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The botanical constituents of Stellera chamaejasme Linn. exhibit various pharmacological and medicinal activities. Neochamaejasmin
A (NCA), one main active constituent of S. chamaejasme, inhibits cell proliferation and induces cell apoptosis in several types of
tumor cells. However, the antitumor effect of NCA on hepatocellular carcinoma cells is still unclear. In this study, NCA (36.9,
73.7, and 147.5μM) significantly inhibited hepatoblastoma-derived HepG2 cell proliferation in a concentration-dependent
manner. Hoechst 33258 staining and flow cytometry showed that apoptotic morphological changes were observed and the
apoptotic rate was significantly increased in NCA-treated HepG2 cells, respectively. Additionally, the levels of Bax, cleaved
caspase-3, and cytoplasmic cytochrome c were increased, while the level of Bcl-2 was decreased in NCA-treated HepG2 cells
when compared with the control group. Moreover, we found that the reactive oxygen species (ROS) level was significantly
higher and the mitochondrial membrane potential was remarkably lower in NCA-treated HepG2 cells than in the control group.
Further studies demonstrated that the levels of p-JNK and p-ERK1/2 were significantly upregulated in NCA-treated HepG2
cells, and pretreatment with JNK and ERK1/2 inhibitors, SP600125 and PD0325901, respectively, suppressed NCA-induced cell
apoptosis of HepG2 cells. In addition, NCA also significantly inhibited human hepatoma BEL-7402 cell proliferation and
induced cell apoptosis through the ROS-mediated mitochondrial apoptotic pathway. These results implied that NCA induced
mitochondrial-mediated cell apoptosis via ROS-dependent activation of the ERK1/2/JNK signaling pathway in HepG2 cells.

1. Introduction

Hepatocellular carcinoma (HCC) is the most commonly
occurring solid cancer. According to global cancer statistics,
there were 841,080 new cases of liver cancer and 781,631
deaths in 2018 [1]. HCC is characterized by rapid and
abnormal cell differentiation, rapid infiltration and growth,
and early transition. Additionally, the development of highly
malignant tumors and the accompanying poor prognosis are
considered to be features of HCC [2, 3]. At present, surgery

is considered to be the staple cure for HCC [4]. However,
during surgery, an amount of liver tissue is removed,
resulting in the inability of residual liver tissue to survive
after surgery, and surgical treatment can only be a palliative
treatment for metastatic liver cancer. Therefore, it has
become the focus of research to try to find a new drug for
hepatocellular carcinoma.

Stellera chamaejasme Linn. is a traditional Chinese herbal
medicine in China. Moreover, a few studies have proved that
the botanical constituents of Stellera chamaejasme inhibit the
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growth of several types of cancer cells, including human
breast cancer MDA-MB-231 cells, human osteosarcoma
MG63 cells, human lung carcinoma NCI-H157 cells, and
human leukemia K562 cells [5–9]. Further studies showed
that two active constituents (chamaejasmenin B and neocha-
maejasmin C) exert proliferation inhibitory effects on several
human tumor cell lines, e.g., liver carcinoma HepG2 and
SMMC-7721 cells, non-small cell lung cancer A549 cells,
osteosarcoma cell MG63 and KHOS cells, and colon cancer
cell HCT-116 cells [10].

A recent study reported that neochamaejasmin A (NCA,
Figure 1), another main constituent in the dried root of Stel-
lera chamaejasme, also exerts antitumor effects on tumor
cells [11]. Liu et al. demonstrated that NCA induces cell cycle
arrest at the G1 phase by activating p21 and subsequently
promotes cell apoptosis via the Fas/caspase-8/caspase-3
pathway [11]. However, the anticancer effect of NCA on
hepatocellular carcinoma cells has not yet been explored. In
this study, we found that NCA possessed a robust activity
against hepatocellular carcinoma HepG2 cells.

2. Materials and Methods

2.1. Materials. NCA was obtained from Wuhan Chem-
Faces (purity ≥ 98%). Dimethyl sulfoxide (DMSO) and 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) were provided from Sigma. Minimum essential
medium (MEM) was obtained from Gibco. The reactive oxy-
gen species (ROS) assay kit, mitochondrial membrane poten-
tial assay kit, and Annexin V-FITC/propidium iodide (PI)
detection kit were provided by Nanjing KeyGen Biotech.
Fetal bovine serum (FBS) was provided by TransGen Biotech
Corporation. The Hoechst 33258 stain, penicillin-streptomy-
cin, and cell lysates were obtained from Solarbio. Superoxide
dismutase (SOD, Cat No. BC0175) and catalase (CAT, Cat
No. BC0205) detection kits were provided by Beijing Solarbio
Science & Technology Co., Ltd. The JNK inhibitor SP600125
(Cat No. S1460) and ERK1/2 inhibitor PD0325901 (Cat No.
S1036) were purchased from Selleckchem Corporation.
Anti-JNK (Cat No. #9252), anti-phospho-JNK (Thr183/
Tyr185, Cat No. #4668), ERK1/2 (Cat No. #4695), and anti-
phospho-ERK1/2 (Thr202/Tyr204, Cat No. # 9101) were
obtained from Cell Signaling Technology. Anti-caspase-3
(Cat No. ab4051) and anti-cleaved caspase-3 (Cat No.
ab2302) were obtained from Abcam. Anti-β-actin and sec-
ondary antibodies were provided by Beijing ZSGB Biotech-

nology. The remainder of the antibodies were obtained
from Cell Signaling Technology.

2.2. Cell Culture. Human hepatoblastoma-derived HepG2
cells and human hepatocellular carcinoma BEL-7402 cells
were provided by the Chinese Academy of Sciences Cell
Bank. The HepG2 cells were incubated in MEM medium
with 10% FBS and 1% penicillin-streptomycin and cultured
in a 37°C incubator with 5% CO2. The BEL-7402 cells were
incubated in RPMI-1640 medium with 10% FBS and 1%
penicillin-streptomycin and cultured in a 37°C incubator
with 5% CO2.

2.3. Cell Viability Assay. The viabilities of HepG2/BEL-7402
cells were determined with the MTT assay [12–14]. The
HepG2/BEL-7402 cell suspensions were inoculated into a
96-well plate with 100μL per well. After 24 h incubation,
the cells were treated with different concentrations of NCA.
Based on this situation that the final concentration of DMSO
used to dissolve NCA is 0.05%, the complete medium con-
taining with 0.05% DMSO was used and chosen as the con-
trol group. After cells were exposed to NCA (for HepG2
cells, 18.4, 36.9, 73.7, and 147.5μM; for BEL-7402 cells, 50,
100, 150, 200, 250, and 300μM) for 24, 48, and 72 h in 96-
well plates with 1 × 105 cells/mL, the original medium was
replaced with fresh medium and 10μL prepared MTT
(5mg/mL) solution was added to the HepG2/BEL-7402 cells
for another 4 h. Then, the medium was removed, and 150μL
DMSO was added per well to dissolve insoluble formazan
crystals. A microplate reader measured the absorbance at
570 nm (Thermo Fisher Scientific, Inc., Waltham,MA, USA).

2.4. Morphological Assay. Morphological changes in
HepG2/BEL-7402 cells were observed using Hoechst 33258
staining. The cells were treated with NCA (for HepG2 cells,
36.9, 73.7, and 147.5μM; for BEL-7402 cells, 100, 150, and
200μM) on 6-well chamber slides for 48 h. Cells were treated
with a fixative solution (the ratio of methanol to glacial
acetic acid is 3 : 1) for 15 minutes protected from light. After
a certain time, HepG2 cells were washed and soaked in
Hoechst 33258 (10mg/L) to stain for 10minutes at 37°C
protected from light, as previously described [15]. The cell
morphology was observed with fluorescence microscopy
(Carl Zeiss, Germany).

2.5. Reactive Oxygen Analysis. The DCFH-DA probe was
applied to detect ROS levels in HepG2 cells [16]. After treat-
ment with NCA (for HepG2 cells, 36.9, 73.7, and 147.5μM;
for BEL-7402 cells, 100, 150, and 200μM) for 48 h, the
HepG2 cells were stained for 30min at 37°C using 30μM
DCFH-DA protected from light, and then the HepG2 cells
were washed and resuspended in phosphate-buffered saline
(PBS). The final treated cells were detected by flow cytometry
(BD Biosciences).

2.6. Detection of Intracellular Oxidoreductase SOD and CAT.
The activities of SOD and CAT in HepG2 cells were exam-
ined using SOD and CAT kits. Briefly, the cells were exposed
to NCA (for HepG2 cells, 36.9, 73.7, and 147.5μM; for BEL-
7402 cells, 100, 150, and 200μM) for 48 h, and then SOD and
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Figure 1: Structure of NCA.
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CAT were tested according to SOD and CAT kits, respec-
tively. For SOD detection, the cell lysis solutions (18μL) were
added in a 96-well microtiter plate and subsequently 45μL
test solution 1, 2μL test solution 2, 35μL test solution 3,
90μL test solution 4, and 10μL test solution 5 per well were
added. After mixing well, the plate was incubated for
30min at 37°C. Finally, the absorbance values were detected
at 560nm with a microplate reader (Thermo Fisher Scien-
tific, Inc., Waltham, MA, USA). For CAT detection, the test
working solution was preheated at 37°C for 10min. Then,
10μL cell lysis solution and 190μL test working solution
were added into a 96-well microtiter plate. Finally, the initial
absorbance value (A1) and the absorbance value after 1min
of reaction (A2) were detected at 240nm with a microplate
reader. The activities of SOD and CAT were calculated
according to the instruction of the SOD and CAT kits.

2.7. Cell Apoptosis Analysis. The apoptosis rate of HepG2/-
BEL-7402 cells was analyzed by flow cytometry [17]. The
HepG2/BEL-7402 cell suspensions were inoculated into a

96-well plate with 100μL per well. After incubation for
24 h, the cells were treated with different concentrations
of NCA (for HepG2 cells, 36.9, 73.7, and 147.5μM; for
BEL-7402 cells, 100, 150, and 200μM) with/without the
JNK inhibitor SP600125 (5μM) or the ERK1/2 inhibitor
PD0325901 (1μM). Then, the cells were digested and washed
with PBS twice, and 5μL Annexin FITC and 5μL PI were
added to the HepG2 cells for 10 minutes. After that, the apo-
ptosis rate was determined by flow cytometer (FACSCalibur;
BD Biosciences).

2.8. Mitochondrial Membrane Potential Analysis. The
HepG2/BEL-7402 cells were treated with NCA (for HepG2
cells, 36.9, 73.7, and 147.5μM; for BEL-7402 cells, 100, 150,
and 200μM) for 48h, and then cells were collected and
exposed to JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-
benzimidazolyl carbocyanine iodide) solution for 20 minutes
in the dark at a temperature of 37°C. Cells were detected by
flow cytometry (FACSCalibur; BD Biosciences) and micro-
plate reader (Thermo Fisher Scientific, Inc, Waltham, MA,
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Figure 2: NCA inhibited HepG2 cell proliferation and induced changes in cell morphology. (a–c) HepG2 cells were exposed to NCA for 24,
48, and 72 h, respectively, and the cell viability was determined byMTT assay. (d) After NCA treatment for 48 h, the morphological changes of
HepG2 cells were observed under a phase contrast microscope. (e) Hoechst 33258 staining was used to examine the morphological change of
HepG2 cells after exposure to NCA for 48 h. ∗P < 0:05 and ∗∗P < 0:01, compared with the control group.
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USA) at excitation/emission wavelengths of 485/580 nm for
red and 485/530 nm for green [18].

2.9. Western Blot Analysis.HepG2 cells were exposed to NCA
(73.7μM) with/without the JNK inhibitor SP600125 (5μM)
or the ERK1/2 inhibitor PD0325901 (1μM) for 48h; cell
lysates were added to HepG2 cells on ice for 30 minutes,
and then the total protein from the cell supernatants was har-
vested. The protein underwent separation by 15% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE), and then the proteins were electrotransferred to
polyvinylidene difluoride (PVDF) membranes. Next, the
membranes with protein were blocked with 5% nonfat milk
or bovine serum albumin (BSA) in Tris-buffered saline
(TBS) containing 0.1% Tween-20 (TBST) solution for 2 h,
and the membranes were subsequently incubated with spe-

cific primary antibodies at 4°C overnight. Next, the mem-
branes were incubated with the corresponding secondary
antibodies for 1 h, and the bands on the membranes were
visualized by the use of the enhanced chemiluminescence
(ECL) kit (Thermo Fisher Scientific) and the EC3 imaging
system (Spring Scientific, USA). The bands of the Western
blot were then analyzed using ImageJ software (NIH,
Bethesda, Maryland, USA) [19, 20]. The results were stan-
dardized with β-actin.

2.10. Statistical Analysis. The data are expressed as the
mean ± standard deviation from at least three experiments.
The data were analyzed by one-way analysis of variance
(ANOVA) followed by Fisher’s multiple comparison test
using SPSS 21.0 software (Chicago, IL, USA). P < 0:05 was
used to evaluate if the difference is statistically significant.
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Figure 3: NCA induced HepG2 cell apoptosis and regulated the apoptosis-associated protein levels. (a) The apoptotic rate of NCA-treated
HepG2 cells was determined by flow cytometry. (b) Statistical analysis of the apoptotic rate of NCA-treated HepG2 cells. (c, d) HepG2
cells were treated with NCA for 48 h, and the protein levels of Bax, cleaved caspase-3, and cytoplasmic cytochrome c were analyzed by
Western blot. ∗P < 0:05 and ∗∗P < 0:01, compared with the control group.
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3. Results

3.1. NCA Inhibits HepG2 Cell Proliferation and Induces
Cell Morphology Changes. To observe the antitumor effect
of NCA on HepG2 cells, the MTT assay was employed to
test the sensitivity of HepG2 cells. We found that NCA signif-
icantly inhibited HepG2 cell proliferation in a concentration-
dependent manner (Figures 2(a)–2(c)). When the concentra-
tion of NCA reached 147.5μM, the inhibition rate reached
22.6%, 67.8%, and 91.4% after 24, 48, and 72 h of treatment,
respectively. After treatment with NCA for 48 h, the cells
began to shrink when compared with the control group
(Figure 2(d)). Next, Hoechst 33258 staining was used to eval-
uate the morphological changes in NCA-treated HepG2 cells.
Chromatin condensation and apoptotic bodies were also
observed in HepG2 cells (Figure 2(e)).

3.2. NCA Induces HepG2 Cell Apoptosis and Regulates the
Levels of Apoptosis-Related Proteins. In order to further con-
firm the effect of NCA on cell proliferation, Annexin V-
fluorescein isothiocyanate (FITC)/propidium iodide (PI)
staining was performed to explore whether NCA could
induce apoptosis. After treatment with different concentra-
tions of NCA (36.9, 73.7, and 147.5μM) for 48 h, the apopto-
sis rate of HepG2 cells was significantly increased when
compared with the control group (Figures 3(a) and 3(b)).
Then, we examined the levels of apoptosis-associated mole-
cules in HepG2 cells using Western blotting. The data
revealed that the protein levels of Bax, cleaved caspase-3,
and cytoplasmic cytochrome c were significantly increased,
while the level of Bcl-2 was significantly decreased in NCA-
treated HepG2 cells when compared to those in the control
group (Figures 3(c) and 3(d)).

3.3. NCA Induces a Mitochondrial-Dependent Apoptotic
Pathway in HepG2 Cells. At present, the mitochondrial path-

way exerts a vital role in cell apoptosis [21–23]. To explore
the key role of mitochondria in apoptosis, JC-1 dye was used
to determine the change in the mitochondrial membrane
potential in NCA-treated HepG2 cells. The results showed
that the ratio of red to green fluorescence was significantly
decreased in NCA-treated cells when compared with the
control group (Figures 4(a) and 4(b)). It is implied that
NCA triggered disorder in the mitochondrial membrane
potential and subsequently induced the mitochondrial-
dependent apoptotic pathway.

3.4. NCA Induces the Production of Reactive Oxygen Species
(ROS) and Regulates the Activities of Antioxidant Enzymes.
Evidence indicated that the disorder of the mitochondrial
membrane potential is inextricably linked to the level of
ROS and the production of ROS affects the function of
the mitochondrial membrane [24, 25]. Therefore, a 2′,7′-
dichlorodihydrofluorescein diacetate (DCFH-DA) probe
was employed to measure the level of ROS in HepG2 cells
after treatment with NCA for 48h. We found that the green
fluorescence intensity of DCF was significantly increased
after 48 h of treatment with NCA, implying that NCA
induced ROS production in HepG2 cells (Figures 5(a) and
5(b)). Next, the activities of superoxide dismutase (SOD)
and catalase (CAT) were measured for the purpose of observ-
ing changes in antioxidant enzymes when HepG2 cells were
exposed to NCA for 48 h. When compared with the control
group, the activities of SOD and CAT were significantly
decreased, as expected (Figures 5(c) and 5(d)).

3.5. Effect of NCA on the ERK1/2/JNK Signaling Pathway in
HepG2 Cells. Some studies have shown that apoptosis is
always linked to activation of the ERK1/2/JNK signaling
pathway [26–28]. Western blot analysis demonstrated that
the levels of p-JNK (Thr183/Tyr185) and p-ERK1/2
(Thr202/Tyr204) were increased in HepG2 cells after
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Figure 4: NCA induced changes in the mitochondrial membrane potential in HepG2 cells. (a) HepG2 cells were treated with NCA for 48 h,
and the mitochondrial membrane potential changes were subsequently evaluated by JC-1 staining. (b) Statistical analysis of the ratio of red to
green fluorescence in NCA-treated HepG2 cells. ∗P < 0:05 and ∗∗P < 0:01, compared with the control group.
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treatment with NCA for 48 h (Figures 6(a) and 6(b)).
Furthermore, JNK and ERK1/2 inhibitors, SP600125 and
PD0325901, respectively, were employed to explore the effect
of NCA on the ERK1/2/JNK signaling pathway in HepG2
cells. The increased levels of p-JNK and p-ERK1/2 in
NCA-treated HepG2 cells were significantly attenuated by
pretreatment with SP600125 and PD0325901, respectively
(Figures 6(c)–6(f)).

3.6. The ERK1/2/JNK Signaling Pathway Is Involved in NCA-
Induced HepG2 Cell Apoptosis. We next explored whether
the ERK1/2/JNK signaling pathway is involved in HepG2 cell
apoptosis induced by NCA. We found that the increased
apoptotic rate in NCA-treated HepG2 cells was significantly
attenuated by pretreatment with SP600125 or PD0325901
(Figures 7(a) and 7(b)). Additionally, the upregulated levels
of Bax, cleaved caspase-3, and cytoplasmic cytochrome c,
as well as the downregulated level of Bcl-2, were suppressed
by pretreatment with SP600125 or PD0325901 (Figures 7(c)
and 7(d)). These data revealed that the ERK1/2/JNK sig-

naling molecules participated in NCA-induced HepG2
cell apoptosis.

3.7. NCA Induces Cell Apoptosis and Increases ROS Level
in BEL-7402 Cells. Consistent with the data from HepG2
cells, we found that NCA significantly inhibited BEL-
7402 cell proliferation after treatment with NCA for 24,
48, and 72 h (Figures 8(a)–8(c)). Meanwhile, the NCA-
treated BEL-7402 cells began to shrink, and the chromatin
condensation and apoptotic bodies were observed in BEL-
7402 cells (Figures 8(d) and 8(e)). Flow cytometry analysis
showed that the apoptosis rate of BEL-7402 cells was signifi-
cantly increased when compared with the control group
(Figures 8(f) and 8(g)). Furthermore, we found that the ratio
of red to green fluorescence was significantly decreased in
NCA-treated BEL-7402 cells when compared with the
control group (Figures 9(a) and 9(b)). In addition, the
green fluorescence intensity of DCF was significantly
increased (Figure 9(c)), and the activities of SOD and
CAT were significantly decreased in NCA-treated BEL-
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Figure 5: NCA caused ROS to be produced and downregulated the activities of antioxidant enzymes in HepG2 cells. (a) ROS production in
NCA-treated HepG2 cells was determined using a DCFH-DA fluorescence probe. (b) Statistical analysis of the green fluorescence intensity in
NCA-treated HepG2 cells. (c) The activity of SOD in NCA-treated HepG2 cells was detected with the SOD kit. (d) The activity of CAT in
NCA-treated HepG2 cells was detected with the CAT kit. ∗P < 0:05 and ∗∗P < 0:01, compared with the control group.
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7402 cells (Figures 9(d) and 9(e)). These data implied that
NCA also induced BEL-7402 cell apoptosis through the ROS-
mediated mitochondrial-dependent apoptotic pathway.

4. Discussion

Hepatocellular carcinoma (HCC) is one of the malignant
tumors that can endanger health and result in considerable
fatality. Traditional chemotherapy is one of the methods to

assist liver cancer treatment [29]. However, traditional che-
motherapy has some worrying issues, such as high toxicity
and minimal effect, in prolonging survival. Therefore, it is
of great significance to find effective candidate compounds
for curing liver cancer. Recently, numerous scientists have
focused on compounds extracted from natural products,
and it was found that NCA significantly inhibited several dif-
ferent types of tumor cells [11]. This prompted us to explore
whether NCA could effectively suppress the cell proliferation
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Figure 6: Effect of NCA on JNK/ERK signaling molecules in HepG2 cells. (a, b) HepG2 cells were treated with NCA for 48 h, and the levels of
JNK, p-JNK, ERK1/2, and p-ERK1/2 were examined by Western blot. (c, d) HepG2 cells were pretreated with 10μM SP600125 for 1 h and
subsequently treated with 73.7μM NCA for 48 h, and the levels of JNK and p-JNK were then examined by Western blot. (e, f) HepG2
cells were pretreated with 10 μM PD0325901 for 1 h and subsequently treated with 73.7μM NCA for 48 h, and then the levels of ERK1/2
and p-ERK1/2 were examined by Western blot. ∗P < 0:05 and ∗∗P < 0:01, compared with the control group.
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and growth of hepatocellular carcinoma. In our research,
NCA inhibited the proliferation of HepG2 and BEL-7402
cells in a concentration-dependent manner. In order to
explore the mechanism that NCA uses to inhibit HepG2
and BEL-7402 cell proliferation, we observed the morpholog-
ical changes in HepG2 and BEL-7402 cells after treatment
with NCA and we noted that the NCA-treated cells began
to shrink, with chromatin condensation and the formation

of apoptotic bodies. In addition, the rate of apoptosis of
NCA-treated HepG2 and BEL-7402 cells was significantly
increased when compared with the control group. All of the
data indicated that NCA inhibited HepG2 and BEL-7402 cell
proliferation via inducing cellular apoptosis.

Previous studies revealed that excessive ROS triggered
mitochondrial dysfunction, activated the MAPK pathway,
and caused cellular apoptosis [30–32]. When tumor cells
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Figure 7: JNK and ERK1/2 are involved in HepG2 cell apoptosis induced by NCA. HepG2 cells were pretreated with 10μM SP600125 or
PD0325901 for 1 h and then treated with 73.7μM NCA for 48 h. (a, b) The apoptotic rate was examined flow cytometry. (c, d) The
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Figure 8: NCA inhibited cell proliferation and induced cell apoptosis in BEL-7402 cells. (a–c) BEL-7402 cells were exposed to NCA for 24, 48,
and 72 h, respectively, and the cell viability was determined by MTT assay. (d) The morphological changes of NCA-treated BEL-7402 cells
were observed under a phase contrast microscope. (e) Hoechst 33258 staining was used to examine the morphological change of BEL-
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Statistical analysis of the apoptotic rate of NCA-treated BEL-7402 cells. ∗P < 0:05 and ∗∗P < 0:01, compared with the control group.
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are stimulated by stress signals from outside or inside, it
affects the Bcl-2 family of proteins, including an increase in
protein Bax expression and a decrease in protein Bcl-2
expression. Then, due to mitochondrial membrane potential
disorder, the mitochondrial membrane pores open and a
large amount of cytochrome c is released to the cytoplasm,
forming a complex with Apaf-1, which activates caspase-9,
leading to active downstream caspase factor, which causes
apoptosis [33–35]. Our results showed that NCA caused an
increase in ROS production as well as a decrease in the activ-
ities of SOD and CAT in HepG2 and BEL-7402 cells. NCA
also triggered mitochondrial membrane potential disorder,
which caused a large amount of cytochrome c to be released
to the cytoplasm, as well as upregulating the levels of Bax

and cleaved caspase-3 and downregulating the level of Bcl-2
in HepG2 cells. Taken together, these results implied that
NCA could induce HepG2 and BEL-7402 cell apoptosis via
the ROS-mediated mitochondrial apoptotic pathway.

The ERK and JNK signaling pathways have been found in
mammalian cells, and they are two parallel MAPK signaling
pathways that are important in cell growth, differentiation,
apoptosis, and other stress and inflammatory response effects
[36, 37]. Evidence has shown that excessive ROS regulates
mitochondrial pathway-induced cell death by activating the
ERK1/2/JNK pathway and simultaneously activating mole-
cules such as Bax, thereby leading to mitochondrial dysfunc-
tion and cell death [38]. In this process, activated JNK can
activate nuclear transcription factors, such as c-fos, ATP-2,
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Figure 9: NCA induced changes in the mitochondrial membrane potential and ROS levels in BEL-7402 cells. (a) BEL-7402 cells were treated
with NCA for 48 h, and the mitochondrial membrane potential changes were subsequently evaluated by JC-1 staining. (b) Statistical analysis
of the ratio of red to green fluorescence in NCA-treated BEL-7402 cells. (c) Statistical analysis of the green fluorescence intensity in NCA-
treated BEL-7402 cells. (d) The activities of SOD in NCA-treated BEL-7402 cells were detected with the SOD kit. (e) The activities of CAT
in NCA-treated BEL-7402 cells were detected with the CAT kit. ∗P < 0:05 and ∗∗P < 0:01, compared with the control group.
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p53, c-Myc, and nontranscription factors, such as the Bcl-2
superfamily in apoptosis [39]. In addition, the activation of
JNK can simultaneously change the mitochondrial mem-
brane potential and the release of cytochrome c, which then
causes a downstream cascade to induce apoptosis [40].
ERK1 and ERK2 are the two most important members of
the ERK pathway [41].

In this study, the protein levels of p-JNK (Thr183/
Tyr185) and p-ERK1/2 (Thr202/Tyr204) were remarkably
increased in NCA-treated cells. To observe whether JNK
and ERK1/2 play vital roles in apoptosis when HepG2
cells were exposed to NCA, JNK and ERK1/2 inhibitors
SP600125 and PD0325901 were used. The results showed
that SP600125 and PD06325901 reversed the upregulation
of Bax and cleaved caspase-3, the downregulation of Bcl-2,
the release of cytochrome c, and HepG2 cell apoptosis
induced by NCA. Collectively, these results demonstrated
that NCA could induce HepG2 cell apoptosis via ROS-
dependent activation of the ERK1/2/JNK signaling pathway.

However, several limitations in this study should be
noted. Firstly, the potential therapeutical target (protein)
of NCA is still unclear. Second, the antitumor effects of
NCA were examined in HepG2 and BEL-7402 cells, but the
cytotoxicity of NCA in normal cells, e.g., L02 cells, was not
determined. In addition, the effect of NCA in a hepatoma-
xenografted mouse model has not been evaluated.

5. Conclusions

The data demonstrated that NCA significantly inhibited
hepatocellular carcinoma cell proliferation and induced
cell apoptosis via the mitochondrial apoptosis pathway,
which was regulated by ROS-dependent activation of the
ERK1/2/JNK signaling pathway.
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