature. 
Before the sample preparation for IVF/intracytoplasmic 
sperm injection (ICSI), routine semen parameters were 
assessed. The remaining semen samples (250–500 µL), 
which are usually discarded, were placed in a 15 mL 
polypropylene tube within 30 min of collection. Seminal 
plasma was separated from spermatozoa by centrifugation 
at 800 g for 5 min and stored at −80°C for MDA, 8-OHdG, 
ROS and COT assays. The sperm pellets were transferred 
into 1.5 mL cryogenic vials and immediately placed in 
isopropanol progressive Nalgene® Mr Frosty freezing 
container at −80°C overnight and stored in liquid 
nitrogen the previous day before they were processed for 
the comet assay.

Analytical methods

Hormonal parameters

As part of the routine IVF procedure, a blood sample was 
drawn from each woman on the 3rd day of the menstrual 
cycle (follicular phase) for analysis of FSH, luteinizing 
hormone (LH), thyroid-stimulating hormone (TSH), E2 
and prolactin (Prl). A male hormonal profile, including 
LH, FSH, E2, TSH, Prl, and T, was requested only in male 
infertility cases at the initial clinical visit. The data for 
these parameters were obtained from the patient medical 
records. In the case of normozoospermic men for whom 
the hormonal profile was not available in their medical 
records, a 4 mL venous blood sample was drawn on the 
day of oocyte retrieval into Vacutainer® tubes (Becton, 
Dickinson, and Co., NJ, USA) without anticoagulant 
and the serum fraction was analyzed at the Clinical 
Biochemistry, Pathology and Laboratory Medicine 
Department, KFSH&RC.

599 participants enrolled from 
IVF clinic
2015-2017

Women (N=599)

Follicular fluid (MDA, 8-
OHdG, TAC, H2O2, COT)

Granulosa cells (DNA damage)
Urine (COT)

Serum (FSH, LH, E2, TSH, Prl)

Men (N=599)

Seminal plasma (MDA, 8-
OHdG, TAC, H2O2, COT)
Sperm cells (DNA damage)

Urine (COT)
Serum (FSH, LH, E2, TSH, Prl, 

T)

Inclusion criteria:
-Infertile Saudi couples trying to conceive for >1
year or >6 months if the woman was > 37 years
old
-No occupational exposure

Figure 1 Flow chart of the study population.
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Oxidative stress and DNA damage biomarkers

Total antioxidant capacity (TAC), catalase (CAT) activity, 
and hydrogen peroxide (H2O2)/peroxidase were measured 
using the OxiSelect™ Total Antioxidant Capacity Assay 
Kit (Cell Biolabs, San Diego, USA), DetectX Catalase 
Fluorescence Activity Kit (Arbor Assays, MI, USA); and 
OxiSelect™ Hydrogen Peroxide/Peroxidase Assay Kit 
(Fluorometric), respectively. The 8-OHdG levels were 
measured in follicular fluid and seminal plasma using 
the HT 8-oxodG kit II (Trevigen Inc., Gaithersburg, USA). 
According to the manufacturer’s instructions, all assays 
were performed, and absorbance was read using an 
automated ELISA microplate reader. The Anthos Zenyth 
3100 Multimode Detector (Zenyth, Salzburg, Austria) was 
used for CAT and H2O2/peroxidase assay. TAC and 8-OHdG 
were measured using Biotek™ EL ×800™ Absorbance 
Microplate Readers (Winooski, USA). Finally, MDA assay 
was performed using the Alliance Waters HPLC 2695 
system and a multi-fluorescence detector (Model 2475) as 
previously described (Al-Saleh et al. 2007).

Single-cell gel electrophoresis assay (comet assay)

The alkaline comet assay was performed in granulosa 
and sperm cells, according to the modified methods of 
Singh et al. (1988) and Lindley et al. (2001). Images were 
taken at a magnification of 20× with a fluorescence optical 
microscope (Nikon Eclipse TI-E; Nikon, Japan) equipped 
with excitation (465 nm) and barrier (595 nm) filters. 
Twenty-five cells per sample were randomly evaluated 
using the Comet assay IV Windows software with a 
monochrome CCD IEEE1394 FireWire video camera 
(Perceptive Instruments, Halstead, UK). Five parameters 
were measured: head length (HL), tail length (TL), head 
intensity (TI), percentage of DNA tail (% DNA tail), and 
tail moment (TM). The percentage of DNA in the tail 
multiplied by the distance between the center of the tail 
and head represents TM that was used in the present study 
as an indicator of DNA damage.

A limitation of the comet assay is the lack of 
standardized protocol that hinders the interpretation 
and comparison of the results with other studies (Collins 
2015).

COT

The Cotinine ELISA immunoassay kit (Bio-Quant 
COTININE Direct ELISA, San Diego, USA) was used to 
measure COT in urine, follicular fluid, and seminal plasma 

as a biomarker of nicotine exposure. A 10 μL sample was 
aliquoted in duplicate into a 96-well microtiter plate 
and processed according to the manufacturer’s protocol. 
Absorbance was measured at OD450 using a Biotek™ EL 
×800™, Absorbance Microplate Reader (Winooski, USA).

Main study outcomes and potential confounders

In this study, we examined the association of oxidative 
stress and DNA damage markers with primary IVF 
outcomes such as fertilization rate (the percentage of the 
number of oocytes with 2PN divided by the total number 
of oocytes retrieved, and achieved fertilization rate 
was > 50%), biochemical pregnancy (positive β-human 
chorionic gonadotropin in urine and serum on day 14 
with no evidence of gestational sac or fetal heartbeat to 
indicate continued pregnancy), clinical pregnancy (the 
presence of gestational sacs with fetal heartbeat confirmed 
by ultrasound) and live birth (successful delivery of one 
or more live neonates after 24 weeks of gestation). Each 
endpoint (fertilization rate, biochemical pregnancy, 
clinical pregnancy, and live birth) was dichotomized as 
a binary variable. A failure group represented women 
with a fertilization rate ≤ 50%, no biochemical pregnancy 
(negative β-human chorionic gonadotropin test), no 
clinical pregnancy (loss of gestational sac on ultrasound) 
or no live birth (unsuccessful delivery of a live neonate).

Of the 599 couples, 422 (70.5%), 196 (32.7%), 161 
(26.9%) and 136 (22.7%) achieved fertilization (>50%), 
biochemical pregnancy, clinical pregnancy and live birth, 
respectively.

Potential confounders associated with IVF outcomes 
and/or oxidative stress, such as age, BMI, causes of 
infertility, pollution, socioeconomic status, and smoking, 
were selected based on previous reports (Benedict  
et  al. 2011, Moller et  al. 2014, Black et  al. 2016, Kumar 
et al. 2018).

Statistical analysis

The data are presented as mean, median, and geometric 
mean. All parameters were naturally logarithm transformed 
(ln) to obtain a normal distribution for analysis. Pearson’s 
correlation coefficients were calculated to determine the 
associations between the studied parameters. Separate 
multivariate linear regression models were established 
for each of the reproductive hormones and smoking 
parameters, which were used as continuous variables 
that were predicted by the ln-concentration of each of 
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the oxidative stress and DNA damage variables, with and 
without adjusting for confounders (age, BMI, causes of 
infertility, educational level, total monthly family income, 
regional distribution of residence and urinary COT levels). 
Results are expressed as the value of β standardized 
regression coefficients as estimates of effect, with 95% 
CI and P values used to assess statistical significance. We 
evaluated collinearity with the variance inflation factor 
(VIF) in the linear regression analyses. This did not exceed 
10, the commonly used cut-off for collinearity problem, 
mainly when correlations between variables are not 
highly correlated (O’Brien 2007, Lavery et al. 2019). In our 
study, the correlations between variables were either small 
or moderate, and VIF values were less than 2.

Since the prevalence of achieving IVF endpoints 
(fertilization rate > 50%, biochemical pregnancy, clinical 
pregnancy, and live birth) was high (>10%) in our study, 
we used log-binomial multivariate regression models to 
estimate the relative risk (RR) and 95% CI as an alternative 
approach to logistic regression (Barros and Hirakata, 
2003). We modeled the association between each binary 
IVF outcome and each oxidative stress and DNA damage 
parameter as a continuous variable (ln-transformed) 
after adjusting for potential confounders. Since 
hormonal abnormalities may contribute to infertility 
and unsuccessful IVF outcome (Vannuccini et  al. 
2016), we repeated the log-binomial regression analysis 
after including reproductive hormones as a potential 
confounder. Principal component analysis (PCA) was 
applied with varimax rotation to identify the main 
clusters of reproductive hormones in women and their 
male partners. The choice of principal components (PCs) 
was based on their eigenvalue: PCs with an eigenvalue 
greater than 1 were selected. The adequacy of PCA was 
verified using the Kaiser-Meyer-Olkin value, which 
should be higher than 0.5, and significance according to 
Bartlett’s test. Factor loading ≥0.30 was set as the criterion 
for parameter retention. PCA yielded two components 
that explained 54.538% of the total variance in women’s 
reproductive hormones with positive loadings for PC1 
(FSH, LH, and E2) and PC2 (TSH and Prl). In the case of the 
male participants, PCA identified three components that 
explained 69.413% of the total variance in reproductive 
hormones, with positive loadings for PC1 (FSH and LH 
and E2) and PC2 (E2 and T) but negative loadings for PC3 
(TSH and Prl).

Significance was selected at P  < 0.05, and all 
calculations were performed using IBM SPSS Statistics for 
Windows, version 20.0 (IBM Corp.).

Results

Oxidative stress biomarkers, reproductive hormones, 
and smoking

The general characteristics of the 599 couples enrolled in 
this study are presented in Table 1. Biomarkers of oxidative 
stress (MDA, 8-OHdG, CAT, H2O2, and TAC) in seminal 
plasma and follicular fluid, DNA damage (HL, HI, TL, TI, 
and TM) in sperm and granulosa cells, and smoking (COT) 
in urine, follicular fluid, and seminal plasma are presented 
in Table 2. 8-OHdG, CAT, H2O2, and TAC were detected 
in all follicular fluid samples. In contrast, only CAT and 
H2O2 were detected in all seminal plasma samples. MDA 
was determined in 96.8 and 87.9% of follicular fluid and 
seminal plasma samples, respectively. 8-OHdG and TAC 
were found in 99.4 and 99.2% of seminal plasma samples, 
respectively.

%DNA tail, TM, and TL are the most frequently used 
comet parameters for assessing genotoxicity because 
of their ability to measure DNA damage (Hartmann & 
Speit 1997, Lee & Steinert 2003, Kumaravel et al. 2009). 
Strong correlations were found between TL and %DNA 
tail (r = 0.778) and TM (r = 0.868) and between TM and 
%DNA tail (r = 0.985) (P  < 0.001 for all) in granulosa cells 
from women. In sperm cells, strong correlations were 
detected between TL and %DNA tail (r = 0.617) and TM 
(r = 0.772) and between TM and %DNA tail (r = 0.974) (P  
< 0.001 for all). In this study, TM was chosen for statistical 
evaluation as it provides the most stable estimates of DNA  
damage because of its uniformity in quantile dispersions 
(Lee et al. 2004).

COT levels were detected in more than 90% of urine 
samples from both women and their male partners. 
However, COT was detected in 49.3% (283) and 52.7% (77) 
of follicular fluid and seminal plasma samples, respectively. 
A 50 µg/L cut-off of COT level in urine was employed to 
distinguish active smokers from nonsmokers (Jarvis et al. 
1987). Though the authors used gas chromatography for 
urinary COT analysis, a similar cut-off was determined 
with the ELISA method (Balhara et al. 2012). The highest 
COT levels were seen in urine, yet a similar magnitude was 
observed in other biological matrices such as blood and 
semen (Vine et al. 1993). In the present study, 349 (58.3%) 
men and 34 (5.7%) women had urinary COT level above 
50 µg/L. There is no cut-off for COT in the seminal plasma 
or follicular fluid to the best of our knowledge. However, 
Fuentes et al. (2010) found that COT in recent smokers’ 
follicular fluid was > 10 µg/L, whereas nonsmokers’ levels 
were undetectable. Only ten (1.7%) of our women had 
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COT in follicular fluid above 10 µg/L in the range between 
19.37 and 271.3 µg/L. Terzioğlu et al. (2016) found COT 
levels in seminal plasma of nonsmokers and passive 
smokers were <10 µg/L. In our study, 61 (41.8%) men 
had COT higher than 10 µg/L in the range between 11.7 
and 316.9 µg/L. Both Fuentes et al. (2010) and Terzioğlu 
et  al. (2016) measured COT using the ELISA method. 
ELISA is considered a practical alternative screening assay 
to chromatographic methods. Kuo et  al. (2002) found 
that the levels of urinary COT measured by HPLC were 
strongly correlated (r > 0.9) with levels measured using 
ELISA or gas chromatography.

Statistically significant inter-correlations between the 
tested biomarkers are shown in Table 3. The data indicate 
the presence of oxidative stress-related biomarkers 
mechanisms in the participating couples.

Associations of biomarkers of oxidative stress/DNA 
damage with reproductive hormones and smoking

We first examined the crude relationship between oxidative 
stress and DNA damage biomarkers and reproductive 
hormones in women and their male partners (Table 4). 
The levels of LH in women was positively associated with 
the 8-OHdG (P  = 0.014) and CAT (P  = 0.001) levels in 
follicular fluid, but it was negatively associated with TM 
in granulosa cells (P  < 0.001). The TSH and E2 levels were 
inversely related to follicular fluid H2O2 levels (P  = 0.007) 
and TM in granulosa cells (P  = 0.029), respectively. TAC in 
follicular fluid was inversely associated with Prl (P  = 0.045). 
In women’s urine, COT was positively correlated with 
follicular CAT levels (P  = 0.045). Additionally, the 
follicular fluid COT level was positively correlated with 
the levels of follicular fluid H2O2 (P  = 0.05) and TM in 
granulosa cells (P  = 0.012). In the male partners, the FSH 
and LH levels were inversely associated with seminal MDA 
levels (P  < 0.001 and P  < 0.039, respectively). While the E2 
levels were positively correlated with seminal CAT levels 
(P  = 0.047), T was inversely correlated with seminal TAC 
levels (P  = 0.024). In the male partners’ urine samples, 
the COT levels were positively and inversely correlated 
with CAT’s seminal plasma levels (P  = 0.035) and H2O2 
(P  = 0.007). None of the oxidative stress and DNA damage 
parameters were significantly correlated with COT in 
seminal plasma.

We adjusted all the regression models in Table 4 for 
age, BMI, ln-COT in urine, educational level, total family 
income, and cause of infertility. In women, LH remained 
significantly and positively associated with 8-OHdG 
(P  = 0.011) and CAT (P  = 0.003) in follicular fluid, but Ta
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inversely correlated with TM in granulosa cells (P  < 0.001). 
Further, TSH maintained an inverse correlation with H2O2 
in follicular fluid (P  = 0.004), but it became significantly 
and positively associated with 8-OHdG (P  = 0.022). E2 
in follicular fluid remained negatively associated with 
TM in granulosa cells (P  = 0.032). In contrast, Prl and 
TAC’s relationship in follicular fluid became insignificant 
(P  = 0.071) after adjusting the model for confounders. In 
the male partners, FSH remained negatively associated 
with MDA (P  < 0.001). On the other hand, LH and MDA’s 

relationship and between E2 and CAT disappeared after 
adjusting for confounders. We also observed positive and 
significant correlations between T and MDA (P  = 0.026) 
that were not observed in the crude regression analysis. 
About the relationship between biomarkers of oxidative 
stress and DNA damage and COT in urine, follicular fluid, 
and seminal plasma after adjusting for confounders, the 
associations between follicular fluid CAT and urinary COT 
in women remained significant (P  = 0.022), as did the 
correlation between follicular COT and H2O2 (P  = 0.047) 

Table 3 Inter-correlations among log-transformed oxidative stress biomarkers in women and their male partners (the values in 
bold denote significant correlations).

MDA 8-OHdG CAT H2O2 TAC TM

Women
 8-OHdG (µg/L)
  r −0.074
  P 0.082
  n 562
 CAT (U/mL)
  r −0.018 0.114**

  P 0.671 0.007
  n 569 556
 H2O2 (µg/L)
  r −0.140** −0.216** 0.131**

  p 0.001 <0.001 0.002
  n 574 560 568
 TAC (µM)
  r 0.177** -0.043 0.101* 0.041
  P <0.001 0.312 0.016 0.332
  n 574 560 568 573
 TM
  r 0.147** −0.142** −0.038 0.038 0.111*

  P 0.001 0.002 0.410 0.403 0.015
  n 481 468 476 480 480
Male partners
 8-OHdG (µg/L)
  r 0.179**

  P <0.001
  n 498
 CAT (U/mL)
  r 0.127 0.209**

  P 0.058 0.002
  n 224 222
 H2O2 (µg/L)
  r 0.306** 0.194** 0.107
  P <0.001 0.003 0.171
  n 232 227 164
 TAC (µM)
  r 0.088 0.083 0.031 0.250**

  P 0.167 0.192 0.718 0.002
  n 249 246 139 150
 TM
  r 0.076 0.213** −0.061 0.194* −0.069
  P 0.209 <0.001 0.504 0.022 0.407
  n 276 271 124 139 148

*Correlation is significant at the 0.05 level (two-tailed); **Correlation is significant at the 0.01 level (two-tailed).
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and TM in granulosa cells (P  = 0.012). In the male 
partners, seminal plasma H2O2 remained significantly 
associated with urinary COT (P  = 0.033) and seminal 
COT (P  = 0.009), although the latter correlation was not 
significant in the crude analysis.

Association between oxidative stress and 
IVF outcomes

As shown in Table 5, multivariate log-binomial regression 
analyses revealed that there was a significant decrease 
in the risk of poor fertilization rate (≤50%) (RR = 0.52, 
95% CI = 0.331, 0.817, P  = 0.005) and unsuccessful live 
birth (RR = 0.592, 95% CI = 0.377, 0.93, P  = 0.023) in 
association with one-unit increase in the follicular fluid 
CAT level. After adjusting the model for hormonal factors, 
as represented by PC1 (FSH, LH, and E2), a decrease in 
the risk of poor fertilization rate (≤50%) was observed as 
a one-unit increase in the follicular fluid levels of CAT 
(RR = 0.508, 95% CI = 0.306, 0.842, P  = 0.009) and TAC 
(RR = 0.585, 95% CI = 0.493, 1.13, P  = 0.023), while the 
correlation between a decrease in the risk of unsuccessful 
live birth rate and per unit increase in the level of CAT 
in follicular fluid became insignificant (RR = 0.623, 
95% CI = 0.367, 1.056, P  = 0.079). When the model 
was adjusted for PC2 (TSH and Prl), the risk of poor 
fertilization rate decreased in association with elevated 
follicular fluid levels of CAT (RR = 0.479, 95% CI = 0.289, 
0.792, P  = 0.004) and TAC (RR = 0.605, 95% CI = 0.381, 
0.961, P  = 0.033). In contrast, the relationship between 
CAT levels in follicular fluid and low risk of unsuccessful 
live birth became significant (RR = 0.59, 95% CI = 0.349, 
0.995), P  = 0.048). In the male partners, none of the 
associations were significant with and without adjusting 
for PC1 (FSH and LH), PC2 (E2 and T), or PC3 (TSH, Prl, 
and T). In Table 5, we only report the results for models 
adjusted with and without PC1, which showed the 
highest variability of 33.052% in women and 28.51% in 
their male partners.

Discussion

Oxidative stress profile in couples

Several researchers have used MDA levels in the follicular 
fluid as an index of lipid peroxidation and found it to 
be associated with polycystic ovary syndrome (Fatemi 
et  al. 2017), endometriosis (de Lima et  al. 2017), low 
response ovarian stimulation (Nunez-Calonge et  al. 
2016), anovulation (Kazemi et al. 2014), tubal infertility 

(Singh et al. 2013) and embryo quality (Liu et al. 2021). 
Our mean MDA value in follicular fluid (0.864 nmol/
mL) was slightly higher than those reported by Artimani 
et  al. (2018) in women with polycystic ovary syndrome 
(0.77 nmol/mL) but lower than Uppangala et al. (2020)‘s 
value of 3.76 nmol/mL in women with a poor ovarian 
response, Thaker et al. (2020)'s value of 1.76 nmol/mL in 
women with positive IVF outcome, and Kazemi (2015)'s 
value of 0.98 nmol/mL in anovulatory women. However, 
our MDA value represents all women that underwent 
IVF treatment, of which only 186 (31.3%) of them had 
infertility problem (including those with combined male 
and female infertility factors). The MDA levels in the 
follicular fluid of women with infertility problems were 
0.895 nmol/mL, which was not significantly different 
from other women who have undergone IVF treatment 
(0.850 nmol/mL), P  = 0.277. The same was seen after 
excluding cases with combined infertility factors. Jozwik 
(1999) observed low lipid peroxidation in the follicular 
fluid that might be related to the presence of efficient 
antioxidant defense systems surrounding the oocyte 
before ovulation. However, since MDA was detected in 
96.8% of the follicular fluid samples, it could be deduced 
that some level of oxidative stress in the follicles might 
have impacted the IVF outcomes.

The MDA in seminal plasma can reflect the degree 
of peroxidative damage to spermatozoa (Agarwal et  al. 
2014). In general, our MDA value (1.02 nmol/mL) was 
slightly higher than the value of 0.94 nmol/mL (infertile) 
reported by Colagar et  al. (2009) but lower than many 
other studies (Collodel et al. 2015, Atig et al. 2017, Josarayi 
et  al. 2017). Our seminal plasma MDA values represent 
all men who have undergone IVF treatment. The seminal 
plasma MDA levels in 358 (61.7%) men with infertility 
problems (1.0 nmol/mL) (including those with combined 
male and female infertility factors) were significantly 
lower than others (1.102 nmol/mL) (P < 0.001). The same 
results were seen after excluding cases with combined 
infertility; seminal plasma MDA levels were significantly 
lower in men with male infertility (0.976 nmol/mL) vs 
others (1.098 nmol/mL) with P  < 0.001. Similar results 
were reported by Layali et  al. (2015), though most of 
the literature indicated higher seminal plasma MDA in 
infertile men (Agarwal et  al. 2016). MDA in semen can 
be influenced by smoking (Chari & Colagar 2011), and 
23.5% of men in the present study were smokers. After 
the smokers were excluded, the results remained the 
same: infertile men had significantly higher MDA levels 
than normozoospermic men. Additionally, sufficient 
antioxidant levels might lower the seminal plasma MDA 
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levels in infertile men (Agarwal & Sekhon 2011). One 
should mention that though MDA has been widely used 
as an indicator of oxidative stress, its specificity and 
sensitivity are still under debate (Grotto et al. 2009).

Excessive exposure to oxidative stress can result in 
oxidative DNA modifications, and one of the by-products 
is 8-OHdG, which is a popular marker of oxidative 
stress and oxidative-induced DNA damage (Dabrowska 
& Wiczkowski 2017). Several studies have measured 
8-OHdG levels in blood and urine to understand the role 
of oxidative DNA damage in disease pathogenesis (Evans 
et al. 2004). To date, very few studies have reported that 
elevated 8-OHdG levels in follicular fluid are associated 
with poor oocyte quality (Tamura et al. 2008, Da Broi et al. 
2016, Várnagy et al. 2020). The mean value for follicular 
8-OHdG levels in this study was 22.40, which were much 
higher than those reported by Tamura et al. (2014)'s value 
of 5.7–6.6 µg/L and Várnagy et al. (2020)'s value of <12 
µg/L but close to Da Broi et al. (2016)'s value of 17.22–23.19 
µg/L. We found that follicular 8-OHdG levels in women 
with infertility problems (including cases with combined 
male and female infertility factors) (21.43 µg/L) were 
not significantly different from those in women without 
fertility problems (22.84 µg/L) with P  = 0.318. The same 
results were obtained after cases when the combined male 
and female infertility factors were excluded. In seminal 
plasma, the mean 8-OHdG value was high (175.59 µg/L). 
Researchers have shown that elevated 8-OHdG levels in 
semen were associated with male infertility (Nakamura 
et al. 2002, Sakamoto et al. 2008, Cambi et al. 2013, Micillo 
et al. 2016, Tang et al. 2016, Vatannejad et al. 2017) and 
poor assisted reproductive technology (ART) outcome 
(Ahelik et al. 2015). Our 8-OHdG levels were much higher 
than 1.95 µg/L (Hammadeh et al. 2010); 36.4 µg/L reported 
by Sakamoto et  al. (2008); 7.7 (subfertile) and 7.8 µg/L 
(infertile) (Nakamura et al. 2002); 0.004 µg/L (Amiri et al. 
2011); and 0.08 (normal sperm count) vs 0.1 µg/L (poor 
motility sperm) (Vatannejad et  al. 2017). Our seminal 
plasma 8-OHdG values represent all men who underwent 
IVF treatment. In our study, the seminal plasma 8-OHdG 
levels in men with fertility problems (including cases 
with both male and female infertility factors) were 
lower (167.21 µg/L) than those in men without fertility 
problems (186.72 µg/L), but the difference was of 
borderline significance (P  = 0.059). The same results were 
obtained when cases with combined male and female 
infertility factors were excluded. Smoking has been 
consistently identified as a confounder of 8-OHdG (Pilger 
& Rudiger 2006), and 23.5% of the male partners were 
smokers. However, adjustment for the smoking factor 

did not alter the findings. An increase in 8-OHdG may 
not only reflect oxidative DNA damage but also indicate 
a decline in the DNA repair rate (Tchou & Grollman 
1993, Halliwell 1998). An earlier study (Mecocci et  al. 
1998) observed that the deficit in DNA repair promotes 
the accumulation of 8-OHdG in peripheral cells, which 
could be a better indicator than urine, as urine mainly 
contains repaired products. However, not many studies 
have measured cellular 8-OHdG due to sample collection 
difficulty compared to the urine sample collection.

Catalase is an enzyme that reflects the follicular fluid’s 
antioxidant efficiency, particularly during the early stages 
of folliculogenesis (Ruder et al. 2008, Gupta et al. 2011). 
CAT activity in the follicular fluid has been associated with 
fertilization and cleavage rates but not with pregnancy 
outcomes in women undergoing ART (Pasqualotto et al. 
2009). Only a few studies have measured follicular fluid 
CAT activity, and they have reported that it is lower in 
older women (Carbone et al. 2003, Wdowiak 2015) and 
higher in obese women (Bausenwein et  al. 2010). We 
cannot compare our values to these studies because they 
were adjusted for protein, except that of Wdowiak (2015). 
The authors reported CAT levels in follicular fluid of 12.82 
U/mL in older women of 40–46 years old, significantly 
lower than in younger ones (18.91 U/mL). In the present 
study, CAT levels in the follicular fluid of women who 
were ≥40 years old (18.21 U/mL) were not significantly 
different from those in younger women (14.55 U/mL). 
This is probably because older women’s sample size was 
much smaller than young women’s sample size (42 vs 528). 
Further, in contrast to previous findings (Bausenwein et al. 
2010), we found no significant difference in CAT levels 
between obese (BMI ≥ 30 kg/m2) and non-obese women.

Since 1989, CAT activity in the semen has been 
recognized as an indicator of sperm function (Jeulin et al. 
1989). CAT eliminates H2O2 by converting it to water 
and oxygen, thus, improving sperm motility (Baker et al. 
1996). However, environmental and lifestyle factors, 
such as smoking, are known to reduce CAT activity and, 
subsequently, cause a decline in semen quality (Kumar 
et  al. 2014). Unlike the follicular fluid findings, many 
studies have reported a reduction in the seminal plasma 
CAT activity among infertile men (Sharma & Agarwal 
1996, Abd-Elmoaty et al. 2010, Agarwal et al. 2012b). In 
general, mean value for seminal CAT levels in the present 
study (10.132 U/mL) was much lower than those reported 
by Hajizadeh Maleki (2017) in all the four different groups 
of healthy men undergoing different levels and times of 
training and values reported by Khosrowbeygi (2007) for 
healthy vs infertile (22.58 vs 14.4 U/mL). However, in 
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the present study, we did not find significant differences 
in seminal CAT activities between normozoospermic 
and infertile men or between smokers and nonsmokers. 
Further, the CAT levels in follicular fluid and seminal 
plasma were both low. Thus, insufficient antioxidant 
levels may not protect against oxidative stress in both 
follicles and sperm, particularly during IVF treatment, as 
reported previously (Rakhit et al. 2013).

Elizur (2014) observed that H2O2 might be a potential 
marker for ovarian aging-related changes in follicular 
fluid’s metabolic activity. H2O2 is considered a major 
contributor to oxidative stress because it oxidizes only 
a limited number of functional groups of biological 
molecules and is, therefore, only moderately reactive 
and permeable through membranes (Fujii & Tsunoda 
2011). However, the findings reported by researchers 
are conflicting. While Gupta et  al. (2011) found high 
levels of H2O2 in small bovine follicles that might have 
reflected an increase in ROS production during the earlier 
stages of folliculogenesis, Basini et  al. (2008) observed 
reduced H2O2 levels in swine follicular fluids (which 
might indicate that oxidative stress does not affect follicle 
growth). Further, an experimental study found that high 
exposure to intracellular H2O2 activates myeloperoxidase 
and leads to oocyte quality deterioration (Khan et  al. 
2015). Our study is the first to provide data on the levels 
of H2O2 in human follicular fluid. In our study, the mean 
H2O2 value was 6.07 µg/L, and no significant difference 
was observed between infertile women and those without 
fertility problems. A study observed an increase in sperm 
motility in the presence of low H2O2 levels, which 
might, therefore, be a marker of antioxidant activity in 
sperm cells (Evdokimov et al. 2015). However, increased 
production of H2O2 can damage sperm function (Sanocka 
& Kurpisz 2004, Du Plessis et al. 2010). Elevated seminal 
plasma H2O2 levels have been reported in infertile men 
with severe inflammation (21.06 µg/L) and those without 
inflammation (21.94 µg/L) (Kullisaar et  al. 2013). Both 
values were approximately two-fold higher than the mean 
value (10.66 µg/L) reported in this study. In the present 
study, although we found no significant difference in 
seminal H2O2 levels between normozoospermic and 
infertile men, other studies have shown that the seminal 
H2O2 levels in infertile men are five- to ten-fold higher 
than those in the control group (Kullisaar et  al. 2013, 
Zandieh et al. 2018).

Follicular fluid represents a vital environment 
that contains steroid hormones, ROS, proteins, and 
antioxidants enzymes that are important for follicular 
development in the ovary (Agarwal et al. 2003, Ambekar 

et al. 2013, Freitas et al. 2017). Several studies found that 
higher follicular fluid TAC levels were associated with 
oocyte competence and successful pregnancy outcomes 
(Pasqualotto et al. 2004, Ruder et al. 2008, Bedaiwy et al. 
2012, Kazemi et al. 2013). The mean follicular fluid TAC 
value in studied women (728.14 µM) was higher than 
those reported by Singh et  al. (2013) for women with 
endometriosis (658.32 µM) but lower than those with 
tubal infertility (896.25 µM). In the present study, we 
observed significantly higher follicular fluid TAC among 
infertile women (785.41 µM) than the fertile ones (692.7 
µM), but not different from those with other causes of 
female infertility. Infertile women, particularly those 
undergoing IVF treatment, tend to take multivitamins 
and supplements to strengthen their chance of getting 
pregnant (Ozkaya & Naziroglu 2010). This might explain 
the finding in our study population.

We observed no significant differences in seminal 
plasma TAC levels between normozoospermic (598.18 
µM) and infertile men (570.52 µM). Both values were 
much lower than those reported for healthy male living 
in low (900 µM) and high (1200 µM) polluted areas 
(Bergamo et  al. 2016). However, several studies have 
found lower TAC levels in the seminal plasma of infertile 
men (Pasqualotto et al. 2000, Giulini et al. 2009, Khosravi 
et al. 2014). An investigation established a diagnostic TAC 
cut-off value of 1947 μM in seminal plasma as a marker of 
oxidative stress among infertile men (Roychoudhury et al. 
2016). Only one case in the present study had seminal 
TAC levels that were above this cut-off. A study found that 
smoking can lower TAC levels in infertile men’s seminal 
plasma (Saleh et al. 2002). In the present study, smokers 
had slightly higher seminal TAC levels (603.59 µM) than 
nonsmokers (533.44 µM), but the difference was not 
statistically significant.

DNA damage profile in couples

A study recommended using human cumulus cells as a 
screening tool for female reproductive toxicants since 
they are readily available through IVF procedures, can 
be maintained using simple culture protocols, and show 
high potential to differentiate into granulosa cells with 
high predictability (Hughes et al. 1990). An earlier study 
by Sinko et al. (2005) detected DNA damage in cumulus 
cells related to smoking. The authors recommended 
using the comet assay to evaluate the effect of chemicals 
on the female reproductive system using cumulus cells 
because they play an essential role in oocyte maturation, 
ovulation, and fertilization. Here, we observed a high 
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degree of DNA damage in the cumulus cells, which might 
influence oocyte development’s competence; however, 
this association has not been well established in the 
literature (Raman et al. 2001, Barcena et al. 2015, Tola et al. 
2019). DNA damage in granulosa cells taken from women 
with infertility problems was not statistically different 
from that in women without infertility problems. We also 
observed that smoking did not cause DNA damage in the 
granulosa cells.

The comet assay has been recognized as a highly 
sensitive tool to assess sperm DNA damage, particularly in 
men with infertility (Schulte et al. 2010, Simon & Carrell 
2013) and as a potential marker of the IVF/ICSI success 
(Nicopoullos et al. 2019). In the current study, the sperm 
cells showed evidence of DNA damage; however, unlike 
other studies, we found no differences in both parameters 
between normozoospermic and infertile men (Aydos 
et al. 2015, Ramzan et al. 2015, Fernandez-Encinas et al. 
2016). Researchers observed that sperm dsDNA exhibits 
an increase in breaks with age (Singh et  al. 2003, Das 
et  al. 2013). However, no correlation was found in the 
present study between age and TM. Smoking is another 
factor that might induce DNA damage (Linschooten et al. 
2011, Antoniassi et al. 2016), but in this study, we only 
noted that the DNA damage was significantly higher in 
male partners who smoked water pipes than nonsmokers 
(P  = 0.023) but not in men who smoked cigarettes. Men 
who smoked both cigarettes and water pipes showed a 
significant increase in sperm cells DNA damage than 
nonsmokers (P  = 0.032). A recent study showed a 
difference in DNA damage’s susceptibility between the 
two sex chromosome (X and Y) spermatozoa (Shi et  al. 
2019).

Associations between oxidative stress/DNA 
damage biomarkers

In this study, biochemical markers, whether measured in 
women or their male partners, were inter-correlated. The 
higher the MDA levels in follicular fluid, the more was the 
DNA damage in the granulosa cells, as indicated by the 
TM values. These findings imply that follicles are more 
prone to oxidative stress and DNA damage. Granulosa 
cells play an essential role in protecting oocytes against 
oxidative stress-induced apoptosis by stimulating oocyte 
glutathione activity (Tatemoto et  al. 2000); moreover, 
oocyte competence is associated with the DNA status of 
cumulus cells (Raman et  al. 2001). Here, the follicular 
fluid 8-OHdG levels were inversely associated with DNA 
damage markers, but these two parameters were positively 

correlated in seminal plasma. This finding indicates that 
the imbalance between ROS production and antioxidant 
activity in follicular fluid and seminal plasma might 
differ, as corroborated by a previous study (Rahal et  al. 
2014). This could be partly explained by the positive 
association observed between DNA damage markers and 
follicular fluid TAC levels, which was not observed in 
seminal plasma; instead, the DNA damage markers were 
associated with H2O2 in seminal plasma. Sperm DNA 
damage is primarily a result of oxidative stress, which can 
be adequately managed with antioxidant therapy (Lewis 
et al. 2013, Agarwal et al. 2014).

The seminal plasma MDA and 8-OHdG levels were 
significantly correlated; this may indicate the effect of 
lipid peroxidation on DNA damage. A similar finding 
was reported by (Hosen et al. 2015), but (Nakamura et al. 
2002) found contradictory findings. MDA can react with 
deoxyguanosine and deoxyadenosine in DNA to form 
adducts (Marnett 1999); this results in the formation of 
8-OHdG, which is proportional to the lipid peroxidation 
level as reflected by MDA (Park & Floyd 1992). In follicular 
fluid, MDA was unexpectedly negatively associated with 
H2O2 and positively associated with TAC. As discussed 
earlier, both MDA and H2O2 are oxidative stress markers, 
while TAC represents the antioxidant defense system. 
Lipid peroxidation damage that is caused by ROS 
generated from H2O2 may depend on an equilibrium 
mechanism between the production and scavenging of 
ROS (Sharma et  al. 2012). In seminal plasma, high ROS 
levels reflected by H2O2 were associated with an increase 
in lipid peroxidation and oxidative DNA damage, which 
are represented by MDA and 8-OHdG, respectively. Similar 
findings have been reported by other researchers (Colagar 
et al. 2009, Gharagozloo & Aitken 2011).

In follicular fluid, the higher the oxidative DNA 
damage indicated by 8-OHdG, the higher was the CAT 
activity observed. This confirms the antioxidant role of 
CAT in scavenging ROS, as discussed earlier. The high 
CAT activity in follicular fluid might explain the inverse 
association between H2O2 and 8-OHdG observed in this 
study. The positive correlation between CAT and TAC 
(Table 3) indicates that both scavenge ROSs generated 
from H2O2 in follicular fluid. This is probably because 
there is more demand for antioxidants in the follicular 
fluid of poorly developed oocytes (Singh et  al. 2013, 
Revelli et al. 2017). Again, we observed that the more ROS 
generated in seminal plasma, the higher was the oxidative 
DNA damage. Unlike the observations in follicular fluid, 
in seminal plasma, CAT seems to have no role in reducing 
the ROS effect; this might reflect the antioxidant defense 
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system’s inadequacy in seminal plasma. Such an imbalance 
between ROS production and antioxidant activity in the 
seminal plasma may impact spermatozoa and its overall 
fertilizing capacity (Agarwal et al. 2014).

The oxidative stress status in follicular fluid and 
seminal plasma may vary because they differ with 
regard to their extent to environmental exposure, ROS 
generation, and antioxidant capacity (Agarwal et  al. 
2003). Furthermore, oxidative stress markers are altered 
by smoking, diet, disease, genetic predispositions, and 
environmental factors (Kumar et  al. 2014, Harlev et  al. 
2015, Bisht et  al. 2017). However, these effects will not 
be discussed here because this is beyond the scope of  
this study.

Finally, we observed that CAT activity in follicular 
fluid increased significantly with urinary COT levels in 
women; this probably had a protective effect on cells 
from the damaging effects of ROS produced by smoking 
(Pasqualotto et  al. 2008, Elshal et  al. 2009). However, 
the seminal plasma’s CAT activity was associated with 
male partners’ urinary COT levels but with marginal 
significance. Our results showed that though none of the 
women in this study were smokers, COT was detected in 
49.3% of follicular fluid samples. This was consequently 
associated with the induction of oxidative stress, as 
demonstrated by its association with H2O2 and TM. It has 
been reported that COT readily crosses the blood/follicle 
barrier, so this might explain our findings in follicular 
fluid (Paszkowski 1998). The COT present in follicular 
fluid might have impacted the quality of oocytes and their 
maturation. A study showed that COT interacts directly 
with and incorporates into the follicle cells and the 
developing oocyte, which has detrimental consequences 
after conception (Zenzes et al. 1997). Surprisingly, despite 
the high levels of the seminal plasma COT levels, it 
was only significantly associated with H2O2, which 
may negatively play a role in male fertility, as reported 
previously (Harlev et al. 2015).

Associations between biomarkers of oxidative stress/
DNA damage and reproductive hormones

In the present study, we observed that higher levels of LH 
in women were associated with increased follicular fluid 
ROS generation, as represented by 8-OHdG. Twenty-nine 
women (4.9%) had LH above the upper KFSH&RC reference 
limit of 12.6 IU/L. Researchers have warned that the early 
surges in LH usually prevent the effective induction of 
multiple follicular maturation patterns (Al-Inany et  al. 
2016). On the other hand, lower LH has been associated 

with greater DNA damage in cumulus cells, as indicated 
by the TM level. LH induces ROS generation to modulate 
oocyte maturation, ovarian steroidogenesis, corpus luteal 
function, and luteolysis, which are generally maintained 
by the well-balanced antioxidant system (Kala et al. 2017). 
In this study, 138 (23.4%) women had LH levels that 
were lower than the KFSH&RC reference limit of 2.4 U/L, 
which is indicative of poor reproductive performance 
(Peñarrubia et  al. 2003). This might have impaired the 
antioxidant system and led to ROS overproduction and 
subsequent DNA damage.

The higher ROS generation, in the form of H2O2, 
was associated with a reduction in serum TSH levels in 
women. Low TSH levels are indicative of hyperthyroidism 
(Obuobie & Jones 2003). Only five women had TSH 
levels lower than the reference limit of 0.27 mU/L, which 
indicates overactive thyroid function, and 73 had TSH 
levels above the upper limit of 4.2 mU/L, which suggests 
hypothyroidism. Both hyper- and hypothyroidism have 
been linked to female infertility (American Society for 
Reproductive Medicine 2015, Mintziori et  al. 2016). 
Additionally, the association between oxidative stress and 
excess or low TSH levels is well documented (Mancini et al. 
2016). It has been reported that hyperthyroidism increases 
oxidative stress, whereas hypothyroidism decreases ROS 
production and antioxidant activity (Villanueva et  al. 
2013).

The DNA damage marker TM was inversely associated 
with higher E2 levels in women. Low E2 reflects poor 
ovarian response after using standard stimulation IVF 
protocols (Tarlatzis et  al. 2003, Jirge 2016). A study by 
Kalemba-Drozdz (2015) found that E2 is a naturally 
occurring antioxidant that may play a protective role 
during pregnancy. The authors found that E2 was 
negatively associated with oxidative DNA damage. In this 
study, 32.4% of women had lower than normal E2 levels 
(lower than the KFSH&RC reference limit of 46 pmol/L). 
Based on these findings, it can be assumed that the lower 
the E2 level, the higher is the DNA damage in cumulus 
cells.

The higher the seminal plasma MDA levels in male 
partners, the lesser were the serum FSH levels. FSH plays an 
essential role in maintaining male reproductive functions 
(Ulloa-Aguirre & Lira-Albarran 2016). Further, increased 
ROS generation in seminal plasma potentially affects 
male infertility (Sabeti et  al. 2016). Here, 9.3% of the 
men had FSH levels lower than the KFSH&RC reference 
limit of 1.5 IU/l. ROS generated by alcohol, smoking, 
or environmental factors might affect FSH synthesis 
(Oremosu & Akang 2015, Aprioku & Ugwu 2016, Zubair 
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et  al. 2017). Research has shown that ROS affects FSH’s 
secretion via its effect on the gonadotropin-releasing 
hormone (Terasaka et  al. 2017). This mechanism could 
not be corroborated in the present study.

Increased levels of 8-OHdG and MDA in seminal 
plasma have been associated with male infertility (Huang 
et  al. 2018). We observed that higher seminal plasma 
levels of MDA and 8-OHdG were associated with elevated 
serum T levels in the male partners. Although oxidative 
stress can result in Leydig cell dysfunction or apoptosis 
and diminished T production (Dabaja et  al. 2013), 
experimental studies have reported that T can induce 
oxidative stress on account of its pro-oxidant properties 
(Alonso-Alvarez et  al. 2007) and act as an antioxidant 
by protecting sperm and other testicular cells from ROS 
damage (Darbandi et  al. 2018). As T plays a vital role 
in the initiation and maintenance of spermatogenesis 
(Gudeloglu & Parekattil 2013), abnormal T levels may 
directly impact male fertility.

We want to acknowledge a major limitation of our 
study. As reported previously, the levels of reproductive 
hormones may vary within an individual over time, and 
not all patients were assessed on their initial visit to the 
clinic (Brambilla et al. 2009).

Impact of oxidative stress and DNA damage on 
IVF outcomes

The present study showed that high CAT levels in follicular 
fluid might reduce the risk of poor fertilization rate (≤50%) 
and unsuccessful live birth by 48 and 41%, respectively. 
Pasqualotto et al. (2009) observed a correlation between 
follicular fluid CAT levels and fertilization rate, but 
not with pregnancy rate. Here, after the multivariate 
log-binomial regression models were adjusted for the 
hormonal factors FSH, LH, and E2, only the association 
between elevated follicular fluid CAT levels and low risk 
of poor fertilization remained significant. However, when 
the models controlled for hormonal factors TSH and Prl, 
high CAT levels in follicular fluid were still associated 
with a reduced risk of both poor fertilization rate (≤50%) 
and unsuccessful live birth. In contrast to the findings of 
Oyawoye et al. (2003) and Varnagy et al. (2018), we also 
observed an association between high levels of follicular 
TAC and a low probability of poor fertilization rate.

It has been suggested that sex hormones have a 
potential role in regulating the synthesis and activity 
of antioxidants (Mancini et  al. 2010) or in regulating 
antioxidant gene expression (Bellanti et  al. 2013). 

Although several studies have investigated the impact of 
oxidative stress in follicular fluid on IVF outcomes, it is 
hard to draw a definite conclusion because of conflicting 
results resulting from the use of various markers and IVF 
outcomes such as live birth, oocyte quality, fertilization 
rate, and pregnancy rate (Askoxylaki et  al. 2013). For 
example, some studies have reported associations 
between high follicular fluid levels of TAC and pregnancy 
and increase in follicle size (Gupta et  al. 2011, Bedaiwy 
et  al. 2012), between lipid peroxidation and pregnancy 
rate (Pasqualotto et  al. 2009), between 8-OHdG and 
oocyte quality (Tamura et al. 2008), between superoxide 
dismutase and the quality of embryos on the second day 
of development (Wdowiak 2015), and between MDA 
and oocyte retrieval (Thaker et al. 2020). From all these 
findings, it seems that ROS affects embryo development 
at different stages. Our results indicate that the CAT and 
TAC activities observed in the follicular fluid samples 
probably played a role in neutralizing ROS production. 
Therefore, as reported in a previous study, CAT and TAC 
could be potential markers of mature follicles, leading to 
the growth of high-quality oocytes (Gupta et al. 2011).

Study limitations and strengths

The study has several limitations to consider when 
interpreting the results. First, the studied population 
was recruited from the IVF clinic, thereby restricting the 
generalization of our findings to the general population. 
Secondly, the possibility of uncontrolled potential 
confounding variables that might be related to the 
oxidative stress and/or the outcomes (IVF endpoints). 
Thirdly, self-reported variables might have introduced a 
bias in the results. Fourthly, the use of ELISA assays to 
measure oxidative stress biomarkers that might be less 
accurate than mass spectrometry techniques. Fifthly, 
no internal quality controls were provided by the ELISA 
manufacturers to evaluate the intra-and -inter-assay 
precision. Sixthly, given ROS’s highly reactive nature, 
the stability of H2O2 might be affected after a lengthy 
storage period. However, the samples were processed on 
time that hopefully make the change constant. Despite 
these limitations, our study has many strengths: (1) large 
sample size, (2) prospective design, (3) measurement of 
several oxidative stress biomarkers in couples, (4) being 
conducted in an IVF setting, giving us access to various 
endpoints, and (5) numerous confounding variables 
concerning demographic, socioeconomic, lifestyle, and 
health collected from each couple.
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Conclusions

The present study results show that oxidative stress and 
DNA damage biomarkers in couples undergoing IVF 
were associated with several reproductive hormones and 
smoking status. The findings indicate ROS’s disruptive 
effect on hormones and the consequent adverse effects on 
male and female reproductive functions. In this regard, 
our results demonstrated that elevated levels of CAT in 
follicular fluid reduced the risk of poor fertilization rate 
(≥50%) and unsuccessful live birth. Further, higher levels 
of follicular fluid TAC were found to reduce the risk of 
poor fertilization rate but only after the data were adjusted 
for hormonal factors. This indicates the potential role of 
these hormones in regulating antioxidant behavior. In 
conclusion, higher antioxidant activity in follicular fluid 
might have a positive impact on specific IVF outcomes. 
Additionally, biomarkers of oxidative stress and DNA 
damage might have potential applications in evaluating 
IVF patients’ clinical characteristics.
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