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Abstract: Hyperspectral imaging (HSI) is a non-invasive imaging modality already applied to
evaluate hepatic oxygenation and to discriminate different models of hepatic ischemia. Nevertheless,
the ability of HSI to detect and predict the reperfusion damage intraoperatively was not yet assessed.
Hypoxia caused by hepatic artery occlusion (HAO) in the liver brings about dreadful vascular
complications known as ischemia-reperfusion injury (IRI). Here, we show the evaluation of liver
viability in an HAO model with an artificial intelligence-based analysis of HSI. We have combined
the potential of HSI to extract quantitative optical tissue properties with a deep learning-based model
using convolutional neural networks. The artificial intelligence (AI) score of liver viability showed a
significant correlation with capillary lactate from the liver surface (r = −0.78, p = 0.0320) and Suzuki’s
score (r =−0.96, p = 0.0012). CD31 immunostaining confirmed the microvascular damage accordingly
with the AI score. Our results ultimately show the potential of an HSI-AI-based analysis to predict
liver viability, thereby prompting for intraoperative tool development to explore its application in a
clinical setting.

Keywords: liver viability; artificial intelligence; deep learning; convolutional networks; CNNs;
hyperspectral imaging; hepatic artery occlusion

1. Introduction

During the last decade, hyperspectral imaging (HSI) has gained importance in the
biomedical field [1–3]. HSI systems aim to build images based on the computational
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analysis of light-tissue interactions through the detection of relative reflectance. This
allows for the quantification of organic compounds such as oxygenated and deoxygenated
hemoglobin at different depths in a wide large field of view [4]. Recently applied for the
quantitative analysis of liver perfusion assessment [1,5], HSI was also used for the study
of arterial perfusion [6–11]. Hypoxia produced by the occlusion of arterial flow causes
severe time-dependent complications. For instance, hepatic artery occlusion (HAO) is a
dreadful vascular event, which can occur in different clinical scenarios such as hepatic artery
thrombosis, hepatic artery ligation during liver surgery, emboli, arterial abnormalities,
eclampsia, and sickle cell crisis. Oxygen deprivation is the starting event that induces
parenchymal damage, which is further aggravated once blood circulation has been re-
established by the ischemia-reperfusion injury mechanism (IRI) [12,13]. IRI is associated
with a massive injury to hepatocytes even when diagnosed in the early phase (within
2 h) [14–16]. When the occlusion of the hepatic artery occurs, despite its dual vascular
inflows, the liver goes under global hypoxia since the hepatic artery contributes ~50%
of the oxygen supply. The portal flow alone is insufficient to prevent the occurrence of
anaerobic metabolism, which can be rapidly evaluated with the analysis of capillary and
systemic lactate concentration [17,18]. Consequently, warm ischemia like cold ischemia
disrupts the microcirculation downregulating the sinusoidal protective phenotype [19–21].
As a result, liver perfusion assessment is an essential target for the diagnosis of hepatic
hypoxia in both ischemic types.

Intraoperative Doppler ultrasonography (US) is the standard tool for an immediate
evaluation of the HAO, followed by a daily US in combination with transaminase control
until postoperative day 5 or 7. If hepatic artery thrombosis (HAT) is suspected, a contrast-
enhanced CT scan or less often a magnetic resonance scan is performed to confirm the
diagnosis. If US and CT or magnetic resonance do not detect HAT, angiography may be
helpful [22]. However, all these techniques have some drawbacks. As a matter of fact, they
are time-consuming, they require a long-term learning curve, and their interpretation may
vary. Additionally, in the case of arterial revascularization, it is not possible to predict the
future graft function and the potential consequences of IRI damage. Early detection or,
ideally, intraoperative prediction of graft dysfunction or failure would be crucial for timely
treatment.

The ongoing research to predict IRI has considered various solutions. They include
indocyanine green (ICG) fluorescence imaging, near-infrared spectroscopy (NIRS), micro-
dialysis, and carbon dioxide sensors [23–28]. However, such methods are limited by the
need for the administration of an exogenous dye, and/or by some degree of invasiveness.
In addition, these approaches do not provide a direct oxygenation map of the organ, which
could allow for an immediate localization of liver ischemic damage.

Recently, our group has demonstrated the potential usefulness of HSI as an intraoper-
ative tool during image-guided liver surgery [29]. In particular, HSI could intraoperatively
quantify, discriminate, and visualize different types of liver ischemia, including HAO and
total vascular inflow occlusion [30]. We are currently working on exploring the potential of
HSI coupled with deep learning-based analysis of HS images to intraoperatively predict
the ischemia-reperfusion damage. As a first step and a proof of concept, we focused on the
ability of HSI to predict damage given by liver hypoxia ligating only the hepatic artery [31].
This allowed us to exclude only the oxygen variable without the more complex composition
of blood supply from the portal vein.

Machine learning has recently been used for the automatic analysis of hyperspectral
image data [32], mainly driven from the remote sensing community [33,34], but now
extending to a range of medical applications [1] such as automatic tumor detection [35,36]
and histopathological analysis [37]. However, there have not been prior studies reporting
on the use of machine learning models to automatically characterize liver reperfusion
damage intraoperatively in a large field of view.

Our hypothesis is that machine learning models can be trained to automatically
recognize the optical properties associated with the reperfusion damage given by HAO in
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HSI images using supervised learning. Consequently, a predictive AI analysis can be built
to provide an automatic convenient and non-invasive tool for intraoperative ischemic liver
disease detection.

2. Materials and Methods
2.1. Study Design

Sample size calculation was performed using the correlation between optical and
biological data. The calculation was based on previous publications on bowel ischemia
which showed a ρ correlation coefficient of −0.7 [38,39]. The required sample size in terms
of paired values was 4, considering α = 0.05 with a power (1 − β) = 0.9. In the present
study, 42 paired values StO2% and lactates values were obtained in 5 pigs in total. The
AI model used a pixel by pixel (640 × 480) analysis per each of the 42 images providing a
large dataset elaboration. The aim of the study was to predict liver viability through the
analysis of hyperspectral images using artificial intelligence based on convolutional neural
networks (CNNs) to (i) discriminate the liver from the rest of the tissues, (ii) recognize
perfused from the non-perfused liver, (iii) predict the level of liver perfusion during the
reperfusion phase, and (iv) predict biological data (Figure 1a–c). The control group is
represented by the same treated pigs before hepatic artery ligation. The ischemic phase
was held for 90 min, collecting optical and biological data every 30 min (Figure 1a,b).
The following reperfusion phase was monitored for 5 h, collecting data every hour. The
hypercube extracted from hyperspectral images was used to train two CNNs (Figure 1c).
Finally, the generated AI score for the reperfusion phase was generated and the quantitative
analysis of hyperspectral images was correlated with biological data. Histopathological
evaluation and scoring were performed in a blinded fashion. Capillary lactate was sampled
randomly through the liver surface.

Figure 1. Experimental workflow. (a) Hepatic artery occlusion (HAO) was performed for 90 min followed by a reperfusion
phase of 5 h. (b) During ischemia and reperfusion time, biological data and hyperspectral imaging (HSI) were sampled.
(c) Hyperspectral imaging was acquired providing the hypercube with a wavelength range from 500 to 1000 nm. Two
artificial intelligence-based convolutional neural networks (CNNs) were trained to perform a segmentation that could
identify the liver surface and analyze the same surface to predict perfused and not perfused livers during the ischemia
phase. Finally, the tissue classification produced by the CNNs was used to create a score of liver viability during the
reperfusion phase. While StO2% and NIR% are calculated with the preset algorithm of the HSI (TIVITA software), the AI
score is calculated over the whole spectra using the hypercube.



Diagnostics 2021, 11, 1527 4 of 19

2.2. Animals

The present study, which is part of the ELIOS project (Endoscopic Luminescent Imag-
ing for Oncology Surgery), was approved by the local Ethical Committee on Animal
Experimentation (ICOMETH No. 38.2016.01.085), as well as by the French Ministry of
Superior Education and Research (MESR) (APAFIS#8721-2017013010316298-v2). The ex-
perimental procedure followed the general indications already published in the protocol
exchange [40]. All animals used in the experiment were managed according to French
laws for animal use and care, and according to the directives of the European Community
Council (2010/63/EU) and ARRIVE guidelines [41]. Five adult male swine (Sus scrofa ssp.
domesticus, mean weight: 32.4 ± 4.4 kg) were housed and acclimatized for 48 h in an en-
riched environment, respecting circadian cycles of light-darkness, with constant humidity
and temperature conditions. They were fasted 24 h before surgery, with ad libitum access
to water, and finally sedated (zolazepam + tiletamine 10 mg/kg IM) 30 min before the pro-
cedure to decrease stress. Anesthesia was performed intravenously (18-gauge IV catheter
in-ear vein) with Propofol 3 mg/kg and maintained with rocuronium 0.8 mg/kg along
with inhaled isoflurane 2% via the automatic standard respiratory system. Vital parameters
were monitored through a mechanic ventilator machine. Heartbeat was monitored with
a pulse oximeter (Mindray PM-60). At the end of the protocol, animals were euthanized
with a lethal dose of pentobarbital (40 mg/kg).

2.3. Surgical Procedure

Midline laparotomy and hepatic pedicle dissection were performed to isolate the
hepatic artery. The artery was then ligated with a 3/0 braided suture for 90 min to obtain a
model of warm ischemia [42]. The ligature was removed for 5 h in order to observe the
reperfusion injury between the early and the beginning of the late stage [43].

2.4. Hyperspectral Imaging

A CMOS push-broom scanning hyperspectral camera (TIVITA, Diaspective Vision
GmbH, Am Salzhaff Germany) was used to generate HS images which were performed
with a camera-specific software module from the same company. The three-dimensional
hypercube is composed of a spatial resolution (x,y) plus a third dimension with the relative
reflectance of each pixel (z). The range of the wavelength detected is 500–1000 nm with a
5 nm interval, totaling 100 wavelengths for every pixel. The scanning method is allowed
through a slit-shaped aperture motorized with an internal stepper motor [44]. The resolu-
tion of the hypercube is 640 × 480 pixels × 100 wavelengths. The acquisition is performed
at ~40 cm of distance from the sample and monitored by a distance sensor Bluefruit Feather
nRF52832 with Adafruit VL53LOx device (Adafruit, New York, NY, USA) orthogonal to
the liver surface. The light source is composed of 6 halogen lamps of 20 W (OSRAM
Halospot 70, OSRAM GmbH, Munich, Germany). The HS camera takes ~6 s to perform
the acquisition of the hypercube which is transferred to a PC where it is processed creating
pseudo-color images. The relative reflectance

(
I
I0

)
is converted in relative absorbance

through the equation A = −ln
(

I
I0

)
.

The device used in this experiment provides different algorithms (preset), that quantify
the relative oxygen saturation (StO2%) of the microcirculation at a depth of ∼1 mm, and at
deeper layers with the near-infrared (NIR) spectrum (3–5 mm) [4]. Quantitative analysis of
the StO2% and NIR index was performed intraoperatively using the TIVITA Suite software
module over the whole liver surface. The methods and algorithms of the TIVITA system
were explained in more detail by Holmer et al., in 2018 [4]. Briefly, StO2% is calculated
with an algorithm based on the second derivative of the absorption spectra (570–590 nm
and 740–780 nm). The NIR perfusion index is calculated with the absorbance spectra in a
spectral range of 655–735 nm and 825–925 nm.
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2.5. Artificial Intelligence-Based Analysis
2.5.1. Overview

Two CNNs were created to perform an automatic HS image analysis (Figure S3). The
first CNN was trained to automatically recognize liver tissue in any HS image. We refer to
this as the organ segmentation CNN. The second CNN was trained to automatically char-
acterize liver tissue which has been recognized by the organ segmentation CNN into two
classes, namely perfused and ischemic liver. We refer to this as the tissue characterization
CNN (Figure 1c).

2.5.2. Organ Segmentation CNN and Post-Segmentation Filtering

The organ segmentation CNN operated as follows. For each spatial coordinate (x,y)
in the HS image, an HS subvolume centered at (x,y) with a spatial window of 5 × 5
pixels was extracted. The subvolume had the following dimensions: 5 × 5 × 100, with
two spatial dimensions and one wavelength dimension of 100 bands. The subvolume
was then passed to the organ segmentation CNN, which outputted a binary classification
value. Either a value of +1 (positive) or −1 (negative) was outputted, corresponding to a
prediction of a liver or non-liver structure occurring at a spatial location (x,y) respectively.
Predictions were made for all spatial locations, generating a spatial map (also known as
a segmentation mask). Finally, post-segmentation filtering was performed to eliminate
spurious regions in the segmentation masks (typically produced by specular reflections).
This was achieved with a connected component analysis to identify the largest region
in the segmentation mask, and all positive pixels which did not belong to this largest
region were then removed. This filtration stage eliminated small positive ‘islands’ in the
segmentation mask which are morphologically unlikely to be liver tissue. Secondly, any
small holes that were present in the segmentation mask were automatically filled using the
image morphological operations with OpenCV (https://opencv.org/, accessed on 1 March
2021). An example of a segmentation mask before and after the filtering stages is shown in
Figure S2a.

2.5.3. Tissue Characterization CNN

All positive spatial locations within the segmentation mask were then processed by
the tissue characterization CNN. This computed a binary classification where +1 indicated
ischemic and −1 indicated healthy liver respectively at each spatial location. Analogous to
the organ segmentation CNN, its input is a sub-volume extracted from the HS image of
5 × 5 × 100 in size, centered at a given spatial location. Classification was performed for all
spatial locations, generating a tissue characterization mask. Finally, a single ischemic score
for each image was computed by taking the proportion of pixels with positive detections
divided by the total number of pixels in the segmentation mask.

2.5.4. CNN Design and Implementation

The two CNNs have identical architecture and they are based on a state-of-the-art 3D
CNN [45]. Architecture version 6 from reference 60 was selected because it is a relatively
small CNN, so it can be trained with small datasets, yet it can also learn effective multi-
scale spatio-spectral segmentation features in HSI data. This was demonstrated by its
good performance for segmenting remote sensing HSIs with limited data, The CNN is
organized such that in early layers, 3D spatio-spectral feature maps are produced, which
are then reduced to1D feature vectors, and then finally processed by a fully connected
layer. Network parameters are significantly reduced using ideas from SqueezeNet (https:
//arxiv.org/abs/1602.07360, accessed on 1 March 2021) [46], using a small number of
filters combined with 1D convolutions along the spectral dimension in the pooling phase.
We illustrate the architecture in Supplementary Figure S3. Layer 1 is a 3D convolution
with 20 output channels. Layer 2 is a 1D convolution along the spectral dimension with
pooling using a stride of 2. Layers 3 and 4 replicate layers 1 and 2 with 35 output channels.
Layers 5 and 6 are 1D convolutions with pooling to further reduce the spectral dimension.

https://opencv.org/
https://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1602.07360
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Layer 7 is a fully connected layer where the number of output neurons is the number of
classes (in our case 2). Layers 1, 3, 5, and 6 are followed by ReLU activation and layer 7 is
followed by sigmoid activation. The CNN has a total of 32,444 trainable parameters and it
was implemented in Pytorch 1,4.0 (https://pytorch.org/, accessed on 1 March 2021) with
Python 3.7.4 (https://www.python.org/, accessed on 1 March 2021).

The CNN was organized into 7 layers, where each layer consisted of a spatial con-
volution followed by downsampling and max-pooling operations. The penultimate layer
was fully connected, and the final layer had two neurons corresponding to positive and
negative classes. The CNNs were implemented in Pytorch 1.4.0 with Python 3.7.4. The
CNNs have 333,560 weights which were automatically learned in the training processes.

2.5.5. AI Training Processes

The organ segmentation CNN was trained from segmentation masks generated from
HS images by a skilled human operator. The operator demarcated the spatial extent of
the liver in each HS image, for all pigs and at times 0 min, 30 min, 60 min, and 90 min
(42 images). An interactive segmentation software was used (GIMP v.2.8), using an RGB
image simulated from each HSI image. As an example, we illustrated a demarcated image
(Figure 2b,f). The operator segmented both the interior of the liver (positive class) and
all regions surrounding the liver (negative class). The organ segmentation CNN was
then trained using supervised learning with the segmentation masks provided by the
human operator as ground truth. Special care was taken to ensure that the ability of the
organ segmentation CNN to generalize to novel subjects could be tested. To achieve this,
LOPOCV was performed as follows. Five organ segmentation CNNs were trained, with
one CNN for each pig. Each CNN was trained using image data from all pigs except
for one (the held-out pig). The predictive performance of the CNN was then evaluated
using images from the held-out pig only. LOPOCV was necessary to eliminate an elevated
performance bias, which occurs if a CNN is trained and evaluated on data from the same
subject.

Figure 2. Ischemic phase evaluation. (a) RGB, HSI, and H&E images of the liver during the ischemic phase. Hyperspectral
images of StO2% and NIR% showed an oxygenation decrease during the ischemic phase. H&E images show the gradual
congestion increase. (b,c) Capillary lactate (n = 5) and AST (n = 4) levels indicated a gradual liver impairment. (d,e)
Both preset software parameter indexes of the oxygenation showed a significant decrease in oxygen levels. (f) The
histopathological score of congestion was significant during the ischemic phase. Data are compared to the control,
ns p > 0.05, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001 (n = 5). Histology photos were taken with a Leica DM2000
LED microscope, magnification 40×, scale bar 100 µm.

The training was performed and implemented in Pytorch using as follows. The HSI
images used for training were first concatenated vertically to form a single HSI image,

https://pytorch.org/
https://www.python.org/
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denoted by the HSI image I. The training label images were similarly concatenated to form a
single training label image L. The values in L were either +1 (indicating liver),−1 (indicating
non-liver), or 0 (indicating a spatial location that was close so close to the border of the liver
that its label could not be determined by the annotator thanks to optical blurring around
the liver border. Only pixels labeled +1 or−1 were used for training. Class-balanced binary
cross-entropy was used as the loss function, implemented by inverse median weighting.
Specifically, the loss of each class i ∈ [−1,+1] was weighted by the value m

fi
where fi

denotes the proportion of pixels labeled as class i in L and m = 1
2 ( f−1 + f+1). The CNN

weights were initialized with Kaiming initialization [47] and biases were initialized to
zero. At each training epoch, a batch of 5 × 5 × 100 subvolumes were randomly selected
without replacement from I. Each subvolume was positioned in I such that its center was at
a random spatial location in I and whose label in L was either−1 or +1. A batch size of 8192
was used. The CNN parameters were updated from each batch with stochastic gradient
descent (SGD) using the implementation from Pytorch’s “torch.optim” package with a
learning rate of 0.01 and a weight decay (L2 regularization) of 0.0005. The training was
terminated after 2000 epochs. The time to train was approximately 13 h using a server (DGX
1 equivalent, Nvidia cooperation). The time to train all 5 CNNs for each cross-validation
was approximately 65 h.

The tissue characterization CNN was trained in practically the same manner as the
organ segmentation CNN. Specifically, all training parameters and processes were identical,
and the sole difference was the construction of the training data. LOPOCV was also used
where for each animal, one tissue characterization CNN was trained using HSI data from
all other animals (4 images per animal corresponding to times 0 min, 30 min, 60 min, and
90 min). Its predictive performance was then evaluated on the 4 images from the held-out
animal. The histology score (congestion score) together with the surgical procedure was
used as the ground truth. The HSI images used for training were concatenated vertically
to form a single HSI image I′ with a corresponding label image L′. A value of L′(x,y) = +1
was used if the pixel at spatial location (x,y) was annotated as liver and the liver was
determined as ischemic from the histology score. A value of L′(x,y) = −1 corresponded
with an annotated liver pixel that was determined to be healthy from the histology score.
A value of L′(x,y) = 0 corresponded to all other pixels, and those pixels were not used
during training. The training was then performed exactly as described for training the
organ segmentation CNN.

2.6. Blood Analysis

Blood for systemic lactate and liver function was sampled through a central catheter
placed in the jugular vein (6 French IV catheter). Capillary lactate was analyzed by punctur-
ing Glisson’s capsule with a randomized selection of liver segments. Capillary and systemic
lactates were measured using a strip-based portable lactate analyzer, which presents a
margin error of 0.35 mmol/L (EDGE, ApexBio, Taipei, Taiwan). The correlation analysis of
the data was performed between HSI parameters and capillary lactate concentration. The
surgical intervention was monitored to rule out any bias in the hepatic ischemic phase by
means of systemic blood gas analysis (BGA) with the epoc Blood Analysis System (Siemens
Healthineers, Henkestr, Germany) to measure pO2, pCO2, pH, glucose, creatinine, urea,
and BUN. Liver functionality was assessed by means of aspartate aminotransferase (AST),
alanine aminotransferase (ALT), prothrombin time (PT), gamma glutamyl-transferase
(GGT), alkaline phosphatase (ALP), total protein (TP), and albumin analysis. Liver injury
after the reperfusion phase was assessed also via AST and ALT.

2.7. Histology

Liver biopsies were randomly taken with a 16 G biopsy gun (Temno Biopsy System,
Galway, Ireland) from the posterior segments at each timepoint. Sections of 5 µm were
taken from formalin-fixed paraffin-embedded blocks and were dewaxed and rehydrated
prior to staining at room temperature. A treatment with hematoxylin Harris’ formula
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(Leica Biosystems, Muttenz, Switzerland) for 10 min and then a wash in acid alcohol for
2 s and in tap water for 2 min were performed. Eosin staining with Eosin 0.5% (Leica
Biosystems, Muttenz, Switzerland) for 3 min was performed before washing in tap water
for 30 s. Finally, the sections were dehydrated with ethanol 100% and placed in xylene
until their mounting with coverslips. A semi-quantitative blinded analysis was performed
by a pathologist using Suzuki’s criteria [48].

2.8. Immunohistochemistry Staining

Sections were fixed in 10% neutral buffered formalin (NBF) and processed for histo-
logical examination, which included paraffin embedding, sectioning, and staining with
hematoxylin and eosin. Sections from selected paraffin blocks for each specimen were used
for immunohistochemical analysis. Slides of 4 µm-thick tissue sections were incubated
at room temperature in an antigen retrieval process (EDTA citrate buffer, pH 8.3, CC1
buffer), revealed with ‘Ultra View’ Universal DAB Detection Kit and counterstained with a
hematoxylin solution (Ventana Roche Systems, München, Germany). They were treated on
automated VENTANA-Benchmark-XT with CD31 (rabbit monoclonal, EP78 clone, Microm;
pre-treatment: CC1 36 min; dilution: 1/200 during 32 min).

2.9. Confocal Endomicroscopy

Confocal endomicroscopy was performed on the anterior surface (the same analyzed
via HSI) of Glisson’s capsule at the end of the procedure. This test evaluated blood
microcirculation and arterial supply in randomly selected segments with Cellvizio pCLE
system (Mauna Kea Technologies, Paris, France). Confocal images were obtained by
intravenously injecting 2 mL of sodium fluorescein (Fluocyne, Serb, Paris, France).

2.10. Statistical Analysis

Statistics were performed using GraphPad 8.3 (GraphPad Software, San Diego, CA,
USA). A Spearman’s and Person’s rho were analyzed to perform the correlation between
optical and biological data. All data were expressed as means± s.d. One-way ANOVA with
Dunnett’s multiple comparisons was performed for parametric tests to calculate differences
in continuous paired variables. The Friedman test with Dunn’s multiple comparison test
was applied for paired non-parametric tests. A two-tailed p-value < 0.05 was considered
statistically significant. One-tailed significant p-value < 0.05 was applied to the confusion
matrix in the correlation between the AI score and biological data, considering that the
correlation among these values was physiologically possible only in one direction.

3. Results
3.1. Ischemic Phase

The surgical intervention was performed under general anesthesia with continuous
monitoring of vital parameters (Figure S1). No significant impairments of vital parame-
ters were found during the ischemic phase. However, a significant change in urea and
blood urea nitrogen (BUN) was found, although the creatinine level showed no significant
changes (Figure S1a–o). HSI images showed an oxygenation decrease in both indexes
(StO2% and NIR%) during the ischemic phase, in congruence with the histological assess-
ment (Figure 2a). Before ligation, the perivenular region presented a regular hepatocellular
muralium without any ischemic morphological alteration. After 90 min of ischemia, the
parenchyma was characterized by weaker staining in some of the hepatocytes’ cytoplasm,
which appeared pale with a reduced volume and hyperchromatic nuclei. Capillary lac-
tate and AST showed a significant increase after 90 min of ischemia (4.1 ± 2.23 mmol/L,
p = 0.0102 and 67.50 ± 29.89 U/L, p = 0.0061 respectively) (Figure 2b,c). The quantitative
analysis of StO2% and NIR% showed a significant decrease with a minimum at 90 min
(15.57 ± 3.98%, p < 0.0001 and 10.90 ± 11.00%, p < 0.001 respectively) (Figure 2d,e). The
ischemic phase was confirmed by the congestion score, which was significantly higher
with a plateau phase and a maximum at 60 min (2.5 ± 0.577 a.u., p = 0.0015) (Figure 2f).
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A convolutional neural network (CNN) was trained to automatically classify each
pixel of HS images into two classes: liver tissue and non-liver tissue/other structures (called
liver segmentation CNN) (Figures 3a–c and S2a). The performance of liver segmentation
CNN was measured with HSI images from the control and ischemic phases using leave-one
patient-out cross-validation (LOPOCV). Class predictions (labels) were made for each pixel
in each HS image, and predictions from all images and all pixels were combined to produce
a normalized confusion matrix (Figure 3d). A sensitivity of 0.993 and a specificity of 0.997
were achieved (top left and bottom right entries in the confusion matrix respectively),
showing that the CNN could very accurately discriminate liver tissue from other organs in
all images.

Figure 3. AI-based training and evaluation in the ischemic phase. (a) Liver and non-liver spectral distributions showing
mean (central curve) and 1 s.d. (region). (b) Visualization of automatic tissue segmentation of liver and non-liver classes
with and without post-segmentation filtration. (c) Receiver operator characteristic (ROC) curves corresponding to liver
and non-liver classes, showing the trend relationship between false positive and true positive rates. (d) Confusion matrix
showing specificity and sensitivity of tissue segmentation CNN. (e) Spectral distributions of perfused and ischemic classes.
(f) Visualization of tissue automatic tissue characterization results with two classes (perfused and ischemic). (g) ROC curves
of tissue characterization CNN showing the relationship between false positive and true positive rates. (h) Confusion matrix
showing specificity and sensitivity of tissue characterization. (n = 5).

All pixels which were classified as liver by the liver segmentation CNN were processed
by the tissue characterization CNN to automatically predict if the liver was perfused or
ischemic (Figure 3e–g). Predictions were accumulated for all pixels and all HS images, and
performance was evaluated with a normalized confusion matrix (Figure 3h). This shows a
strong potential of the tissue characterization CNN to discriminate between perfused and
ischemic liver during the surgical procedure with high sensitivity (0.870) and specificity
(0.900). CNN predictions (AI score) were coherent with the experimental workflow. Indeed,
the ischemic phase was significantly lower after 30 min of occlusion when compared to
the control, and this difference was maintained after 60 and 90 min (p < 0.0001 for all
timepoints) (Figure S2b,c).

3.2. Reperfusion Phase

CNNs were evaluated on each reperfusion HS image using LOPOCV. The workflow
was identical to the processing of the HS images in the control and ischemic phases. First,
the liver recognition CNNs detected pixels belonging to the liver, and these were then
processed by the tissue characterization CNN to assess perfused or ischemic liver pixels.
For each HS image in control and reperfusion phases, a global perfusion AI score was
computed as the proportion of detected perfused pixels as compared to the total number
of detected liver pixels. A prediction score of 0 indicated total ischemia and 1 indicated
total perfusion. The scores for all pigs and timepoints are visualized in Figure 4a,b. The
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prediction score showed a common outcome for pigs 1, 2, and 3 (Figure 4a). The score
decreased gradually with a minimum value at 5 h of reperfusion (0.246, 0.222, 0.009 a.u.
respectively for pig 1,2,3) (Figure 4b). Pig 4 died after 2 h of reperfusion with a score of
0.003; pig 5 had the highest score of 0.959 at the end of the procedure, similar to the control
(0.940). Pigs 3 and 5 showed an opposite outcome after 5 h of reperfusion. StO2% and
NIR% parameters were lower in pig 3 and higher in pig 5 (8.14 ± 0.97, 38.32 ± 6.59 StO2%
and 0.04 ± 0.86, 47.20 ± 6.90 NIR%) (Figure 4c,d). Suzuki’s score presented a maximum
in pig 3 and a minimum in pig 5 (4.0 and 1.3 a.u. respectively) similarly to the AI score
(Figure 4e).

Figure 4. Reperfusion phase. (a) Automatic AI score of liver viability for each pig for control and reperfusion times.
(b) Visualization of AI scores for each pig as a function of time (y-axis was flipped to provide a better visual comparison
with Suzuki’s score (c,d) StO2% and NIR indexes (n = 5). (e) Suzuki’s score (n = 5). (f) Capillary lactate (n = 5). (g) AST
(n = 4). (h) ALT (n = 4). (i) HSI images and H&E images. Pig 2 showed a gradual parenchymal disruption; pig 4 died after
2 h, HSI and H&E showed tissue ischemia and parenchymal disruption respectively. Pig 5 was healthy at the end of the
procedure; here, HSI showed a perfused liver and H&E confirmed normal parenchyma. Pigs 1, 2, 3 were grouped (n = 3).
(j,k) Indexes of StO2% and NIR showed a significant decrease together with (l) the AI score. (m) Suzuki’s score and (n)
capillary lactates showed an opposite significant trend. Data are compared to the control, ns p > 0.05, * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001, (n = 5). Histology photos were taken with a Leica DM2000 LED microscope, magnification 40× and 10×, scale
bars 100 µm and 200 µm respectively.

Save from pig 5, all pigs showed a gradual damage increase. Capillary lactate was
higher in pig 3 and lower in pig 5 (10.60 and 0.70 mmol/L respectively) (Figure 4f).
Similarly, AST and ALT were high in pig 3 (879.00 U/L, AST, 62.00 U/L, ALT) and low
in pig 5 (46.00 U/L, AST, 45.00 U/L, ALT) (Figure 4g,h). In RGB images, which closely
correspond to the human eye evaluation, global color changes were slightly visible after
4 h of reperfusion (Figure 4i). The imaging of hyperspectral parameters (StO2%, NIR%)
appeared similar at time 0 (before ligation) and after 1 h of reperfusion. Considering that
the apparent red color corresponds to the maximum perfusion and the blue color to the
minimum one, after the second hour of reperfusion, all parameters gradually decreased,
reaching a minimum after 5 h similarly to the level showed after 90 min of ischemia
(Figure 4a). StO2% presented a higher level of ischemia as compared to NIR% (more
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diffused and darker blue). Setting NIR% against StO2% images, NIR% presented sharper
limits of the ischemic area, and a higher signal after the first hour of reperfusion was
found. The HS data showed more visible and well-defined changes as compared to the
RGB camera. Oxygenation measured with StO2% and NIR% significantly decreased in
both ischemic and reperfusion phases. The last HS image of pig 4 that died after 2 h of
reperfusion showed that the liver was not perfused, and H&E confirmed parenchymal
and microvascular disruption. Overall, after 5 h of reperfusion, the perivenular region
appeared necrotic, probably due to the ischemic damage with a detachment of hepatocytes
from the adjacent sinusoidal reticular support. Hepatocytes were reduced in volume
with acidophilic cytoplasm and pyknotic nuclei. A mix of inflammatory cells such as
lymphocytes and polymorphonuclear elements were visible in the parenchyma (Figure 4i).
Grouping pigs 1, 2, and 3, following the AI score, the statistical analysis showed that the
HS image quantification of StO2% and NIR% presented a significant decrease as compared
to the control (p = 0.0014 StO2%, p = 0.0003 NIR%) (Figure 4j,k). The AI score showed a
gradual decrease with a minimum after 5 h (0.160 ± 0.130 a.u., p < 0.0001) where Suzuki’s
score and capillary lactate concentration were significantly high (3.667 ± 0.3512 mmol/L,
p < 0.0001 and 6.1 ± 3.9 mmol/L, p = 0.0228 respectively) (Figure 4l–n).

Immunostaining for CD31 revealed stronger staining after 5 h of reperfusion as com-
pared to the control. HSI, H&E, and IHC were displayed together for better visualization
of the difference between the control and the damaged liver from different perspectives
(Figure 5). Pig 4 showed strong CD31 staining at 2 h and in the control (Figure S2d). Pig
5 showed a similar expression in the control and after the reperfusion phase (Figure S2e).
Endomicroscopy confirmed the presence of blood circulation at the end of the reperfusion
phase as shown in pigs 3 and 5 (Video S1,2 respectively for pigs 3,5). The liver parenchyma
appeared perfused in both pigs. However, pig 3 presented areas characterized by a slower
to absent blood flow on which the microcirculation system appears compromised. Both pigs
showed a correct vascular flow in the larger arterial and portal branches of the randomly
selected lobes.

Figure 5. HSI, H&E, and IHC of CD31 expression comparison. The staining for CD31 did not show
sinusoidal staining in the control group; this group corresponded to a high level of oxygenation in
the HSI image and a normal microarchitecture of the lobe in H&E. After 5 h of reperfusion, a higher
expression of CD31 was observed close to the central vein, which corresponded to a low level of
oxygenation in the HS image, a deeply congested microvasculature, and an overall parenchymal
disruption in H&E. Histology photos were taken with a Leica DM2000 LED microscope, magnification
40×, scale bar 100 µm (H&E), 160×, scale bar 25 µm (CD31).
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3.3. Correlation of HSI with Capillary Lactate

The correlation of HSI indexes with capillary lactate was significant and higher for
StO2% as compared to NIR% (Figure 6a). When the images were split into ischemic and
reperfusion phases, StO2% and NIR% showed different degrees of correlation. StO2%
correlated better with the reperfusion phase and NIR% showed a higher correlation for the
ischemic phase (Figure 6b,c). Finally, the AI score of the reperfusion phase was negatively
correlated with capillary lactates and Suzuki’s score (r = −0.78, p = 0.0320 and r = −0.96,
p = 0.0012). Additionally, Suzuki’s score and capillary lactates were positively correlated
(r = 0.86, p = 0.0135) (Figure 6d).

Figure 6. Correlation between optical and biological data. (a) Correlation between StO2%, NIR, and capillary lactates.
(n = 42) (b,c) StO2% and NIR correlation split into ischemic and reperfusion phases (n = 42). (d) Correlation matrix of AI
score, capillary lactates (mmol/L), and Suzuki’s score (n = 22 per each variable for 5 pigs). Data are expressed as mean ± s.d.
Spearman’s and Pearson’s correlation significance: * p ≤ 0.05, ** p ≤ 0.01.

4. Discussion
4.1. Ischemic Phase

In this study, we explored the potential of the AI-HSI analysis to predict liver viability
following a period of 5 h of reperfusion phase after 90 min of hypoxia performed through
the occlusion of the hepatic artery [49]. The warm ischemic period was found to be enough
to obtain parenchymal damage worsened by the reperfusion phase [42]. Hemodynamic
parameters, pH, and systemic oxygenation remained stable during ischemia. A small
increase in pCO2 was found. However, it was not statistically significant probably due to
its continuous delivery into the systemic circulation (Figure S1a–d) [28]. The glucose level
was constant during the ischemic phase, in congruence with the literature (Figure S1e) [27].
Liver ischemia-reperfusion injury is known to be the leading cause of acute kidney fail-
ure [50]. Although the creatinine increase was not significant, the BUN and urea increase
was statistically significant, suggestive of an early kidney dysfunction according to a previ-
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ous study (Figure S1f–h) [51]. No significant changes were found in liver functionality and
systemic lactate levels (Figure S1i–o).

HS images could identify the ischemic areas showing the potentiality to exceed the
capabilities of human vision which can distinguish only three main ranges corresponding
to cone visual pigments (from ~424 to ~563 nm) [52,53]. In our study, HS image AI analysis
used 100 bands from 500 to 1000 nm. The following interpretation and translation of relative
reflectance quantification at different bands into RGB visible changes via the algorithms
enhance the ability of the human eye to evaluate physiological changes (Figure 4i). The
image capture took only ~6 s to be ready for its interpretation, which is significantly much
faster than any other type of clinically available intraoperative assessment tool. In addition,
its simple application reduces the variable of the operator’s experience to a marginal value,
providing a fast and standardized data extraction. Processing time for each HS image was
approximately 1 s, indicating a minimal and acceptable delay to the surgeon for a potential
intraoperative tool.

The overall analysis of the ischemic phase confirmed the HAO model (Figures 2 and S1).
StO2% and NIR% indexes showed that ischemia was visible during HAO as compared to
the control (Figure 2a). StO2% showed a larger ischemic area, probably due to the higher
arterial blood flow which characterizes the hepatic tissue immediately beneath Glisson’s
capsule, which corresponds to the depth of StO2% analysis (~1 mm) [54,55]. NIR% images
showed sharper limits of the ischemic area, probably because at a depth of 3 to 5 mm,
the lobe is characterized by an increased arterial and portal branch, which almost equally
contributes to the oxygen supply [4]. This dual-depth analysis allows HSI to show the
differences in oxygenation and may help for a more comprehensive evaluation of the
hepatic microvascular circulation. The gross estimation of the mean reduction of StO2%
and NIR% was ~50%, which is close to the theoretical hepatic artery oxygen supply to the
liver [56]. The plateau phase highlighted by the congestion score was probably due to the
small flow maintained by the portal tract into the inferior vena cava (IVC) (Figure 2f).

Although the occlusion of the hepatic artery in the pig 5 was confirmed, as shown by
the observation made by the surgeon to check any anatomical variance, by the increase
in AST and local lactate (from 26.00 to 43.00 U/I, from 2.10 to 4.10 mmol/L respectively),
the AI-score assigned a high value like the control. This anomaly was confirmed by
histopathological analysis, CD31, confocal endomicroscopy, and blood tests which showed
the absence of microvascular failure. The reason why Pig 5 had a positive response to the
ischemic insult is not clear, but it was an interesting case that showed the ability of the
AI-score to predict a good outcome that could be considered as a positive control.

4.2. Reperfusion Phase

Five hours of reperfusion phase were considered sufficient for the observation of
possible hepatic damage (IRI early phase) and more than the intraoperative time necessary
for hepatic surgery [43]. Except for pig 5, systemic lactate levels showed an overall increase,
probably due to the flushing out of the presinusoidal capillary lactate into the IVC after the
re-establishment of arterial circulation (Figure S2f). Capillary lactate levels supported the
findings of hypoxia and the occurrence of the anaerobic metabolism during the ischemia
and reperfusion phases. The rapid decrease after the first hour of reperfusion was probably
due to the washout of the arterial blood flow. AST and ALT values were higher after
the first hour of reperfusion due to the inflammatory response and the hepatic vascular
damage observed in HSI images. The acute experimental design may have contributed
to the lack of a massive damage spread, which is likely to continue to develop during a
longer observation period (late IRI).

Oxygenation in both indexes appeared similar before ligation and after the first
hour of reperfusion, showing no statistically significant difference. This confirmed the
re-establishment of arterial blood perfusion. After 2 h of reperfusion, a visible decrease of
oxygenation was detected, indicating the beginning of vascular dysfunction. The gradual
reduction in oxygenation reached the same level of the ischemic phase at the end of



Diagnostics 2021, 11, 1527 14 of 19

reperfusion in both oxygen indexes (Figure 4i). This indicates that, after 5 h of reperfusion,
the vascular system was heavily compromised. The portion of the small intestine analyzed
in HSI images did not show any congestion, confirming that the portal branch was not
occluded [57].

When the sinusoids are damaged, the capillarization effect occurs highlighted by the
expression of CD31 [58]. Capillarization impedes the normal perfusion of molecules of
blood circulation from the lumen of sinusoids. The pericentral zone of the lobe is usually
the first one to be positive to CD31 given its distance from the portal triad, which increases
the sensitivity to low oxygenation [59,60]. In this study, LSECs appeared to express a
higher level of CD31 after 5 h of reperfusion when compared to the control (Figure 5).
Pigs 5 and 4 showed low to absent and high levels of CD31 staining in the control and
after the reperfusion phase respectively. This highlights the absence of capillarization in
pig 5 and a capillarization effect in pig 4. The capillarization of pig 4, confirmed by the
necrosis and microvascular disruption found in H&E in the control may contextualize
the early liver failure (Figure S2d,e). These results confirm the AI viability score and
corroborate the fact that when the AI-HSI score assigned a low score in the reperfusion
phase, this was associated with microvasculature damage. Future studies could be based
on the histopathological analysis damage of the whole organ, and this would help for the
quantification of the amount of necrotic parenchyma over the healthy tissue. In our study,
small biopsies were taken to prevent any damage to large vascular branches which could
introduce a bias in the HSI analysis.

Bile presents a spectra profile, which may interfere with the preset parameters of the
HSI camera which, to the best of our knowledge, are not compensated in order to obtain
absolute values of oxygenation close to the real ones [31]. Nevertheless, the correlation
of NIR% and StO2% with capillary lactates, which resulted in a significantly negative
correlation confirming the adequacy of the spectra sampling (Figure 6a–c). Consequently, it
may be possible to measure these two indexes as major indicators and predictors of capillary
lactates even though their absolute values may be influenced by bile flow fluctuation. We
also consider that the “bile effect” is probably of limited relevance in our study, considering
that the bile duct was left open. The AI score, which analyses the relative reflectance of
the full spectra (500–1000 nm) and is not based on proprietary preset, showed a significant
negative correlation with capillary lactates and Suzuki’s score (Figure 6d). This correlation
suggests that the analysis of the optical properties of the liver can infer organ viability in this
scenario. The possibility to discriminate between the ischemic phase and the reperfusion
damage would be the next appropriate step.

Dataset size is a very important factor when applying a deep learning approach. This
relatively small dataset prohibits end-to-end training of large CNNs with a large number
of trainable parameters. However, the test performances give strong empirical evidence
that a deep learning approach works well with this dataset despite its small size using the
proposed CNNs. We emphasize that using LOPOCV, data from the held-out animal was
never used for training. The strong results, particularly liver classification with a sensitivity
of 0.993 and a specificity of 0.997, show that the CNNs have learned well because they
generalize to data from animals not present in the training set. This has been possible
because the CNNs have been trained with mild regularization (weight decay), but more
importantly, the CNNs have a relatively small number of trainable parameters (32,444).
This greatly reduces the potential to overfit and it is much smaller compared to larger
CNNs typically used for image classification with RGB images such as ResNet50 [61]
with over 23 million trainable parameters. Recall that with RGB data, spatial context is
extremely important for good classification, which requires filters acting over relatively
large spatial distances. In contrast, in HSI, the rich reflectance information reduces the
need for spatial context. As a future work, we aim to study the benefit of enlarging the
capacity of the CNNs with a larger dataset. This can be both in terms of spatial window (to
add more spatial context information) and in terms of network depth (to add more abstract
spatio-spectral feature representations into the CNNs). Concerning the CNN model, we
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believe that a simpler classifier could also be used to perform well on the segmentation task.
However, our work shows that the exact same machine learning model (CNN) can be used
to effectively solve both tasks without any modification to the model’s design or training
process, which adds simplicity with a unified approach. As a follow-up study, we aim to
compare performance from the CNNs with several other machine learning models such as
Support Vector Machines (SVMs) or logistic regression, to investigate how performance is
affected by the specific choice of machine learning model.

In clinical routine, HAO is evaluated with US and CT in combination with blood
analysis. US is still the best clinical tool for postoperative HAO detection. A recent
comparison found that US was more accurate with a significantly higher specificity [62,63].
Despite its advantages, for patients with no visible hepatic artery flow, angiography or
a contrasted CT scan is performed to obtain a clear diagnosis. Overall, these techniques
present their own drawbacks and limitations. CT scan has contraindications such as
nephrotoxicity because of iodine contrast medium injection and allergic reactions. When
arterial revascularization is performed, there is a “grey zone” where it is not possible to
predict the future graft function and the potential consequences of biliary ischemia. In
contrast, US is operator-dependent and requires intensive training to be mastered. The
evaluation may be difficult due to a poor penetrance in case of distended bowel loops or
obesity, and due to anatomical variations. US cannot provide a precise global map of liver
oxygenation intraoperatively.

The need for an objective and convenient HAO analysis tool has driven researchers
to find alternative solutions. Pischke et al. reported a useful methodology for HAO
assessment by using an IscAlert PCO2 sensor for carbon dioxide [28]. They were able
to provide a real-time monitoring system, which could discriminate arterial from portal
occlusion. Although this approach was accurate and promising, it required the insertion of
a catheter, making this application slightly invasive. Additionally, the analysis of the level
of carbon dioxide can provide the level and type of hypoxia only, but not its localization.

The development of imaging methods such as fluorescence-based perfusion assess-
ment via the injection of indocyanine green (ICG) and near-infrared spectroscopy (NIRS)
showed promising results [23–26]. ICG clearance is achieved by the hepatocytes in the
parenchyma and excreted mostly in the bile through the enterohepatic circulation. For that
reason, its application in HAO assessment is theoretically more than appropriate. Addi-
tionally, ICG was already successfully applied in the study of bowel perfusion [64]. In 2011,
Levesque et al., in a study on 14 patients, showed that the ICG disappearance rate (PDR-
ICG) was significantly lower in patients with early and late HAO than in patients without
HAO in a HAT context [23]. Although the ICG PDR-based assessment showed positive
results, it has drawbacks such as the need for an injection, the time required for clearance,
the contraindications in iodine allergic patients, or those affected by thyrotoxicosis, and
its application in the clinical setting is not allowed in many countries. The application
of NIRS was the first approach for a non-invasive analysis of hemoglobin without the
need for the injection of an exogenous compound for the early diagnosis of HAO. In 2016,
Skowno et al. studied transcutaneous hepatic StO2% monitoring with the NIRS system
and they reported that it was not a reliable method for the detection of hepatic ischemia.
However, it was potentially useful in small pigs. Liver micro-dialysis was also tested
with positive results although this technique is still invasive and can change the surgical
workflow, which is not always possible [51]. Our AI HSI-based evaluation may help to
predict the extent of ischemia-reperfusion injury, indicating that arterial revascularization
is not sufficient to prevent liver failure or massive damage. This study could be the basis
for a future prediction model of patient outcomes in a clinical context. Although the HSI
system showed the ability to correlate optical and biological properties intraoperatively
that ultimately made possible the prediction of liver viability, it presents several limitations.

Currently, HSI can be employed exclusively as an intraoperative tool. One possible
application would be the detection of perfusion deficits after completion of the vascular
anastomoses during liver transplantation. Additionally, spectroscopic probes, acting
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within the same range of wavelengths and with a similar algorithm, could be inserted
percutaneously. US could be applied to guide the probes onto the liver’s surface providing
reliable perfusion information in selected clinical cases. These cases could be the ones that
are not suitable for US (poorly visible artery) or CT scan (iodine allergy or kidney failure).

The oxygenation map and the optical analysis represent only the first 3–5 mm of the
tissue; hence it is not possible to detect a specific problem of the vasculature in-depth
directly. Additionally, HSI cannot perform video. Our team partially overcame this
problem by developing hyperspectral enhanced reality (HYPER) to guide the demarcation
line assessment during the hepatectomy [29,38,39]. Finally, its ability to discriminate
between ischemia and congestion is not clear as well as the ability to distinguish different
ischemic timepoints. Although with its limitations, we consider that HSI-AI is a non-
invasive tool that can furnish additional information on liver viability intraoperatively
offering an automatic and standardized system.

5. Conclusions

The artificial-intelligence and hyperspectral imaging-based score could predict liver
viability during the ischemic and reperfusion phases with a significant correlation with
histopathological analysis, capillary lactate concentration, and CD31 staining. Further
analysis with different types of vascular occlusion and with an increased number of pigs
is necessary to confirm this data. HSI is a valuable non-invasive tool that can predict
biological properties of the reperfusion damage produced by HAO intraoperatively.
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