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Abstract: The development of bacterial resistance is an insistent global health care issue, especially
in light of the dwindled supply of new antimicrobial agents. This mandates the development of
new innovative approaches to overcome the resistance development obstacle. Mitigation of bacterial
virulence is an interesting approach that offers multiple advantages. Employing safe chemicals or
drugs to mitigate bacterial virulence is an additive advantage. In the current study, the in vitro
antivirulence activities of citrate were evaluated. Significantly, sodium citrate inhibited bacterial
biofilm formation at sub-MIC concentrations. Furthermore, sodium citrate decreased the production
of virulence factors protease and pyocyanin and diminished bacterial motility. Quorum sensing (QS)
is the communicative system that bacterial cells utilize to communicate with each other and regulate
the virulence of the host cells. In the present study, citrate in silico blocked the Pseudomonas QS
receptors and downregulated the expression of QS-encoding genes. In conclusion, sodium citrate
showed a significant ability to diminish bacterial virulence in vitro and interfered with QS; it could
serve as a safe adjuvant to traditional antibiotic treatment for aggressive resistant bacterial infections
such as Pseudomonas aeruginosa infections.

Keywords: Pseudomonas aeruginosa; sodium citrate; bacterial virulence; quorum sensing; bacterial
resistance; industrial developments

1. Introduction

Pseudomonas aeruginosa is a Gram-negative bacterium that causes broadly diverse
pathogenesis and illness [1,2]. P. aeruginosa causes aggressive infections to almost all body
systems; however, it causes serious surgical and burn wound infections, as well as infec-
tions of the lung, eye, bloodstream, and urinary tract [3,4]. This splendid capability of
P. aeruginosa to invade, defeat, and establish infections in host tissues is owed to a huge
arsenal of virulence factors. This virulence arsenal expands to involve the production of
a wide array of virulent extracellular pigments and enzymes such as protease, elastase,
hemolysins, and others for the formation of biofilms, motility, and resistance to oxidative
stress [5–7]. In a magnificent manner, P. aeruginosa employs several systems to orchestrate
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its virulence factors and regulate its pathogenesis [4]. For instance, P. aeruginosa utilizes
several types (types 1, 2, 3, 5, and 6) of secretion systems (SS). Although all types of se-
cretion systems are involved in P. aeruginosa virulence, T3SS plays an important role in
invasion and intracellular survival inside immune cells, as reviewed [8]. Furthermore, the
P. aeruginosa quorum-sensing (QS) system plays a key role in controlling the production of
virulence factors [9]. QS is the chemical language that bacterial cells use to communicate
with each other in an inducer–receptor manner [10]. In general, in Gram-negative bacteria,
autoinducers of the QS systems are produced by inducer synthetases that bind latterly to
surface QS receptors forming inducer–receptor complexes, which have the ability to regu-
late the expression of virulence factors encoding genes [10,11]. It is well documented that
QS controls biofilm formation, bacterial motilities, production of enzymes and pigments,
resistance to oxidative stress, and other virulence factors [8,9]. There is growing evidence
that targeting QS could guarantee mitigation of bacterial virulence [12,13].

Besides the vigorous virulence of P. aeruginosa, it develops phenotypic and/or geno-
typic resistance to almost all known antimicrobial classes [14]. This gives additional clinical
importance to P. aeruginosa to be listed among the most important pathogenic microbes [15].
Indeed, resistance development to antibiotics is a major health issue, and the decrease in
discovering new antibiotics worsens the situation, resulting in the need to discover new
innovative solutions [16,17]. Attenuating bacterial virulence is a reasonable option that
confers several advantages. First, mitigating bacterial virulence facilitates their eradication
by the immune system and, at the same time, does not affect bacterial growth; hence, it
does not induce resistance development [18–20]. The maximum benefit is accomplished by
employing safe drugs or natural drugs to avoid any probable toxicological effects. In this
direction, several drugs, chemical compounds, or natural products were screened for their
antivirulence activities [12,21–26].

Sodium citrate is commonly used as an emulsifier for oils and is used in food in-
dustries as an acidity regulator and sanitizer by lowering the pH, providing unsuitable
conditions for bacterial growth. It is also used in the collection of blood samples to pre-
vent clotting in storage [27,28]. Furthermore, sodium citrate is used to neutralize excess
acid in the urine and blood, as well as in the treatment of chronic kidney diseases and
metabolic acidosis [28]. Importantly, it was shown that sodium citrate has antimicrobial
activity, independent of pH, against oral Streptococcus pneumoniae and several oral bacteria
such as Fusobacterium nucleatum and Streptococcus mutans [27]. Importantly, it was reported
that sodium citrate (4%) could inhibit the formation of Klebsiella pneumoniae biofilms by
46.5% [29]. In another study, 4% sodium citrate in solution with 0.0015% nitroglycerin and
22% ethanol could eradicate biofilm formed by methicillin-resistant Staphylococcus aureus
(MRSA), methicillin-resistant Staphylococcus epidermidis (MRSE), vancomycin-resistant ente-
rococci (VRE), multidrug-resistant Klebsiella pneumoniae, P. aeruginosa, Acinetobacter baumannii,
Enterobacter cloacae, Escherichia coli, and Stenotrophomonas maltophilia, in addition to
Candida albicans and Candida glabrata. Furthermore, sodium citrate at a concentration of
4% was able to prevent the biofilm formation of K. pneumoniae, Staphylococcus aureus, and
Escherichia coli [30–33]. In this context, the antibiofilm and antivirulence activities of sodium
citrate were evaluated at concentrations of 4% and 5% against P. aeruginosa.

Taking into consideration that sodium citrate has no known toxicological reaction [28],
this study aimed to evaluate the antivirulence activities of sodium citrate. In the current
study, the antivirulence and anti-QS activities of sodium citrate against P. aeruginosa were
investigated in vitro and in silico.

2. Materials and Methods
2.1. Chemicals and Bacterial Strains

All microbiological media were purchased from Oxoid (Hampshire, UK). All the
used chemicals and sodium citrate were of pharmaceutical grade and purchased from
Sigma-Aldrich (St. Louis, MO, USA). P. aeruginosa PAO1 was used in this study
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2.2. Determination of Sodium Citrate Effect on Bacterial Growth

In order to ensure the antivirulence effect of sodium citrate is not due to the inhibition
of bacterial growth, the effect of sodium citrate at tested concentrations on P. aeruginosa
growth was assessed, as described previously [34]. Briefly, fresh P. aeruginosa cultures were
inoculated overnight in LB broth provided with 4% or 5% sodium citrate at 37 ◦C for 24 h.
The turbidites of P. aeruginosa cultures were measured at 600 nm, and viable bacterial cells
were counted.

2.3. Evaluation of Antibiofilm Activities of Sodium Citrate

The inhibition of P. aeruginosa biofilm formation by sodium citrate was assessed by the
crystal violet method [35]. One hundred microliter aliquots of P. aeruginosa suspension of an
approximate cell inoculum of 1 × 106 CFU/mL were transferred to microtiter plate wells in
the presence or absence of sodium citrate (4% and 5%). The nonadherent cells were washed
out after 24 h incubation at 37 ◦C, and the biofilm-forming cells were fixed with methanol
and stained with crystal violet (1%) for 20 min. The excess dye was washed out, plates were
air-dried, adhered dye was extracted with 33% glacial acetic acid, and absorbances were
measured at 590 nm using the Biotek Spectrofluorimeter (Winooski, VT, USA).

2.4. Assessment of Sodium Citrate Effect on P. aeruginosa Motility

The sodium citrate inhibition of P. aeruginosa swarming motility was performed as
described previously [17,36]. LB agar plates containing 4% or 5% sodium citrate and
control LB agar plates without sodium citrate were centrally inoculated with 5 µL of fresh
P. aeruginosa PAO1 culture prepared from an overnight culture in tryptone broth, and the
swarming zone was measured.

2.5. Determination of Sodium Citrate Effect on Pyocyanin Production

The virulent P. aeruginosa pyocyanin pigment was assayed in the presence or absence
of sodium citrate, as previously shown [37,38]. Ten microliter aliquots of P. aeruginosa
overnight cultures (adjusted to OD600 of 0.4) were mixed with 1 mL of LB broth provided
with sodium citrate (4% or 5%). After 48 h incubation at 37 ◦C, the Eppendorf tubes were
centrifuged, and the absorbances of pyocyanin pigment in the supernatants were measured
at 691 nm.

2.6. Evaluation of Inhibitory Effect on Protease Activity

The skim milk agar method was used to assess the inhibitory effect of sodium citrate
on the activity of protease [39]. P. aeruginosa overnight cultures in the presence or absence
of sodium citrate (4% or 5%) were centrifuged to obtain the extracellular protease in the
supernatants. One hundred microliters of the supernatants was placed in the wells prepared
in skim milk (5%) agar plates. After 24 h incubation at 37 ◦C, the clear zones representing
the proteolytic activity were measured.

2.7. Assessment of Sodium Citrate Effect on QS-Encoding Genes

A quantitative real-time PCR was performed to attest to the effect of sodium cit-
rate on the expression of QS-encoding genes in P. aeruginosa. Citrate-treated and un-
treated overnight cultures of PAO1 at 37 ◦C were prepared, and the pellets were collected
by centrifugation at 12,000× g for 2 min. The pellets were resuspended in Tris–EDTA
buffer with lysozyme (100 µL) and incubated for 5 min at 25 ◦C. The lysis buffer with
β-mercaptoethanol was added and mixed well. The RNA of P. aeruginosa cultures treated
or not with sodium citrate 5% was extracted (Purification Kit Gene JET RNA, Thermo
Scientific, Waltham, MA, USA) and stored at −80 ◦C as described [40]. The expression
levels were normalized to the housekeeping gene ropD, and the primers are listed in Table 1.
The cDNA was synthesized using a high-capacity cDNA reverse transcriptase kit (Applied
Biosystem, Waltham, MA, USA) and amplified using the SYBR Green I PCR Master Kit
(Fermentas, Waltham, MA, USA) in a Step One instrument (Applied Biosystem, Waltham,
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MA, USA). A melting curve was established according to the manufacturer, and the relative
expressions were calculated using the comparative threshold cycle (∆∆Ct) method [41].

Table 1. Sequences of the used primers in this study [17].

Target Gene Sequence (5′–3′)

lasI For: CTACAGCCTGCAGAACGACA
Rev: ATCTGGGTCTTGGCATTGAG

lasR For: ACGCTCAAGTGGAAAATTGG
Rev: GTAGATGGACGGTTCCCAGA

rhlI For: CTCTCTGAATCGCTGGAAGG
Rev: GACGTCCTTGAGCAGGTAGG

rhlR For: AGGAATGACGGAGGCTTTTT
Rev: CCCGTAGTTCTGCATCTGGT

pqsA For: TTCTGTTCCGCCTCGATTTC
Rev: AGTCGTTCAACGCCAGCAC

pqsR For: AACCTGGAAATCGACCTGTG
Rev: TGAAATCGTCGAGCAGTACG

rpoD For: GGGCGAAGAAGGAAATGGTC
Rev: CAGGTGGCGTAGGTGGAGAAC

2.8. In Silico Assessment of Sodium Citrate Ability to Bind P. aeruginosa QS Receptors

The P. aeruginosa LasR receptor (PDB ID: 2UV0) [42], RhlR receptor model (ID: P54292) [7],
and citrate [43] were downloaded, then prepared using AutoDockTools [44] in accordance
with our prior procedures [7]. AutoDock Vina [45] was used for docking, while Discovery
studio [46] was used for both 3D visualization and 2D schematic presentation.

2.9. Statistical Analysis

All the performed experiments were conducted in triplicates, and the data are ex-
pressed as means ± standard errors. One-way ANOVA test, followed by Tukey’s post-test,
was used (unless mentioned) to test the statistical significance, where p ≤ 0.05 was consid-
ered significant.

3. Results
3.1. Sodium Citrate at Concentrations of 4% or 5% Does Not Affect P. aeruginosa Growth

To exclude the effect of sodium citrate on bacterial growth, the optical densities of
P. aeruginosa growth were measured in the presence or absence of 4% or 5% sodium citrate.
There was no significant difference between bacterial growth in the presence or absence
of sodium citrate (Figure 1). The bacterial cell count was performed, and there were no
significant differences between counts of P. aeruginosa cultures treated or not with sodium
citrate (Supplementary Figure S1).

3.2. Sodium Citrate Inhibits P. aeruginosa Biofilm Formation

To assess the sodium citrate antibiofilm effect, the absorbances of stained biofilm-
forming cells with crystal violet were measured in the presence or absence of 4% or
5% sodium citrate. The results were expressed as percentage change from untreated
P. aeruginosa control. Sodium citrate in concentrations of 4% or 5% significantly decreased
biofilm formation by 74.64% and 76.02%, respectively (Figure 2).

3.3. Sodium citrate Diminishes P. aeruginosa Motility

P. aeruginosa motility ensures its spread in the host tissues and enhances its pathogenic-
ity [7]. The diameters of swarming motility of P. aeruginosa on agar plates provided with
4% or 5% sodium citrate were measured. Sodium citrate at concentrations of 4% or 5%
significantly diminished bacterial motility by percentages of 80% and 87.6%, respectively
(Figure 3).
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3.4. Sodium Citrate Decreases the P. aeruginosa Pigment Pyocyanin

Pyocyanin, the bluish-green pigment produced by P. aeruginosa, has emerged as an
important virulence factor that aids in killing host cells, as well as competitor microbes [47].
The absorbance of the produced pyocyanin was measured in P. aeruginosa treated or not
with sodium citrate (4% or 5%). The data are presented as percentage change from untreated
control. Sodium citrate significantly reduced pyocyanin production by 78.5% and 81.5% for
concentrations of 4% and 5%, respectively (Figure 4).
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Figure 1. Sodium citrate does not affect P. aeruginosa growth. The optical densities of P. aeruginosa
growth were measured at OD600 after 24 h incubation in the presence and absence of 4% or 5%
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Microorganisms 2022, 10, x FOR PEER REVIEW 5 of 14 
 

 

PA
O

C
itr

at
e 

4%

C
itr

at
e 

5%

0.0

0.2

0.4

0.6

0.8

1.0

ns ns

O
D

 a
t 

6
0
0
 n

m

 

Figure 1. Sodium citrate does not affect P. aeruginosa growth. The optical densities of P. aeruginosa 

growth were measured at OD600 after 24 h incubation in the presence and absence of 4% or 5% so-

dium citrate. ns: non-significant. 

3.2. Sodium Citrate Inhibits P. aeruginosa Biofilm Formation 

To assess the sodium citrate antibiofilm effect, the absorbances of stained biofilm-

forming cells with crystal violet were measured in the presence or absence of 4% or 5% 

sodium citrate. The results were expressed as percentage change from untreated P. aeru-

ginosa control. Sodium citrate in concentrations of 4% or 5% significantly decreased bio-

film formation by 74.64% and 76.02%, respectively (Figure 2). 

C
on

tr
ol

 P
A
O

C
itr

at
e 

4%

C
itr

at
e 

5%

0

20

40

60

80

100

*** ***

%
o

f 
B

io
fi

lm
 f

o
rm

a
ti

o
n

 

Figure 2. Sodium citrate inhibits biofilm formation in P. aeruginosa. The absorbances of crystal-vio-

let-stained biofilm-forming cells were measured. Sodium citrate in 4% or 5% significantly decreased 

biofilm formation (*** = p < 0.0001). 
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3.5. Sodium Citrate Decreases the Production of Protease

P. aeruginosa produces a wide array of extracellular virulent enzymes to establish
and spread its infection into the host tissues. Protease facilitates the spread of bacterial
infection, and the decrease in its production mitigates bacterial virulence [2]. The sim
milk agar method was used to assess the effect of sodium citrate on protease activity. The
extracellular protease collected from P. aeruginosa cultures treated with or without 4% or 5%
sodium citrate was poured in wells made in skim milk agar plates, and the clear zones were
measured. Sodium citrate significantly decreased the production of protease by 58.7% at a
concentration of 4%, and protease inhibition was 100% at a concentration of 5% (Figure 5).
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3.6. Sodium Citrate Anti-QS Activities
3.6.1. Sodium Citrate Downregulates the P. aeruginosa QS Genes

P. aeruginosa mainly utilizes three QS systems to regulate the production of its virulence
factors [48]. The expression of the encoding genes of the autoinducer synthetases and
their receptors in the three QS systems were quantified using RT-PCR in the presence or
absence of 5% sodium citrate. The experiment was repeated in triplicate, the fold change
of expression levels was represented as mean ± SD, and Student’s t-test was employed to
attest to the significance. The current data revealed a significant reduction in the expression
of all the QS-encoding genes in the presence of sodium citrate (Figure 6).

3.6.2. Sodium Citrate Interferes with the Binding of Autoinducers to P. aeruginosa
QS Receptors

The quorum-sensing proteins LasR and RhlR were identified as potential targets for
P. aeruginosa virulence inhibition [49]. A molecular docking investigation was performed to
reveal the binding mechanism for citrate as a potential inhibitor for LasR and RhlR. Molecular
docking demonstrated the good binding affinity of citrate for LasR (affinity = −5.9 Kcal/mol)
that was comparable to the natural ligand (affinity = −6.1 Kcal/mol). Additionally, citrate
had a respectable binding affinity to RhlR (affinity =−5.3 Kcal/mol) when related to C4-HSL
(affinity = −5.8 Kcal/mol). The key interactions of citrate with LasR and RhlR are presented
in Figures 7 and 8, respectively.
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Sodium citrate significantly decreased the expression of all QS-encoding genes (*** = p < 0.0001).
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representation (left) and 2D Schematic interaction (right). Citrate could bind with the RhlR receptor
and interfere with the P. aeruginosa QS systems.

Citrate had attractive charges with Arg61 and Arg112 for LasR and RhlR, respectively.
Inside the LasR active site, citrate had a pi-anion interaction with Trp88. In addition, H-
bonding with Tyr64, Thr115, and Ser129 was observed with the oxygen of the carboxylate
groups of citrate into LasR, while only Trp108 formed an H-bond with citrate inside the
active site of RhlR. All these mentioned interactions, besides the hydrophobic interactions,
shown in Figures 7 and 8 contributed to the affinity of citrate to LasR and RhlR targets as a
potential quorum-sensing inhibitor.

4. Discussion

In this work, the antivirulence activity of sodium citrate against P. aeruginosa was
assessed. P. aeruginosa is an excellent bacterial model to understand bacterial virulence, not
only because of its arsenal of virulence factors but also its remarkable ability to develop
resistance to different classes of antibiotics [2,4,15,50,51]. Antivirulence therapy is based
on using a safe adjuvant to mitigate bacterial virulence without affecting bacterial growth.
This approach is much less likely to lead to the emergence of resistance. Moreover, it
enhances the immune system to eradicate microbial infection and augment antibiotic
activity [9,17,52].

To exclude the probability that the antivirulence activity of sodium citrate is due to
the inhibition of bacterial growth, the effect of sodium citrate at selected concentrations on
P. aeruginosa growth was investigated, and sodium citrate did not interfere with bacterial
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growth. This means all subsequent antivirulence activities are not due to the inhibition
of bacterial growth and are apart from the acidification influence of sodium citrate on the
surrounding medium. The bacterial biofilms are additional obstacles to efficient antibiotic
treatment, as observed in chronic and nosocomial infections, and so the biofilm eradication
is a golden target in such infections [53,54]. The present findings showed the significant
ability of sodium citrate to inhibit the biofilms formed by P. aeruginosa to more than
70% at concentrations of both 4% and 5%. Bacterial motility is an important structural
virulence factor that eases the spread of bacterial infection and is associated with biofilm
formation [20,29,54,55]. P. aeruginosa is peritrichous and can swim, swarm, and slide on
solid surfaces [7,56]. Sodium citrate significantly prevented P. aeruginosa swarming at both
selected concentrations.

P. aeruginosa pathogenesis is accomplished by employing diverse enzymes such as
proteases, lipases, hemolysins, elastase, and others [4,17]. Protease aids bacteria to de-
stroy the host tissue, conferring great ability for infection spread and conquering host
defense [25,57]. Sodium citrate at 4% significantly diminished the activity of protease by
P. aeruginosa; however, this inhibition was complete at a concentration of 5%. Besides
enzymes, P. aeruginosa produces its characteristic bluish-green pigment pyocyanin, the roles
of which in the virulence and survival of P. aeruginosa are well documented [37,47,58]. Our
findings showed that sodium citrate at 4% or 5% could significantly reduce the production
of pyocyanin.

Bacterial QS is used by bacterial cells to orchestrate the expression of virulence factors
during the course of infection [5]. Both Gram-negative and -positive bacterial cells depend
on QS systems to orchestrate the expression of virulence factors during the course of infec-
tion [24,59]. In Gram-negative, a wide array of autoinducers is produced and released to
the surrounding niche, where they bind to their specific cognate receptors [26,60]. Then, the
autoinducer–receptor complex binds to a specific DNA sequence to regulate the expression
of virulence genes [34,60]. For instance, QS receptors LuxR, which are widely detected
in different Gram-negative genera, bind to autoinducers to form complexes that bind
to short DNA sequences on the bacterial chromosome called lux boxes to regulate their
downstream virulent genes [61]. The QS system controls diverse P. aeruginosa virulence fac-
tors, including biofilm formation, motility and production of pyocyanin, and extracellular
enzymes such as protease, as extensively documented [60,62–64]. The anti-QS activity of
sodium citrate was assessed genotypically, and it significantly downregulated P. aeruginosa
QS genes. Citrate downregulated the expression of the main three QS-receptor-encoding
genes in P. aeruginosa lasR, rhlR, and pqsR, in addition to decreasing the production of
inducer-synthetase-encoding genes lasI. rhlI, and pqsA. Furthermore, and in agreement
with the above results, sodium citrate binds to P. aeruginosa QS receptors, competing with
autoinducers in the in silico study.

These findings declare the antivirulence activities of sodium citrate at concentrations
of 4% or 5%. The antivirulence and antibiofilm activities of sodium citrate could be owed to
interference with QS systems, as sodium citrate binds to QS receptors and downregulates
the expression of QS-encoding genes. As declared previously, sodium citrate was used
efficiently alone or in combinations to eradicate the biofilms formed by different bacterial
strains on inanimate objects or on living tissues [27]. The safety plus ability to diminish
bacterial virulence at low concentrations indicates the possible application of sodium citrate
as an adjuvant to traditional antibiotics in the treatment of aggressive bacterial infections
caused by P. aeruginosa.

5. Conclusions

Conquering bacterial resistance requires looking for new approaches such as using
efficient adjuvants to traditional antibiotics. These agents must possess some criteria, be
safe, and not affect bacterial growth to avoid bacterial resistance development. This study
evaluated the antivirulence activities of sodium citrate against P. aeruginosa. The present data
showed the significant in vitro ability of sodium citrate to mitigate bacterial virulence, inhibit-
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ing biofilm formation and motility and reducing the production of P. aeruginosa pyocyanin
pigment and the activity of the protease enzyme. The antivirulence activities of citrate were
attributed to its ability to interfere with QS systems. This study proclaims the possible
application of sodium citrate as an antivirulence agent and as an adjuvant to antibiotics.
However, future work is needed to confirm the antivirulence activity in animal models.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms10051046/s1, Figure S1: Viable count of the bacterial
cells in the presence or absence of citrate after several time intervals; Table S1: Mean absorbances of
pyocyanin in citrate-treated and untreated culture supernatants at 691 nm; Table S2: Mean absorbances
of biofilm cells in citrate-treated and untreated culture supernatants at 590 nm. Table S3: Fold expression
of QS-encoding genes in the presence or absence of 5% citrate.
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