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Evidence for rate-dependent filtering of global
extrinsic noise by biochemical reactions in
mammalian cells
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Abstract

Recent studies have revealed that global extrinsic noise arising
from stochasticity in the intracellular biochemical environment
plays a critical role in heterogeneous cell physiologies. However, it
remains largely unclear how such extrinsic noise dynamically influ-
ences downstream reactions and whether it could be neutralized
by cellular reactions. Here, using fluorescent protein (FP) matura-
tion as a model biochemical reaction, we explored how cellular
reactions might combat global extrinsic noise in mammalian cells.
We developed a novel single-cell assay to systematically quantify
the maturation rate and the associated noise for over a dozen FPs.
By exploiting the variation in the maturation rate for different FPs,
we inferred that global extrinsic noise could be temporally filtered
by maturation reactions, and as a result, the noise levels for slow-
maturing FPs are lower compared to fast-maturing FPs. This mech-
anism is validated by directly perturbing the maturation rates of
specific FPs and measuring the resulting noise levels. Together, our
results revealed a potentially general principle governing extrinsic
noise propagation, where timescale separation allows cellular
reactions to cope with dynamic global extrinsic noise.
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Introduction

Stochastic fluctuations or noise are inevitable for reactions occurring

inside the cell (McAdams & Arkin, 1997; Elowitz et al, 2002;

Paulsson, 2004; Raser & O’Shea, 2005; Raj & van Oudenaarden,

2008; Eldar & Elowitz, 2010). A key reason is that for some cellular

reactions (Fig 1A), the molecular species involved often have low

copy numbers and are subject to random birth and death processes,

leading to Poisson-like fluctuations (Swain et al, 2002; Paulsson,

2004). This source of noise represents a type of noise that is intrinsic

to the reaction of interest and can propagate in biological networks

(Fig 1B, left). In addition to intrinsic noise, cellular reactions are

also subject to extrinsic noise—fluctuations that are extrinsic to the

reaction of interest (Swain et al, 2002; Paulsson, 2004; Shahrezaei

et al, 2008). While some sources of extrinsic noise are specific to

certain reactions, other extrinsic noises are global and may affect

many reactions (Pedraza & van Oudenaarden, 2005; Raser &

O’Shea, 2005). Both intrinsic and extrinsic noises have been charac-

terized in many biological processes, especially in gene regulation,

and can play important roles in phenotypic heterogeneities at the

cellular or the organismal level (Raser & O’Shea, 2005; Raj & van

Oudenaarden, 2008; Eldar & Elowitz, 2010).

Recently, a growing interest has been drawn to a type of global

extrinsic noise arising from fluctuations in the intracellular

biochemical environment (Slavov et al, 2011; Labhsetwar et al,

2013; Kiviet et al, 2014; Kotte et al, 2014; Xiao et al, 2016; Ahn

et al, 2017; Hung et al, 2017; Papagiannakis et al, 2017; Wehrens

et al, 2018; Yugi & Kuroda, 2018; Zhang et al, 2018; Evers et al,

2019; Tonn et al, 2019), often reflected as fluctuating metabolic

state or metabolite concentration (Yang et al, 2008; Ahn et al,

2017; Hung et al, 2017; Zhang et al, 2018; Evers et al, 2019)

(Fig 1B, right). Importantly, such noise typically occurs at a time-

scale shorter than a cell cycle and can arise from the stochastic

expression or post-translational modification of the enzymes

involved in metabolic reactions (Wehrens et al, 2018; Yugi &

Kuroda, 2018). Since metabolites can bind to many proteins to

regulate their activities (Li et al, 2010), a fluctuating metabolite

concentration could lead to global protein activity fluctuations,

which may affect reactions they catalyze. Several experiments and

models have implicated that such global extrinsic noise can result

in non-genetic cell-to-cell variability in physiological states, includ-

ing cell growth and drug resistance (Kiviet et al, 2014; Kotte et al,

2014; Charlebois et al, 2018; Rosenthal et al, 2018; Thomas et al,

2018; Farquhar et al, 2019; Kheir et al, 2019; Tonn et al, 2019;

Xiao et al, 2019). However, it has been experimentally challenging

to analyze the effects of this source of noise, and it is unclear
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whether different downstream reactions are equally affected by

such dynamic fluctuations (Fig 1C).

To address these issues, we utilized FP maturation reaction as a

model biochemical reaction inside the cell and investigated how

extrinsic noise propagates from upstream biochemical environment

to downstream maturation reaction. The rationale for focusing on

the maturation reaction of FPs is at least twofold. Firstly, FP matura-

tion is mostly orthogonal to other cellular reactions and is influ-

enced by the metabolic environment of the cell, such as the NAD(P)

H level (Elsliger et al, 1999; Zhang et al, 2006; Ganini et al, 2017),

making it an ideal reaction for studying how it is affected by envi-

ronmental fluctuations. Secondly, chromophore maturation reaction

typically occurs at the timescale of minutes to hours, depending on

the type of the FP (Balleza et al, 2017; Lambert, 2019). In contrast,

the timescale of fluctuations in intracellular biochemical environ-

ment likely ranges from seconds to minutes, estimated from previ-

ous live-cell measurements of metabolic state dynamics using real-

time biosensors for metabolites, including NADH, ATP, and lactate

(San et al, 2013; Hung et al, 2017; Tao et al, 2017; Depaoli et al,

2018). The actual timescale is likely much shorter as metabolite

biosensors often have low temporal sensitivity. Thus, this global

extrinsic noise presumably occurs at a faster timescale compared to

the downstream maturation reaction, allowing studying the role of

timescale separation in extrinsic noise propagation.

To study how extrinsic noise is propagated to FP maturation

reaction, we first developed an assay that decouples protein expres-

sion, and chromophore maturation into two separate signals,

enabling us to systematically analyze maturation rates and the asso-

ciated noise levels in individual mammalian cells. Using this assay,

we quantified the maturation rates of 14 commonly used FPs and

found that the timescale of the reaction spans from � 10 to

� 140 min. Based on these single-cell data, we computed the noise

level for the maturation reaction of each FP and identified a surpris-

ing correlation between the noise level and the rate of maturation,

where the slow-maturing ones have lower levels of noise. We next

provided in silico and in vivo evidences supporting a mechanism in

which the global extrinsic noise is temporally filtered in a rate-

dependent manner, leading to reduced noise levels for the slower
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Figure 1. Biochemical reactions inside the cell are subjected to both intrinsic noise and extrinsic noise.

A Schematic of an example first-order reaction with a rate constant of k. The expression for the reaction rate is shown on the right, where Creactant denotes the cellular
concentration of the reactant.

B Schematic representations for intrinsic noise (left) and extrinsic noise (right). Intrinsic noise arises from the low copy number nature for some intracellular molecules.
The schematic on the left shows the fluctuations of reactant concentration along an exponential decay curve. The schematic on the right illustrates the effect of
extrinsic noise on the rate constant k, resulting in a dynamically fluctuating rate constant. Extrinsic noise can come from the fluctuations in the upstream
components.

C Global extrinsic noise can affect many biochemical reactions inside the cell. It has remained largely unclear how downstream reactions might combat with dynamic
global extrinsic noise and whether the timescale of the reaction plays a role in affecting the cell-to-cell variability in the reaction.
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reactions. Thus, the timescale of the downstream reaction determi-

nes the degree of stochasticity inherited from its biochemical envi-

ronment. Furthermore, since this is the first systematic study, to our

knowledge, on FP maturation in mammalian systems, we carried

out in-depth characterizations regarding the susceptibility of the

maturation kinetics to various parameters and identified limitations

when using FPs to measure dynamic and stochastic processes in

mammalian cells. Together, these results not only offer new knowl-

edge regarding FPs in mammalian cells, but also uncover a principle

governing extrinsic noise transmission in stochastic biochemical

environment, which could be general for diverse cellular reactions.

Results

A rationally designed assay for quantifying FP maturation rate in
individual mammalian cells

The process of FP chromophore maturation involves multiple

chemical reaction steps and is typically described as a single first-

order reaction, whose rate constant determines the timescale of the

maturation reaction (Reid & Flynn, 1997; Zhang et al, 2006; Iizuka

et al, 2011). Many efforts have been devoted to characterizing FP

maturation rates using in vitro assays (Tsien, 1998; Shaner et al,

2005; Day & Davidson, 2009; Iizuka et al, 2011). Systematic

in vivo studies have been carried out mostly in bacterial (Hebisch

et al, 2013; Balleza et al, 2017) or yeast cells (Gordon et al, 2007;

Shashkova et al, 2018). In these assays, protein synthesis inhibi-

tors are used to ensure that only already synthesized proteins

undergo the maturation reaction. However, such proteome pertur-

bations may alter cellular physiological conditions and affect chro-

mophore maturation.

To accurately characterize the rate of FP maturation reaction in

cultured mammalian cells without using protein translation inhibi-

tors, we sought to decouple the two temporally coupled reactions,

protein production and chromophore maturation, into two spec-

trally distinct fluorescence signals. To achieve this, we modified a

translocation-based assay (Aymoz et al, 2016) to quantify the

production and maturation of FP molecules independently, in which

the amount of expressed FP molecules is measured by the cytoplas-

mic-to-nuclear translocation of a separate and constitutively

expressed FP (Fig 2A). In so doing, we can quantify the amount of

expressed FP molecules as well as the amount of matured FP mole-

cules separately over time, from which the FP maturation rate can

be determined.

More specifically, in this assay, a constitutively expressed and

cytoplasmic localized FP (i.e., the constitutive FP, which has no

nuclear localization sequence or NLS) is used for quantifying the

expression of the NLS-containing target FP, which is under doxy-

cycline-inducible control (i.e., the FP of interest) (Figs 2A and

EV1A–C). The two spectrally separated FPs, the constitutive FP

and the target FP, are each fused with heterospecific SynZip

domains (Reinke et al, 2010; Aymoz et al, 2016). Upon the

induced expression of the target FP (by adding doxycycline), the

constitutive FP molecules form dimers with the unmatured target

FP molecules, which are then shuffled into the nucleus due to the

NLS on the target FP molecules. As a control, we ensured that

the addition of doxycycline does not affect the production or

localization of the constitutive FP molecules (Fig EV1D). There-

fore, the nuclear accumulation of the constitutive FP fluorescence

signal can be used for quantifying the expression level of the

target FP, whose maturation can be separately quantified by the

increase of its own nuclear fluorescence signal. Take mKate2 for

example, this cell line contains constitutively expressed Citrine,

inducible mKate2, and H2B-mTurquoise2. During the experiment,

after the addition of doxycycline, all three fluorescence signals

were recorded. The resulting time-lapse images of H2B-mTur-

quoise2 were processed with MATLAB codes to extract the masks

of the cell nucleus, from which we can track the movements of

individual cells over time (Fig 2B, Movie EV1). Tracks of nuclear

masks were then used to quantify the changes in the nuclear

localization of Citrine, together with the changes in the nuclear

mKate2 signals (Fig EV1B). These data allowed us to determine

mKate2 protein production rate as well as its maturation rate on a

cell-by-cell basis (Fig 2C). Therefore, by effectively decoupling the

two temporally coupled processes into distinct signals, we can

determine the maturation rate in individual cells by fitting these

two temporal signals with simple kinetic models (see Materials

and Methods).

Since the maturation reaction occurs inside the nucleus in our

assay, we sought to determine whether FP matures at a similar rate

inside the nucleus as in the cytoplasm. To perform this analysis, we

used a bidirectional promoter that drives the expression of two iden-

tical FPs but with different subcellular localizations (Fig EV2A).

Cells were induced to express these two FPs at the same time, and

the cytoplasmic and nuclear fluorescence levels were measured at

different time points post-induction. By analyzing a large population

of cells with high-content microscopy, we found that nuclear and

cytoplasmic fluorescence signals are highly correlated throughout

the time course of induction, indicating that the rates of FP matura-

tion are similar between the two subcellular locations (Fig EV2B

and C, see Materials and Methods).

Different FPs display variable maturation rates that are robust
to diverse parameters

With this assay, we first addressed whether different FPs exhibit

variable maturation rates in mammalian cells. We focused on 14

commonly used FPs whose emission spectra span from blue to

near-infrared (Thorn, 2017; Lambert, 2019) (Datasets EV1 and

EV2). For each FP, we constructed a stable monoclonal Chinese

hamster ovary (CHO) cell line that contains the constitutive FP, the

target FP, and a third FP for labeling the nucleus (Table EV1, see

Materials and Methods).

By analyzing single-cell fluorescence trajectories for each FP (see

examples in Figs 2C and EV1B), we obtained the maturation rates

for the chosen set of FPs (Figs 2D and EV1E). From these data, we

found that the maturation rate is highly variable across the 14 dif-

ferent FPs, with the timescale spanning from ~10 min to ~140 min.

This broad range of timescale of the reaction rate will allow us to

address how reaction timescale affects noise transmission from

upstream fluctuations. From the perspective of FP-based tools, the

variability in FP maturation rates presents challenges when compar-

ing quantitative measurements using different FPs, underscoring the

importance of maturation rate characterizations. These results also

provide a useful resource when choosing FPs to examine temporal
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processes such as gene expression in mammalian cells, as

slow-maturing FPs act as a low-pass filter that obscures fast

transcriptional activity changes (Nagai et al, 2002; Balleza et al,

2017). It is of interest to note that red-emitting FPs appear to mature

slower in general than blue or green-emitting FPs in CHO cells

(Fig 2D), which may arise from the differences in the sequence

composition and environment of the FP chromophore peptides

(Grigorenko et al, 2017).

We next explored the susceptibility of FP maturation rate to a

variety of cell state-related parameters. First, by computing a corre-

lation matrix based on the above single-cell data, we found that the

maturation rates of individual cells have relatively low correlations

with cell state parameters, including initial cell size, level of the

constitutive FP, and several others (Fig EV3A and B). Second, by

analyzing cells starting from different cell cycle stages (Fig EV3C,

see Materials and Methods), we concluded that cells maintain an
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Figure 2. Systematic characterizations of the maturation rate for 14 different FPs in single mammalian cells.

A Schematic of our single-cell assay which decouples FP production and FP maturation into two separate signals in individual mammalian cells. The expression level of
FP2 is measured by the nuclear fluorescence intensity signal of FP1, while the maturation of FP2 is measured by its own nuclear fluorescence intensity signal.

B A representative filmstrip from the microscopy experiments characterizing mKate2 maturation. Fluorescence images for the H2B-mTurquoise2 (for labeling the
nucleus, top), Citrine-SZ2 (the constitutive FP or FP1, middle), and mKate2-2xNLS-SZ1 (the inducible FP or FP2, bottom) are shown for indicated time points. The sale
bar is 10 lm.

C Single-cell fluorescence intensity traces for quantifying mKate2 expression and mKate2 maturation. For these data, doxycycline was added at time zero. Traces in
bold refer to the cell shown in (B). Traces for other cells (n = 30) are shown in light colors.

D Boxplots showing the maturation times for 14 FPs measured by our assay. FPs are sorted by their spectra properties. Each box ranges from the first quartile to the
third quartile of the data values, and the horizontal line inside indicates the median. The upper whisker is drawn up to the largest data value smaller than the third
quartile plus 1.5× the interquartile range (IQR), and the lower whisker is drawn up to the lowest data value larger than the first quartile minus 1.5× IQR. The dataset
for each FP contains n = 16–130 cells. Detailed information regarding the cell lines used can be found in Table EV1.
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environment that is relatively constant throughout the cell cycle for

the FP maturation reactions (Fig EV3D, see Materials and Methods).

Last, by analyzing cells of different CHO monoclones, we found that

maturation does not appear to be influenced by the genetic back-

ground (Fig EV3E). Together, these results suggest that the FP

maturation process is robust to many cell state-related parameters.

FP maturation rates exhibit non-genetic heterogeneity

To investigate how noise in the maturation reaction is affected by

upstream fluctuations, we first needed to analyze the level of noise

in the maturation reaction for different FPs. FPs are often used to

study noise in gene expression and cell states, and it is typically

assumed that the FP maturation rate is homogenous across isogenic

cells. Using the single-cell data, we computed the coefficient of vari-

ation as the noise level for the FP maturation time. We found that

FP maturation is rather noisy for isogenic CHO cells, and unexpect-

edly, the level of noise exhibits a correlation with the rate of matura-

tion reaction (Fig 3A). More specifically, the noise in maturation

time increases as the maturation time shortens.

Notably, the noise in FP maturation rate shows a weak and

statistically insignificant correlation with the noise in FP production

rate (Fig 3B). Because FP production rate and FP maturation rate

are simultaneously determined in the same single cells, the lack of

correlation between the two noises indicates that the noise in FP

maturation does not arise from technical sources, which would

otherwise affect both measurements in the same manner. More

importantly, this result suggests that FP production and FP matura-

tion are largely decoupled, and the two processes are likely influ-

enced by uncorrelated sources of noise. We note that the effect of

protein degradation on the maturation reaction should be minor

because the FPs do not contain degradation tags, and the effect of

passive dilution should also be minor as we only analyzed cells that

did not undergo mitosis.

We next investigated the potential source of such non-genetic

heterogeneity. Since the bidirectional promoter-based reporter assay

(Fig EV2A) is conceptually analogous to the classical “two-color”

assay (Elowitz et al, 2002), it would allow us to distinguish intrinsic

versus extrinsic sources of noise in the measured fluorescence

signals. Using the data from this pseudo “two-color” assay, we

found that the strength of the intrinsic noise is considerably smaller

compared to that of the extrinsic noise (Fig EV2D), suggesting that

extrinsic sources of noise are likely the major contributor to the

noise in the maturation reaction.

Time-averaging of global extrinsic noise may underlie the
rate-dependent noise level

Because the noise in the maturation reaction decreases as the reac-

tion rate decreases, it appears that the timescale of the reaction is a

key determining factor for the noise level. Timescale has been

known to determine the noise of reaction in several other systems,

including chemotaxis and developmental pattern formation (Berg &

Purcell, 1977; Bialek & Setayeshgar, 2005; Gregor et al, 2007;
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Figure 3. The noise level in the maturation reaction rate exhibits a rate-dependent behavior.

A Maturation time and the associated cell-to-cell variability for the 14 FPs. Data in Fig 2D were used to compute the coefficient of variation (i.e., the level of noise) for
each set of single cells. The noise level shows a statistically significant negative correlation with the maturation time of the FP (Pearson’s correlation coefficient:
�0.80, t = �4.6614, df = 12, P < 0.001). The dataset for each FP contains n = 16–130 cells.

B Scatter plot of the noise in FP maturation time versus the noise in FP production rate for the 14 FPs. The two noises showed an insignificant correlation (Pearson’s
correlation coefficient: 0.39, t = 1.48, df = 12, P = 0.16). The dataset for each FP contains n = 16–130 cells.

Data information: All error bars indicate 95% confidence intervals of the mean by bootstrap (Materials and Methods).
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Tostevin et al, 2007). In these systems, in order to achieve accurate

responses, cells implement the time-averaging strategy to filter out

the fluctuations in upstream signals. In our system, the maturation

reaction is assumed to be subjected to the fluctuations in the intra-

cellular biochemical environment such as the NAD(P)H level

(Ganini et al, 2017) (Fig 4A). A similar time-averaging mechanism

could thus take place during FP maturation to account for the

observed rate-dependent noise level in the maturation reaction.

To analyze the role of time-averaging in filtering global extrinsic

noise, we first illustrated how upstream fluctuations are propagated

to the downstream maturation reaction. We used the Gillespie

stochastic simulation algorithm to simulate the process of FP matu-

ration in a fluctuating biochemical environment. To reflect the

susceptibility of the noise in FP maturation reaction to upstream

fluctuations, we imposed a white noise to the first-order maturation

rate constant. In so doing, we observed that the noise in maturation

reaction increases as the extrinsic noise level increases (Fig EV4A).

Under the time-averaging scenario, when an FP molecule takes a

longer time to mature, the molecule experiences an effectively

smaller degree of fluctuations in the intracellular environment due

to time-averaging (Fig 4B). In this case, the effective noise in the

first-order maturation rate constant would decrease as the matura-

tion rate decreases. By implementing such a time-averaging-based

noise filtering mechanism in our stochastic simulations, we indeed

observed a dependence of the noise level on the rate of the reaction

(Fig 4C, see Materials and Methods). Notably, the simulated results

(Fig 4C) qualitatively recapitulated the experimentally observed

negative correlation between the noise in FP maturation time and

the length of FP maturation time (Fig 3A). Furthermore, at the

single FP molecule level, the reaction timescale for each molecule is
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Figure 4. Time-averaging of global extrinsic noise may account for the rate-dependent noise level in the maturation reaction.

A The rate constant of the maturation reaction is subjected to global extrinsic noise (schematic). In this phenomenological model, we assumed that global extrinsic
noise arises from fluctuations in the cellular NAD(P)H level (see text for details). The resulting rate constant is stochastic and varies over time. Green line represents
the temporally fluctuating rate constant for the FP with a faster maturation rate, while the red line is for the FP with a slower maturation rate.

B Schematic illustrating the time-averaging of global extrinsic noise. The timescales for the maturation reaction of two FP molecules are illustrated. As a FP molecule
takes a longer time to mature (i.e., it has a lower rate constant), it would average the extrinsic noise over a larger time window.

C Stochastic simulations of the phenomenological model. We incorporated the time-averaging mechanism, and the results recapitulated a negative correlation
between FP maturation noise and FP maturation time. Each condition contains 100 cells in the simulation, and each cell contains 2,000 molecules. Error bars
indicate 95% confidence intervals of the mean by bootstrap.

D Stochastic simulations of the model with varying numbers of FP molecules.
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not only determined by the mean rate of the reaction but is also

inversely proportional to the number of the total FP molecules.

Thus, as the molecule copy number increases, the reaction can

become more susceptible to the global extrinsic noise (Fig 4D). This

result may seem rather counterintuitive because the intrinsic noise

level typically decreases as copy number increases, highlighting a

unique feature for time-averaging-based filtering of the global

extrinsic noise.

Direct tuning of maturation reaction rate led to altered
noise level

Thus far, based on experiments (Fig 3A) and simulations (Fig 4C), we

have established that the rate of maturation reaction dictates the level

of noise in the reaction through a noise filtering mechanism. Because

the experimental support came from the data of different FPs, a poten-

tial caveat is that parameters such as the type of FP could play a role.

Therefore, we set out to test the proposed mechanism by perturbing

the maturation rates of specific FPs and measuring the resulting noise

levels. More specifically, for chosen FPs, we asked whether reducing

the rate of maturation would promote time-averaging-based noise fil-

tering and thus decrease the noise level (or vice versa).

We first sought to perturb the maturation rate by changing

culture conditions. As suggested by previous studies, the critical

rate-limiting reaction step during FP maturation is chromophore

oxidation (Heim et al, 1994; Zhang et al, 2006; Iizuka et al, 2011),

which depends on the dissolved oxygen concentration in the cell

culture media (Kaida & Miura, 2012) (Fig 5A). We thus tested

whether and how the oxygen level in the cell culture medium affects

the FP maturation rate and the associated noise level in maturation.

To do so, we pre-treated cell culture media with different concentra-

tions of an oxygen-scavenging enzyme, which created media with a

gradient of dissolved oxygen levels (see Materials and Methods). By

characterizing single cells in these culture conditions, we found that

the FP production rate is not affected by such perturbations, indicat-

ing that cells still maintained normal physiological conditions during

the experiments (Fig EV4B top). In contrast, reducing the oxygen

level significantly slows down the maturation rate as expected

(Fig EV4B bottom). Most importantly, slowing down maturation

reaction leads to reduced noise levels in the maturation time for two

separate FPs (Figs 5B and EV4C–E). Thus, it is evident that the noise

level in maturation reaction can be directly tuned by slowing down

the reaction, as expected by the proposed mechanism (Fig 4C).

To further test this mechanism, we used an alternative strategy

for perturbing the rate of maturation reaction for specific FPs.

Because the maturation of phytochrome-based infrared fluorescent

proteins such as iRFP and mIFP requires the incorporation of bili-

verdin as the chromophore, we sought to perturb the maturation

rate by varying the amount of biliverdin in the culture medium

(Fig 5C) (Shemetov et al, 2017). By quantifying the maturation rates

of two near-infrared FPs under two different biliverdin concentra-

tions, i.e., 0 and 10 lM, we found that the rates of maturation for

both FPs were increased by the addition of biliverdin, and the noise

levels were increased accordingly (Figs 5D and EV5). Importantly,

the protein production rates were unaffected by the addition of bili-

verdin (Fig EV5A and B). Furthermore, because the endogenous

biliverdin concentration is cell type-dependent (Yu et al, 2015), we

postulated that the rate of maturation reaction for near-infrared FPs

would differ in different cell types (Fig EV6A). We thus compared

their rates in human bone osteosarcoma (U2OS) cells and CHO cells,

and found that the maturation rates are consistently slower in CHO

cells for both iRFP and mIFP, and intriguingly, the noise levels in

the maturation reaction for both FPs are lower in CHO cells

(Fig EV6B and C).

Together, using these separate perturbation experiments, we

directly tuned the rate of maturation reaction for specific FPs and

validated the model prediction, providing further supports for the

rate-dependent filtering of dynamic global extrinsic noise.

Discussion

Thanks to recent processes in metabolite biosensors, fluctuations in

intracellular metabolites are increasingly recognized as a key source

of extrinsic noise that dynamically influences biochemical reactions

inside the cell (Wehrens et al, 2018; Yugi & Kuroda, 2018; Evers

et al, 2019; Tonn et al, 2019). In this study, we employed the matu-

ration reaction of FPs as a model biochemical reaction to investigate

the principle underlying noise transmission from the intracellular

environment to downstream reactions. Through systematic single-

cell characterizations of over a dozen FPs, together with direct

perturbations of the maturation reaction rate, we showed that the

rate of the reaction, or the reaction timescale, plays a critical role in

determining the noise level of the reaction, which is likely accom-

plished through time-averaging of global extrinsic noise. More

generally, this mechanism suggests a critical role of timescale sepa-

ration—the timescales of slower reactions are separated from the

timescale of upstream environmental fluctuations, enabling these

reactions to combat the fast fluctuating biochemical environment.

Due to the lack of tools to analyze FP maturation reaction in

single mammalian cells, we developed a novel single-cell assay to

accurately quantify the rate of FP maturation and the associated

noise level. In contrast to previous FP maturation assays that rely

on protein synthesis inhibitors, our single-cell assay enables inde-

pendent measurements of the rate of protein production as well as

the rate of FP maturation in the same single cells. With such data,

we were able to characterize how diverse parameters specifically

affect the maturation kinetics without being convoluted by the

effects on protein production. Through systematic studies, we found

that, while FP maturation is robust to many cell state-related param-

eters including cell cycle stage and cell size, the maturation of cofac-

tor-dependent FPs is subjected to variations in cofactor

concentration in different cell lines. These and other data we

presented provide guidelines for choosing FPs to study dynamic and

stochastic mammalian processes.

Noise affects various reactions inside the cell, including the matu-

ration reaction of FPs, as we have demonstrated. We showed how

FP maturation noise could arise from the stochasticity in the intra-

cellular biochemical environment. Such global extrinsic noise has

been shown in recent studies to influence physiological processes

such as drug resistance and cell growth (Kiviet et al, 2014; Wehrens

et al, 2018). Critically, we found that time-averaging of global

extrinsic noise appears to contribute to the measured rate-dependent

noise in the maturation reaction, allowing slower reactions to

achieve lower noise levels in their reaction rates. Thus, the relatively

fast biochemical fluctuations could be filtered away by reactions that
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are sufficiently slow, preventing further the propagation of global

extrinsic noise. Time-averaging (or temporal averaging/integration)

is a widely implemented mechanism for noise reduction in biologi-

cal systems. For gene expression, time-averaging occurs at different

levels, e.g., the integration of noisy mRNA copy numbers into the

relatively stable protein counts (Paulsson, 2004; Eldar & Elowitz,

2010). During bacterial chemotaxis, the rapid and stochastic light-

receptor binding events are temporally averaged to achieve accurate

responses (Berg & Purcell, 1977). During developmental pattern

formation, upstream regulatory signals are temporally and even

spatially averaged to gain accurate patterns (Gregor et al, 2007;

Tostevin et al, 2007). More generally, time-averaging can be imple-

mented by open-loop systems requiring no feedback mechanism. In

contrast, feedback control mechanisms have been well known to

reduce noise and confer robustness for several biological systems

(Barkai & Leibler, 1997; Arkin et al, 1998; Becskei & Serrano, 2000;

Nevozhay et al, 2009).

Because of the intricate nature of the cellular biochemistry, we

do not have a mechanistic picture of how the chromophore matura-

tion reaction is dynamically coupled to the biochemical environ-

ment; yet a recent study has revealed the key role of NAD(P)H in FP

chromophore maturation (Ganini et al, 2017), whose intracellular

concentration displays dynamics at the timescale of seconds (Hung

et al, 2017; Tao et al, 2017). Together with our results that FP matu-

ration rate is highly susceptible to environmental oxygen level, it is

interesting to speculate that the extrinsic noise source for FP matu-

ration reaction may arise from the intracellular redox environment,

whose stochastic fluctuations could potentially influence diverse

metabolic and signaling enzymes and contribute to non-genetic

heterogeneity of cell state. Since many metabolites display rapid

temporal dynamics in the cell (Ahn et al, 2017; Wehrens et al,

2018; Yugi & Kuroda, 2018), it would be of interest to examine how

global extrinsic noises originated by these dynamics propagate to

regulate the heterogeneity in cell physiology (Thomas et al, 2018).
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Figure 5. Further experimental supports for rate-dependent filtering of global extrinsic noise.

A The maturation rate can be tuned by adjusting cellular oxygen level. The rate constant k0 is dependent on the oxygen level as shown by previous studies (Heim et al,
1994; Zhang et al, 2006; Iizuka et al, 2011).

B Reducing the oxygen level in the media by oxygen-scavenging enzyme reduces the maturation rate of mCherry, leading to lower noise levels. In this experiment,
culture media were pre-treated with a gradient of an oxygen-scavenging enzyme and the corresponding maturation rates were measured (see Materials and
Methods and also Fig EV4B–E). The dataset for each condition (from left to right) contains n = 143, 395, 299, and 529 cells, respectively.

C The maturation rate for cofactor-dependent FPs can be tuned by adjusting cofactor level. The rate constant k0 is dependent on the cofactor level as suggested by
previous studies (Yu et al, 2015).

D Near-infrared FPs exhibited altered maturation rates and the associated noise levels in a biliverdin concentration-dependent manner. Two monoclonal CHO cell lines
(mIFP and iRFP) were used, and indicated concentration of biliverdin (or DMSO for 0 lM condition) was added to the culture medium (see also Fig EV5). The dataset
for each condition (from left to right) contains n = 40, 39, 56, and 116 cells, respectively.

Data information: All error bars indicate 95% confidence intervals of the mean by bootstrap.
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With the advance in biosensor technology, we may soon be able to

search for more general principles governing extrinsic noise propa-

gation through real-time monitoring of the dynamics of key metabo-

lites and downstream reactions simultaneously in the same cells.

Materials and Methods

Cell culture

CHO cells were cultured in RPMI 1640 media (Gibco) with 10% FBS

(Gibco), supplemented with 1% Pen-Strep and 1× glutamine

(Gibco). U2OS cells were cultured in DMEM media (Gibco) with

10% FBS (Gibco), supplemented with 1% Pen-Strep and 1× gluta-

mine (Gibco). Culture media were replaced once every day, and

cells were passaged once every 3 days. All cultures were kept under

5% CO2 and 37°C temperature.

Plasmid construction

All fluorescence protein DNA sequences (Dataset EV2) were synthe-

sized or PCR assembled, and checked by Sanger sequencing. All

plasmids were constructed by routine molecular cloning protocols

including ligation and Gibson assembly. Plasmids were replicated in

DH5a cells using standard protocols. All transgenes in this work

were cloned into the plasmids from the PiggyBac transposon system

(System Biosciences).

Cell transfection

Cells were plated into wells in a 24-well plate � 12 h prior to trans-

fection. And the plating density was controlled such that the culture

would arrive at a certain confluency at the time of transfection

(60% for CHO cells and 90% for U2OS cells). Plasmids were trans-

fected into cells using Lipofectamine LTX with PLUSTM Reagent

(Invitrogen) using standard transfection protocols. For transfecting

a well, we used 0.5 ll Plus reagent, 2.0 ll LTX reagent, and 0.8 lg
DNA.

To ensure high expression levels for constitutively expressed flu-

orescent proteins, the mass ratio is 3:1 between the plasmid contain-

ing the constitutively expressed fluorescent protein (FP1) and the

plasmid containing the inducible fluorescent proteins (FP2), i.e.,

300 and 100 ng in a well, respectively. The rest of the 400 ng plas-

mids contained other components including 150 ng of PiggyBac

transposon plasmid, 100 ng of the rtTA (reverse tetracycline-

controlled trans-activator) plasmid, and 150 ng of the plasmid for

labeling the nucleus using H2B.

Monoclonal cell line construction

Monoclonal cell lines were obtained from single cells deposited into

96-well plates using fluorescence-activated cell sorting (FACS). Prior

to sorting, the inducible fluorescent protein was induced by adding

1 lg/ml doxycycline (Clontech) into the culture media for 12 h.

Triple-positive (the constitutive FP or FP1, the inducible FP or FP2,

and the nuclear labeling H2B-FP) cells were gated and deposited.

The resulted single cells were cultured and expanded in doxycy-

cline-free media.

Time-lapse fluorescence microscopy

Cells were seeded into wells in a 24-well glass-bottom plate (Eppen-

dorf) several hours (� 36 h for CHO cells and � 12 h for U2OS

cells) prior to imaging to ensure certain confluency level at the time

of imaging (� 90% for CHO cells and � 60% for U2OS cells). To

facilitate accurate cell segmentation, we typically added wild-type

cells that have no fluorescence into cells of interest at a ratio of

about 3:1 (WT cells versus fluorescent cells). By doing so, the

segmentation algorithm can achieve a better identification and sepa-

ration of fluorescent cells.

Time-lapse microscopy was performed on an automated micro-

scope (Nikon Ti-E) using a Plan Apo Lambda 40× objective. The

microscope is equipped with a white-light LED (Lumencor SOLA)

for fluorescence excitation, standard fluorescence filter sets (Chroma

and Semrock) for fluorescence imaging, an automated sample stage

for moving between imaging positions, and a scientific CMOS

camera (Hamamatsu ORCA-Flash4.0V2) for recording images. The

glass-bottom culture plate was maintained in a home-made environ-

mental chamber set at 37°C temperature, and the cells were under a

continuous airflow that was pre-humidified and contained 5% CO2.

Multi-color images were periodically and automatically acquired

using the open-source Micro-Manager program with different frame

rates for different types of experiments (1 per 6 min for maturation

kinetics measurements unless otherwise specified).

The experimental time course was illustrated in the upper panel

of Fig EV1C. More specifically, during these experiments the

inducer doxycycline was added to the cell culture in order to induce

the expression of the FP of interest. For maturation kinetics

measurements, culture media containing 1 lg/ml of doxycycline

were added to the wells at time zero, after which images were

acquired continuously for 6 h.

Cell segmentation and tracking

Images were loaded into MATLAB (MathWorks) and analyzed by

using a published mammalian cell tracking and segmentation GUI

algorithm (Bintu et al, 2016) (a gift from the Elowitz Lab at Caltech)

with minor modifications. Briefly, fluorescence images were first

background subtracted, and cells were segmented using the nuclear

H2B signals. Tracking was automatically performed based on the

segmented cell nuclei. The cell masks and the tracking information

were then used to extract the nuclear fluorescence of the constitu-

tive FP as well as the inducible FP. The tracked cells were manually

inspected in the GUI to remove tracks with dead cells or segmenta-

tion/tracking errors. After these procedures, mean nuclear fluores-

cence trajectories were then exported and used for further

calculations such as fitting.

Obtaining the relative intensity ratio between inducible and
constitutive FPs

As required by the kinetic models, we needed to achieve relative quan-

tification of the two FPs, i.e., the inducible FP and the constitutive FP.

That is, the fluorescence level from one FP needs to be scaled with the

fluorescence level from the other FP for model fitting purposes.

Thus, for each cell line, we performed separate microscopy

measurements to quantify the scaling ratio between the two
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fluorescence signals (i.e., the parameter R in our model). The exper-

imental time course was illustrated in the lower panel of Fig EV1C.

More specifically, in such experiments, we first added 0.75 lg/ml

doxycycline to the culture at time zero, after which images were

acquired continuously for 30 min with a frame rate of 1 per 3 min.

These data were used for quantifying the background fluorescence.

After another 10 min, 2 lg/ml actinomycin D (Coolaber) was added

to the culture to block RNA synthesis in order to allow cells to reach

steady fluorescence levels. Reaching steady-state fluorescence levels

is important for accurate calculation of the scaling ratios. To experi-

mentally determine this steady state (and without introducing too

much phototoxicity), we started another round of image acquisition

7 h after actinomycin addition for 2 h, with a frame rate of 1 per

20 min. These data allowed us to determine whether and when

steady-state fluorescence levels had been reached, and were used

for calculating the intensity scaling ratio between the inducible FP

and the constitutive FP.

To calculate the scaling ratio (i.e., the parameter R in the model),

the nuclear levels of the two FPs were first calculated by subtracting

the steady-state levels (determined from the second movie above)

with the background fluorescence levels (determined from the first

movie above). The scaling ratio was then calculated for each pair of

the inducible FP and the constitutive FP and was used in the model

fitting.

Data fitting and maturation time calculation

The kinetic model that characterizes inducible FP (FP2 in Fig 2A)

expression and maturation is shown below.

In this model, mRNA, noted by the variable m, is constantly

produced at a rate of k1 after doxycycline addition. The mRNA has a

first-order degradation rate constant of a and is translated into

unmatured FP (variable I) at a rate of k2. The maturation of FP

includes chromophore folding and subsequent maturation and is

approximated as a first-order reaction with a rate constant k3. The

maturation time is then defined as ln2 divided by k3. It should be

noted that we omitted the degradation at the protein level due to the

short experimental durations.

In the two-color assay (Fig 2A), we used the nuclear level of the

constitutive FP (FP1 in Fig 2A) to measure the protein level of the

inducible FP (FP2, the sum of matured and unmatured) and used

the fluorescence of FP2 to measure its own maturation. Therefore,

the reactions in the model can be expressed as:

dm

dt
¼ k1 � am (1)

dðFcRÞ
dt

¼ k2m (2)

I ¼ FcR� Fi (3)

dðFiÞ
dt

¼ k3I (4)

Here, m denotes the mRNA level, I denotes the level of unma-

tured FP2, k1 is the mRNA production rate, a is the mRNA turnover

rate, k2 is the translation rate, k3 is the FP2 maturation rate, Fi is the

nuclear fluorescence level of FP2, R is the scaling ratio, and Fc is the

nuclear fluorescence level of FP1.

To solve these simple ODEs, we first set the mRNA turnover rate

a to be 0.03/min for simplicity, which is chosen based on previous

estimations (Bintu et al, 2016). Next, the equations can be easily

solved in an analytic manner to obtain the expressions for Fc and Fi,

the experimentally measured fluorescence levels. The two expres-

sions contain only one (k) and two (k and k3) effective parameters,

respectively, where k = k1�k2.
These expressions were then fitted to the measured fluorescence

levels using standard non-linear fitting tools in MATLAB, and the

maturation rate constant k3 was obtained on a cell-by-cell basis. To

ensure good fitting quality, we only kept cells with R2 larger than

0.98. The FP maturation time of the remaining cells was then calcu-

lated. However, because there are occasionally cells with abnormal

maturation kinetics such as dying cells, we removed outliers by

using the median absolution deviation approach (Leys et al, 2013).

The resulting cells were used to calculate 95% confidence intervals

using bootstrap. More specifically, the data were resampled 2,000

times with replacement, and the bias-corrected 95% confidence

interval of those 2,000 samples was represented as error bars in

Fig 3A.

Comparing nuclear versus cytoplasmic FP maturation kinetics

A plasmid containing two identical FPs that are driven by a bidirec-

tional tetracycline-inducible promoter (pTRE-BI) was co-transfected

with an H2B labeling FP (with a different color) into CHO cells.

Monoclonal cells were isolated by FACS as described in the earlier

section. Cells were seeded in a 24-well glass-bottom plate, and fluo-

rescence images were taken on a high-content microscope (Molecu-

lar Devices). Culture media containing 0.1 lg/ml doxycycline were

added at time zero, and the frame rate was 1 per 30 min. The result-

ing images were processed in order to extract the nuclear versus

cytoplasmic fluorescence signals. The nuclear region is defined by

the H2B signal while the cytoplasmic region is defined as a 4-pixel-

wide ring surrounding the nucleus. The ratio of nuclear versus cyto-

plasmic fluorescence signals was calculated by the mean nuclear

fluorescence level divided by the median cytoplasmic fluorescence

level.

Characterizing the effect of cell cycle on maturation kinetics

We used cell cycle synchronization to explore the effect of cell cycle

on FP maturation. To avoid imaging mitotic cells, whose images are

difficult to analyze, we synchronized CHO cells to G1 and S phases,

and released cells at different time points after synchronization in

order to study the effect of different cell cycle stages (Ma & Poon,

2017). More specifically, synchronization to G1 phase was achieved

with lovastatin which inhibits HMG-CoA reductase, and synchro-

nization to S phase was achieved with a double thymidine block

procedure. After synchronization, cells were washed twice with

DPBS to release cells from cell cycle blockages.

During the experiments, we induced the protein expression at

different time points post-release (e.g., 0 and 2 h) and classified
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cells based on their initial nuclear sizes. Such classification allowed

us to analyze whether cells that started the protein induction at dif-

ferent cell cycle stages have different maturation kinetics. One-way

analysis of variance (ANOVA) was performed to compare the matu-

ration rates in three separate cell populations starting at different

cell cycle stages.

Stochastic simulations of FP maturation

We hypothesized an underlying noisy biochemical environment

affecting the FP maturation reaction. To implement how such noisy

environment affects FP maturation in the model simulation, we

used a stochastic time series to represent the noisy maturation rate

constant k. This stochastic time series has a fixed time lag that is

much shorter than the maturation time, but has fluctuating ampli-

tudes that are drawn from a Gaussian distribution centered around

the mean rate constant (defined by the FP maturation time). This

noisy time series of rate constant was then used for stochastic

simulation of FP maturation. Note that this stochastic time series

was constructed independently for each run of simulation (i.e., for

each in silico cell). During the simulation, we implemented the

standard Gillespie algorithm (Gillespie, 1977), which specifies the

dwell time between two reaction steps. We averaged the time series

above over the specified dwell time to obtain the maturation rate

constant (i.e., time-averaging) and used it for each Gillespie simula-

tion step. Thus, the noisy biochemical environment was effectively

averaged over a time window that relates to the length of FP matu-

ration time. When comparing two FPs of different maturation

times, the faster-maturing FP would have a smaller time window

for averaging and its maturation rate would be effectively more

susceptible to the noisy biochemical environment compared to the

slower-maturing FP.

For each FP with a chosen maturation time, by repeating the

simulations of the maturation of 2,000 FP molecules in 100 cells, we

generated a distribution of FP maturation time (i.e., the time when

half of the molecules mature). These data were then used to calcu-

late the mean maturation time and the noise of maturation time by

bootstrap (Fig 4C).

Characterizing maturation kinetics in media with reduced
oxygen levels

EC-Oxyrase stock solution (Sigma #SAE0010, 30 units/ml) was

diluted (0–3 ll oxyrase solution in 200 ll final volume, i.e., 0:200,

1:200, 2:200, or 3:200) in culture media supplemented with 10 mM

DL-lactate (Sigma), which serves as the substrate for the oxyrase

enzyme. The media were mixed and kept at 37°C for 2 h to ensure

sufficient removal of oxygen. The resulting media were added into

cells, and the expression of inducible FP was induced at the same

time. The same experimental and data analysis procedures as above

were then applied for these cells, except that a frame rate of 1 per

10 min was used instead of 1 per 6 min.

Data availability

The dataset and computer code produced in this study are available

in the following databases:

• Fluorescence filter information for the fluorescent proteins used in

this study is available in Dataset EV1.

• Nucleotide sequences for the fluorescent proteins used in this

study are available in Dataset EV2.

• Computer code for stochastic simulation is available in Code

EV1.

Expanded View for this article is available online.
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