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Abstract. Prostate cancer (Pca) is the most frequent 
urological malignancy in men worldwide. dna methylation 
has an essential role in the etiology and pathogenesis of Pca. 
The purpose of the present study was to identify the aberrantly 
methylated-differentially expressed genes and to determine 
their potential roles in Pca. The important node genes identi-
fied were screened by integrated analysis. Gene expression 
microarrays and gene methylation microarrays were down-
loaded and aberrantly methylated-differentially expressed 
genes were obtained. enrichment analysis and protein-protein 
interactions (PPi) were obtained, their interactive and visual 
networks were created, and the node genes in the PPi network 
were validated. a total of 105 hypomethylation-high expres-
sion genes and 561 hypermethylation-low expression genes 
along with their biological processes were identified. The top 
10 node genes obtained from the PPI network were identified 
for each of the two gene groups. The methylation and gene 
expression status of node genes in TCGA database, GEPIA 
tool, and the HPa database were generally consistent with 
those of our results. In conclusion, the present study identified 

20 aberrantly methylated-differentially expressed genes in 
Pca by combining bioinformatics analyses of gene expres-
sion and gene methylation microarrays, and concurrently, the 
survival of these genes was analyzed. notably, methylation is a 
reversible biological process, which makes it of great biological 
significance for the diagnosis and treatment of prostate cancer 
using bioinformatics technology to determine abnormal 
methylation gene markers. The present study provided novel 
therapeutic targets for the treatment of Pca.

Introduction

Globally, prostate cancer (PCa) is the second most frequent 
cancer. It is the fifth leading cause of cancer‑related deaths 
in males, and is the most frequently diagnosed cancer 
among men in more than half of all countries (1). it has been 
established that age, race, and family history are risk factors 
associated with Pca (2). Previous studies have implicated the 
initiation and development of Pca as a multistep complex 
process, driven by changes in the expression of a large number 
of genes with epigenetic alterations influencing the expression 
of crucial genes (3,4).

among the epigenetic modifications, methylation, 
phosphorylation, acetylation, and ubiquitination have been 
identified (5,6). A study by De Carvalho et al (7) revealed 
that dna methylation can genetically alter gene expression 
without a change in the dna sequence. Hypermethylation of 
a promoter may downregulate gene expression and influence 
the progression of human cancer (8). recently, studies have 
revealed that dna methylation can identify invasive lesions 
and silence tumor suppressor genes in Pca, providing a new 
direction for the treatment of Pca (9,10).

Bioinformatics analysis based on high-throughput platform 
microarray technology has been extensively used to predict 
biomarkers of cancers over the last few decades (11-13). 
numerous gene expression microarrays have been used 
to identify potential target genes and their functions in 
Pca (14-16). However, the aforementioned studies focused on 
gene expression microarrays, the number of which is limited, 
preventing the accurate identification of target genes and their 
functions in Pca. Therefore, an approved approach includes 
the combination of gene expression and gene methylation 
microarray data.
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The purpose of this study was to identify aberrantly 
methylated-differentially expressed genes based on gene 
expression and gene methylation microarray datasets. The 
important node genes were screened by integrated analysis 
with the goal of identifying a novel therapeutic target for the 
treatment of Pca. The screening steps for determining the 
aberrantly methylated-differentially expressed genes in Pca 
are summarized in Fig. 1.

Materials and methods

Data sources. in the present study, the raw data were 
selected from the Gene Expression Omnibus (GEO), which 
is an international public repository that can be found on 
the national center for Biotechnology information (ncBi) 
home page (https://www.ncbi.nlm.nih.gov/geo/). Microarray 
gene expression data found at accession GSE55945 involved 
data from 13 Pca samples and eight normal samples, and 
accession GSE69223 encompassed 15 PCa samples and 
15 normal samples, with the platform GPL570 of the two 
datasets ([HG‑U133_Plus_2] Affymetrix Human Genome 
U133 Plus 2.0 Array). Methylation profile data in GSE47915 
comprised four Pca samples and four normal samples, while 
GSE76938 contained 73 PCa samples and 63 normal samples. 
The platform of both datasets (GSE47915 and GSE76938) 
was based on GPL13534 (Illumina HumanMethylation450 
Beadchip).

Data processing. The raw data analysis was carried out using 
GEO2R, which can separately screen differentially methyl-
ated genes (DMGs) and differentially expressed genes (DEGs) 
between normal and cancer prostate sample datasets (17). 
DMGs and DEGs were obtained using the criteria|t|>2 and 
P<0.05. The intersection of DMGs and DEGs was derived 
using the Funrich Venn function (http://www.funrich.
org) (18), followed by obtaining the hypomethylation-high 
expression genes and hypermethylation-low expression genes.

Gene ontology (GO) term enrichment analysis. The GO 
terms, including the hypomethylation-high expression genes 
and hypermethylation-low expression genes, were enriched 
using the database for annotation, Visualization, and 
integrated discovery (daVid, http://david.niaid.nih.gov), and 
P‑values <0.05 were considered statistically significant. The 
chord plots from the GO results were created using R language 
with ggplot2 and GOplot packages (19).

Construction of PPI networks. Protein-protein interactions 
(PPi) are critical events in signaling pathways, especially when 
interpreting the molecular mechanisms of cellular activities 
during carcinogenesis. The PPi relationships of the hypo-
methylation-high expression genes and hypermethylation-low 
expression genes were obtained by Funrich, and their interac-
tive and visual networks were created using cytoscape v3.5.0 
software (https://cytoscape.org/) (20).

Node gene validation. Gene expression profiling data 
(HTSeq-FPKM) and methylation sequencing data (illumina 
Human Methylation 450) were downloaded from the cancer 
Genome Atlas (TCGA) database (https://cancergenome.nih.

gov/). DMGs and DEGs were obtained using the criteria 
|t|>2 and P<0.05. The hypomethylated‑high expression genes 
and hypermethylated-low expression genes obtained from 
the GEO database were respectively validated in TCGA 
database, and the methylation and gene expression status of 
the top ten node genes were also validated. Subsequently, the 
expression status, translational levels and the mrna levels 
of the top ten node genes were validated using the Gene 
Expression Profiling Interactive Analysis (GEPIA; http://
gepia. cancer-pku.cn) and The Human Protein atlas database 
(HPa; https://www.proteinatlas.org/), respectively. in addi-
tion, the Disease‑Free Survival (RFS) method of the GEPIA 
online tool was used to analyze 20 aberrantly-methylated 
genes including hypomethylated-high expression genes and 
hypermethylated‑low expression genes. Group cutoff was set 
as Quartile (Cutoff‑High (%) was 75% and Cutoff‑Low (%) 
was 25%). The confidence interval (CU) was 95%. High and 
low expression genes were respectively represented in red and 
blue colour (21,22).

Results

Methylated DEGs in PCa screening results. a total of 
3,550 high-expression and 3,706 low-expression genes were 
obtained from GSE55945, while 4,055 high‑expression and 
4,412 low‑expression genes were obtained from GSE69223. In 
addition, 10,209 hypermethylated and 5,207 hypomethylated 
genes were obtained from GSE47915 and 2,959 hypermeth-
ylated and 1,268 hypomethylated genes were obtained from 
GSE76938 by GEO2R. Using the FunRich Venn function, 
105 hypomethylation-high expression genes and 561 hyper-
methylation‑low expression genes were identified, as revealed 
in Fig. 2.

GO term enrichment analysis. The top six GO annotation 
results of aberrantly methylated-differentially expressed 
genes are summarized in Table i. The ontology enrich-
ment analysis of hypomethylation-high expression genes is 
presented in Fig. 3 in the form of cluster chord diagrams. 
The diagrams of cluster chord a-d, e-F and i-l respectively 
show the biological processes, cellular components and 
molecular functions of GO analysis. The four columns of 
chord diagrams include the first column including A, E and I, 
the second column including B, F and J, the third column 
including C, G and K, and the fourth column including D, H 
and L respectively enriched the GO of GSE47915, GSE55945, 
GSE69223 and GSE769938 datasets. Similarly, Fig. 4 
reveals the enrichment of hypermethylation-low expression 
genes. among the hypomethylation-high expression genes, 
the biological processes (BP) were mainly associated with 
translational initiation, translation, SrP-dependent co-trans-
lational protein targeting to membrane, ribosome biogenesis, 
regulation of oxidative stress-induced intrinsic apoptotic 
signaling pathways, and viral transcription. The major cell 
components (cc) included: cytosol, large ribosomal subunit, 
extracellular exosome, cytosolic large ribosomal subunit, 
mitochondrial membrane, and neuronal cell body, with 
the most important being the cytosol. The molecular func-
tions (MF) were primarily focused on GTPase activator 
activity, ribosome structure, protein histidine kinase activity, 
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protein homodimerization activity, protein binding, and alde-
hyde dehydrogenase [NAD(P)+] activity.

For the hypermethylation-low expression genes, cell adhe-
sion, extracellular matrix organization, response to hypoxia, 

Figure 1. Flow chart of aberrantly methylated‑differentially expressed genes in prostate cancer. DEGs, differentially expressed genes; DMGs, differentially 
methylated genes; GO, Gene Ontology; PPI, protein‑protein interactions; DAVID, Database for Annotation, Visualization, and Integrated Discovery; TCGA, 
The Cancer Genome Atlas; GEPIA, Gene Expression Profiling Interactive Analysis; HPA, Human Protein Atlas.
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muscle contraction, positive regulation of cell migration, and 
regulation of phosphatidylinositol 3-kinase signaling were the 
predominant BP. The cc of these genes were primarily distrib-
uted in focal adhesions, Z discs, proteinaceous extracellular 

matrices, other extracellular matrices, and the cytoskeleton. 
The MF mainly included actin binding, integrin binding, 
collagen binding, actin filament binding, signal transducer 
activity, and scaffold protein binding.

Figure 2. identification of aberrantly methylated-differentially expressed genes in prostate cancer. (a) Hypomethylation-high expression genes. 
(B) Hypermethylation-low expression genes. 

Figure 3. Gene Ontology analysis of the hypomethylation‑high expression genes. Chord plot revealing a circular dendrogram of the clustering of the expression 
profiles. Cluster revealing genes and their (A‑D) assigned biological process, (E‑H) cellular component and (I‑L) molecular function terms are connected by 
ribbons. Blue to red on the left side of the chord plot represent logFc. each color from red to purple on the right side of the chord plot represents a different 
term. A, E and I reveal the expression in the methylated GSE47915 dataset. B, F and J reveal the expression in the GSE55945 dataset. C, G and K reveal the 
expression in the GSE69223 dataset. D, H and L reveal the expression in the methylated GSE76938 dataset. 
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Selection of PPI network node genes. Funrich was used to 
predict the relationships between genes and proteins of the 
hypomethylation-high expression and hypermethylation-low 
expression gene groups. Subsequently, their interaction networks 
were visualized by cytoscape v3.5.0 software as revealed 
Fig. 5a and B. cytoscape is a software focused on open source 

web visualization and analysis. its core is to provide the basic 
functional layout and query network, and is based on the combi-
nation of basic data into a visual network. derived from systems 
biology, cytoscape is used to integrate biomolecular interaction 
networks with high-throughput gene expression data and other 
molecular state information. its most powerful function is for the 

Table I. GO analysis of aberrantly methylated‑differentially expressed genes in prostate cancer.

a, Hypomethylation and high expression    

GO  Gene Percentage
analysis Term count (%) P‑value

BP Translational initiation 5 4.76 5.15x10-3

BP Translation 6 5.71 9.21x10-3

BP SrP-dependent co-translational protein targeting to membrane 4 3.81 1.21x10-2

BP ribosome biogenesis 3 2.86 1.43x10-2

BP regulation of oxidative stress-induced intrinsic apoptotic signaling pathway 2 1.90 1.51x10-2

BP Viral transcription 4 3.81 1.92x10-2

cc cytosol 34 32.38 1.94x10-5

cc large ribosomal subunit 3 2.86 2.07x10-3

cc extracellular exosome 25 23.81 3.56x10-3

cc cytosolic large ribosomal subunit 4 3.81 4.49x10-3

cc Mitochondrial membrane 4 3.81 1.10x10-2

cc neuronal cell body 6 5.71 1.91x10-2

MF GTPase activator activity 7 6.67 2.67x10-3

MF Structural constituent of ribosome 6 5.71 5.00x10-3

MF Protein histidine kinase activity 2 1.90 9.93x10-3

MF Protein homodimerization activity 10 9.52 1.03x10-2

MF Protein binding 55 52.38 1.56x10-2

MF Aldehyde dehydrogenase [NAD(P)+] activity 2 1.90 2.95x10-2

B, Hypermethylation and low expression    

BP cell adhesion 39 6.96 2.49x10-8

BP extracellular matrix organization 23 4.11 1.46x10-7

BP response to hypoxia 18 3.21 2.09x10-5

BP Muscle contraction 14 2.50 2.24x10-5

BP Positive regulation of cell migration 18 3.21 4.97x10-5

BP regulation of phosphatidylinositol 3-kinase signaling 11 1.96 1.25x10-4

cc Focal adhesion 53 9.46 6.76x10-20

cc Z disc 22 3.93 3.87x10-11

cc Proteinaceous extracellular matrix 32 5.71 1.08x10-10

cc extracellular matrix 30 5.36 2.00x10-8

cc actin cytoskeleton 25 4.46 3.70x10-8

cc cytoskeleton 32 5.71 2.49x10-7

MF actin binding 28 5.00 1.03x10-7

MF integrin binding 15 2.68 3.34x10-6

MF collagen binding 11 1.96 1.15x10-5

MF Actin filament binding 15 2.68 4.73x10-5

MF Signal transducer activity 17 3.04 4.92x10-4

MF Scaffold protein binding 8 1.43 5.61x10-4

GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function.
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Figure 4. Gene Ontology analysis of the hypermethylation‑low expression genes. Chord plot revealing a circular dendrogram of the clustering of the expression 
profiles. Cluster revealing genes and their assigned (A‑D) biological process, (E‑H) cellular component and (I‑L) molecular function terms are connected by 
ribbons. Blue to red on the left side of the chord plot represent logFc. each color from red to purple on the right side of the chord plot represents a different 
term. A, E and I reveal the expression in the methylated GSE47915 dataset. B, F and J reveal the expression in the GSE55945 dataset. C, G and K reveal the 
expression in the GSE69223 dataset. D, H and L reveal the expression in the methylated GSE76938 dataset.

Figure 5. PPi network of the aberrantly methylated-differentially expressed genes. (a) PPi network of the hypomethylation-high expression genes. (B) PPi 
network of the hypermethylation-low expression genes. The distribution degree of nodes is indicated by the color of the square blocks, and the darkness of the 
color indicates the significance of the nodes. PPI, protein‑protein interaction.
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analysis of large-scale PPis, protein-dna and genetic interac-
tions (21). The top ten node genes in the hypomethylation-high 
expression and hypermethylation-low expression gene groups 
are listed separately in Tables ii and iii, based on the degree of 
distribution of the nodes.

Validation of the node genes. To further validate the present 
results, TCGA database, the GEPIA tool, and the HPA 
database were employed. Venn diagram analysis of the 
GEO database and TCGA database is presented in Fig. 6, 
from which it can be observed that most of the aberrantly 
methylated and expressed genes in GEO were contained 
within TCGA dataset. The methylation and gene expression 
status of the top ten node genes were similar between GEO 
and TCGA databases, as revealed in Tables IV and V. Using 
the GEPIA tool and HPA database, the expression of node 
genes in tumor and normal prostate samples were further veri-
fied and the immunohistochemical staining combined with 
patient information, node gene expression, and the mrna 
levels, respectively, were obtained, as revealed in Figs. 7 and 8 
and Tables ii and iii. in Figs. 7 and 8, immunohistochemical 
images and data were generated by the online GEPIA tool, 
log2(TPM+1) for log-scale was used to express gene expression 

on the y-axis. red and gray were set as the colors of tumor and 
normal data sets respectively. The size of jitter across the box 
was as 0.4. it was revealed that the expression of node genes 
was generally consistent with previous results.

Survival analysis of the node genes. in addition, the 
Disease‑Free Survival (RFS) method of GEPIA online tool was 
used to analyze 20 aberrantly‑methylated genes. Group Cutoff 
was set as Quartile (Cutoff‑High (%) was 75% and Cutoff‑Low 
(%) was 25%). The CI was 95%. Hypomethylated‑high expres-
sion genes (Fig. 9) and hypermethylated-low expression genes 
(Fig. 10) were respectively represented in red and blue colour. 
it was revealed that the survival analysis of the P4HB gene 
exhibited a statistically significant difference in survival 
between cancer and normal groups (log-rank P-value 0.022).

P4HB is a key protein of disulfide isomerase (protein 
di-sulphideisomerase, Pdi), which is also referred to as 
a post-translational modifications collagen synthase, that 
is involved in antioxidant and detoxification reactions. its 
encoding gene is on chromosome 17 q25 (22,23). P4HB was 
revealed to be highly expressed in glioblastoma and liver 
cancer (24,25). Notably, Xia et al (25) revealed that high 
expression of P4HB in liver cancer tissues was associated with 
poor survival.

Discussion

in recent years, dna methylation is a major part of epigen-
etic modification and plays an important role in maintaining 
chromosome stability and gene expression in mammals. it 
refers to the process of transferring methyl groups to specific 
bases catalyzed by dna methyl transfer enzymes (dnMTs) 
using s-adenosine methionine (SaM) as the methyl donor. 
increasing studies (26) have revealed that aberrant dna 
methylation is intimately associated with tumorigenesis. it 
was revealed that the overall methylation level of dna in 
tumor cells was lower than that in normal cells, however some 
specific gene CpG islands were hypermethylated (27). DNA 
hypomethylation activates proto-oncogenes and abnormal 
proliferation of cancer cells. However, hypermethylation of 
CpG islands in the promoter region can inhibit gene expres-
sion and inactivate tumor suppressor genes, thus promoting the 
occurrence and development of tumors. Therefore, methylation 
is considered to be another mechanism of tumorigenesis (28). 
dna methylation is not only involved in the regulation of the 
cell cycle, proliferation, apoptosis and metastasis, but also 
in the regulation of drug resistance and intracellular signal 
transduction pathway of tumor cells (29).

at present, some progress has been made in genetics and 
in the molecular pathogenesis of Pca, however effective diag-
nosis and treatment of Pca still require further advances (30). 
in the present study, the gene expression and methylation 
datasets of Pca were analyzed using a variety of online tools. 
a total of 105 hypomethylation-high expression genes and 561 
hypermethylation-low expression genes were obtained.

GO annotations of the hypomethylation‑high expression 
gene group in Pca predominantly included translational 
initiation, translation, SrP-dependent co-translational protein 
targeting to the membrane, ribosome biogenesis, regula-
tion of oxidative stress-induced intrinsic apoptotic signaling 

Table ii. Top ten node genes in the hypomethylation-high 
expression genes.

name degree

eSr1 234
nPM1 81
nMe2 77
nMe1-nMe2 64
UBQLN1 47
cTBP1 45
TriM27 41
ccT3 40
erBB3 35
P4HB 33

Table iii. Top ten node genes in the hypermethylation-low 
expression genes.

name degree

creBBP 160
SMad3 159
Mcc 142
ViM 92
ATXN1 79
caV1 68
Flna 68
MaP3K14 55
PrKcB 53
FHl2 52
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pathways, viral transcription, GTPase activator activity, 
structural constituents of ribosomes, protein histidine kinase 
activity, protein homodimerization activity, protein binding, 

and aldehyde dehydrogenase [NAD(P)+] activity. Multiple 
translation initiation factors were regularly magnified or 
diminished in tumors, promoting proliferation, survival, 

Figure 6. Validation of the aberrantly methylated‑differentially expressed genes in the TCGA database. (A) Hypomethylation‑high expression genes. 
(B) Hypermethylation‑low expression genes. TCGA, The Cancer Genome Atlas.

Table IV. Validation of the top ten hypomethylation‑high expression genes in TCGA database.

Gene Methylation status P‑value Expression status P‑value

eSr1 Hypomethylation 3.70x10-143 upregulated 1.20x10-1

nPM1 Hypomethylation 5.51x10-119 upregulated 3.12x10-15

nMe2 Hypomethylation 2.76x10-119 upregulated 1.71x10-5

nMe1-nMe2 Hypomethylation 6.35x10-132 upregulated 6.43x10-9

UBQLN1 Hypomethylation 4.24x10-117 upregulated 8.87x10-1

cTBP1 Hypomethylation 1.85x10-126 upregulated 2.01x10-7

TriM27 Hypomethylation 5.11x10-129 upregulated 5.39x10-27

ccT3 Hypomethylation 1.92x10-129 upregulated 2.40x10-18

erBB3 Hypomethylation 1.46x10-121 upregulated 2.89x10-18

P4HB Hypomethylation 2.12x10-119 upregulated 4.29x10-18

TCGA, The Cancer Genome Atlas.

Table V. Validation of the top ten hypermethylation‑low expression genes in TCGA database.

Gene  Methylation status P‑value Expression status P‑value

creBBP Hypermethylation 1.06x10-123 downregulated  1.64x10-1

SMad3 Hypermethylation 6.27x10-121 downregulated 1.34x10-10

Mcc Hypermethylation 2.39x10-126 downregulated 2.13x10-20

ViM Hypermethylation 1.11x10-134 downregulated 1.26x10-5

ATXN1 Hypermethylation 3.54x10-134 downregulated 2.13x10-4

caV1 Hypermethylation 1.31x10-133 downregulated 7.54x10-26

Flna Hypermethylation 8.64x10-126 downregulated 1.12x10-15

MaP3K14 Hypermethylation 2.39x10-123 downregulated 1.79x10-7

PrKcB Hypermethylation 1.24x10-133 downregulated 6.56x10-20

FHl2 Hypermethylation 1.74x10-123 downregulated 1.71x10-12

TCGA, The Cancer Genome Atlas.
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angiogenesis, and metastasis (31,32). ribosome biogenesis is 
a process closely correlated to cell growth and proliferation, 

which are upregulated in the vast majority of cancers including 
Pca. This leads to downregulation of the expression and 

Figure 7. Validation of the top ten hypomethylation-high expression genes. The boxplots reveal the expression levels of the top ten hypomethylation-high 
expression genes in PRAD tissues (n=492) and their corresponding normal samples (n=152) based on The Cancer Genome Atlas and Gene Expression Profiling 
interactive analysis databases. To express gene expression, on the y-axis, the log2(TPM+1) for log-scale was used. The red color was set for the tumor dataset. 
The red and gray boxes represent prostate tumor and normal tissues, respectively. The size of jitter across the box was set as 0.4. The staining patterns revealed 
immunohistochemical staining of these genes between Prad samples and normal prostate samples. *P<0.05. Prad, prostate adenocarcinoma; Pca, prostate 
cancer. 



WANG et al:  ABERRANTLY METHYLATED‑DIFFERENTIALLY EXPRESSED GENES IN PROSTATE CANCER 753

activity of p53, and thus promotes tumorigenesis (33,34). as a 
GTPase activator, DOCK4 can promote intercellular adhesion 
by activating Rap GTPase (35).

according to the PPi network for the hypomethylation-high 
expression gene group constructed by cytoscape, the node 

degree of each gene was obtained and the top 10 node genes 
were selected, including eSr1, nPM1, nMe2, nMe1-nMe2, 
UBQLN1, CTBP1, TRIM27, CCT3, ERBB3, and P4HB. 
Toy et al (36) suggested that activation of the eSr1 ligand 
binding domain mutations had different effects on the efficacy 

Figure 8. Validation of the top ten hypermethylation-low expression genes. The boxplots reveal the expression levels of the top ten hypermethylation-low 
expression genes in PRAD tissues (n=492) and their corresponding normal samples (n=152) based on The Cancer Genome Atlas and Gene Expression Profiling 
interactive analysis databases. The red and gray boxes represent prostate tumor and normal tissues, respectively. The staining patterns revealed the immuno-
histochemical staining of these genes between Prad samples and normal prostate samples. *P<0.05. Prad, prostate adenocarcinoma; Pca, prostate cancer.
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of estrogen receptor antagonists. nucleophosmin (nPM1) is 
generally overexpressed, mutated, and rearranged in cancer 

and has been revealed to be overexpressed in Pca (37,38). in 
addition, nPM1 was revealed to participate in the progression, 

Figure 9. Kaplan-Meier survival curves analysis of hypomethylation-high expression node genes. Kaplan-Meier curves were used to analyze the association 
of the signature genes with clinical outcomes.

Figure 10. Kaplan-Meier survival curves analysis of the top 10 hypermethylation-low expression node genes. Kaplan-Meier curves were used to analyze the 
association of the genes signature with clinical outcomes.
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invasion, and metastasis of tumors in high-grade serous 
ovarian adenocarcinoma (39). underexpression of nMe2 
can inhibit the metastasis of lung cancer and other studies 
concluded that hypomethylation and high expression of nMe2 
can cause apoptosis of the mouse testes cells (40,41). UBQLN1 
was revealed to be overexpressed in gastric cancer. reduced 
UBQLN1 expression can cause enhanced cell migration and 
invasion, actin cytoskeleton rearrangements, and stimula-
tion of the epithelial-mesenchymal transition (eMT) (42,43). 
Scholars have revealed that cTBP1 is carcinogenic in Pca and 
other adenomas, and overexpression of cTBP1 is thought to 
be involved in cell survival, proliferation, migration, invasion, 
and eMT (44-46). TriM27 was initially considered to be part 
of a fusion gene reT (rearranged during transfection), which 
is a proto-oncogene that is upregulated in multitudinal cancers, 
including PCa (47,48). CCT3 was significantly correlated with 
cancer cell proliferation and was revealed to be upregulated in 
osteosarcoma and hepatocellular carcinoma (49-51). erBB3 is 
the only gene identified whose impaired kinase domain may 
be involved in the progression and invasion of Pca (52,53). 
P4HB was overexpressed in colon cancer and downregulation 
of expression may promote cancer cell apoptosis (54).

For the hypermethylation-low expression gene group in 
this PCa study, the BP revealed from the GO annotations 
were associated with cell adhesion, extracellular matrix orga-
nization, response to hypoxia, muscle contraction, positive 
regulation of cell migration, and regulation of phosphati-
dylinositol 3-kinase signaling. loss of cell adhesion is one of 
the critical steps in tumor progression (55). Several studies 
have demonstrated that the extracellular matrix, hypoxia, cell 
migration, and the phosphatidylinositol 3-kinase signaling 
pathway may play crucial roles in cancer metastasis (56-58). 
Furthermore, the phosphatidylinositol 3-kinase signaling 
pathway is involved in tumorigenesis and progression (58). The 
molecular functions have primarily focused on actin, integrin, 
collagen, scaffold protein, and actin filament binding, as well 
as signal transducer activity. Previous studies have revealed 
that actin-binding proteins have inhibitory roles in Pca cell 
growth and metastasis (59,60). integrins play a pivotal role in 
cell adhesion by connecting the cytoskeleton and extracellular 
matrix, promoting tumor cell proliferation, metastasis, and 
invasion (61,62).

in the present study, the top 10 hypermethylation-low 
expression node genes that were obtained from the PPi network 
included CREBBP, SMAD3, MCC, VIM, ATXN1, CAV1, 
Flna, MaP3K14, PrKcB, and FHl2. There is evidence that 
creBBP is downregulated in Pca and is a tumor suppressor 
gene in small-cell lung cancer and other neuroendocrine 
tumors (63,64). Smad3/Sox5/Twist1 was reported to promote 
eMT and cancer progression in Pca (65). Mcc, a candidate 
tumor suppressor gene, was revealed to be often silenced by 
hypermethylation of its promoter in colorectal cancer (66). 
Several studies have revealed that the eMT marker, ViM, 
was positively associated with bone metastasis in Pca, and 
its promoter is often hypermethylated in cervical cancer 
cells (67,68). it has been reported that downregulation of 
ATXN1 induced EMT in cervical cancer, but its role in PCa 
remains to be elucidated (69). Studies have revealed that caV1 
can promote growth and metastasis of Pca, and the hypermeth-
ylation of its promoter could make caV1 a tumor suppressor 

gene in Pca (70-72). The results of Flna expression are 
consistent with those of down-regulation in Pca, indicating 
that Flna may play a critical role as a negative regulator 
in Pca (73). MaP3K14, also known as niK, is a regulatory 
component of the mitochondrial division machinery and has 
a dominant effect on cancer cell invasion (74). PrKcB is a 
member of the PKc family, and when its expression is down-
regulated, cell apoptosis and suppression of tumorigenesis 
occur (75,76). a previous study reported that FHl2 could be 
considered as a Pca biomarker (77).

GEPIA is a TCGA database‑based online tool that can be 
used to study the prognostic effects of genes in various cancers. 
Survival analysis was conducted on 20 aberrantly-methylated 
genes which exhibit potential as diagnostic markers of Pca 
using GEPIA. Notably, the expression of P4HB was the only 
one among the 20 genes that was significantly correlated 
with survival. P4HB is found to be highly expressed in glio-
blastoma and liver cancer, decreasing the apoptosis of tumor 
cells (24,25). Xia et al (25) have revealed that high expression of 
P4HB in liver cancer tissues was associated with poor survival. 
However, there is also evidence suggesting that the low expres-
sion of P4HB could lead to proteasome inhibition-induced 
autophagy (78), since the boundary between apoptosis and 
autophagy has always been controversial due to tumor hetero-
geneity (79). Based on the present results revealing that the 
patients with hypermethylation and low expression of P4HB 
had poor prognosis, it was hypothesized that hypermethylation 
of P4HB in prostate cancer would activate autophagy of pros-
tate cancer cells and promote the tumor progression. Further 
experiments are required to verify the hypothesis.

To validate the present results, TCGA database, the GEPIA 
tool, and the HPa database were employed to determine node 
gene methylation and gene expression status, and the results 
were generally consistent with our previous results, revealing 
the reliability of this study. However, there are still several 
limitations in the present study, including the focus on data 
mining and analysis without experimental confirmation. In 
addition, the methylation status of the node genes was only 
verified in TCGA database. Therefore, further experiments are 
required to verify our results.

In conclusion, the present study identified 20 aberrantly 
methylated-differentially expressed genes that may be used 
as biomarkers in Pca. The bioinformatics approach included 
the analysis of both gene expression and gene methylation 
microarrays, providing a novel and practical approach for the 
diagnosis, treatment, and prognosis of Pca. However, based 
on the limitations of the present study, additional molecular 
biologal experiments are required to confirm these findings.

it is anticipated that further study on the relationship 
between dna methylation and histone codes and their mutual 
regulatory mechanism could provide new breakthroughs in 
the gene regulation of tumor genesis. Prostate cancer has high 
morbidity and mortality, however its pathogenesis has not been 
fully elucidated, and its therapeutic effect is not satisfactory. 
The study of the relationship between dna methylation and 
histone codes is crucial to improve understanding of some 
signaling pathways which widely participate in cell physiology 
and pathology, making subtle adjustments to the complex 
signaling network, yet there have been few studies conducted 
on its clinical application. With the deeper understanding 
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of the role of dna methylation in tumor and the increasing 
number of high-throughput data of dna methylation in 
tumors, bioinformatics technology has laid the foundation for 
the early diagnosis of tumors, the search for molecular markers 
for prognosis evaluation and new tumor therapeutic targets.

in the present study, high throughput microarray data of 
biological databases was mined by bioinformatics technology, 
to the best of our knowledge for the first time, to determine 
the aberrantly-methylated biomarkers of prostate cancer. The 
strategy applied was the selection of the intersecting high 
methylation and low expression genes as biological markers. 
The low methylation and high expression genes were analyzed 
by the same procedure. The markers were further enriched 
to display their related signaling pathways. Thus, the carci-
nogenic mechanism of prostate cancer could be clarified, to 
provide theories for clinical research and treatment.
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