
ORIGINAL RESEARCH
published: 27 May 2022

doi: 10.3389/fncom.2022.885207

Frontiers in Computational Neuroscience | www.frontiersin.org 1 May 2022 | Volume 16 | Article 885207

Edited by:

Kelly Shen,

Simon Fraser University, Canada

Reviewed by:

Sora A. N.,

Ewha Womans University, South

Korea

Mantas Mikaitis,

The University of Manchester, United

Kingdom

*Correspondence:

Alper Yegenoglu

a.yegenoglu@fz-juelich.de

Received: 27 February 2022

Accepted: 13 April 2022

Published: 27 May 2022

Citation:

Yegenoglu A, Subramoney A, Hater T,

Jimenez-Romero C, Klijn W, Pérez

Martín A, van der Vlag M, Herty M,

Morrison A and Diaz-Pier S (2022)

Exploring Parameter and

Hyper-Parameter Spaces of

Neuroscience Models on High

Performance Computers With

Learning to Learn.

Front. Comput. Neurosci. 16:885207.

doi: 10.3389/fncom.2022.885207

Exploring Parameter and
Hyper-Parameter Spaces of
Neuroscience Models on High
Performance Computers With
Learning to Learn

Alper Yegenoglu 1,2*, Anand Subramoney 3, Thorsten Hater 1, Cristian Jimenez-Romero 1,

Wouter Klijn 1, Aarón Pérez Martín 1, Michiel van der Vlag 1, Michael Herty 2,

Abigail Morrison 1,4,5 and Sandra Diaz-Pier 1

1 Simulation and Data Lab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA,

Forschungszentrum Jülich GmbH, Jülich, Germany, 2Department of Mathematics, Institute of Geometry and Applied

Mathematics, RWTH Aachen University, Aachen, Germany, 3 Institute of Neural Computation, Ruhr University Bochum,

Bochum, Germany, 4 Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA BRAIN

Institute I, Jülich Research Centre, Jülich, Germany, 5Computer Science 3-Software Engineering, RWTH Aachen University,

Aachen, Germany

Neuroscience models commonly have a high number of degrees of freedom and only

specific regions within the parameter space are able to produce dynamics of interest. This

makes the development of tools and strategies to efficiently find these regions of high

importance to advance brain research. Exploring the high dimensional parameter space

using numerical simulations has been a frequently used technique in the last years in

many areas of computational neuroscience. Today, high performance computing (HPC)

can provide a powerful infrastructure to speed up explorations and increase our general

understanding of the behavior of the model in reasonable times. Learning to learn (L2L)

is a well-known concept in machine learning (ML) and a specific method for acquiring

constraints to improve learning performance. This concept can be decomposed into

a two loop optimization process where the target of optimization can consist of any

program such as an artificial neural network, a spiking network, a single cell model,

or a whole brain simulation. In this work, we present L2L as an easy to use and

flexible framework to perform parameter and hyper-parameter space exploration of

neurosciencemodels on HPC infrastructure. Learning to learn is an implementation of the

L2L concept written in Python. This open-source software allows several instances of an

optimization target to be executed with different parameters in an embarrassingly parallel

fashion on HPC. L2L provides a set of built-in optimizer algorithms, which make adaptive

and efficient exploration of parameter spaces possible. Different from other optimization

toolboxes, L2L provides maximum flexibility for the way the optimization target can be

executed. In this paper, we show a variety of examples of neuroscience models being

optimized within the L2L framework to execute different types of tasks. The tasks used

to illustrate the concept go from reproducing empirical data to learning how to solve a

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2022.885207
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2022.885207&domain=pdf&date_stamp=2022-05-27
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:a.yegenoglu@fz-juelich.de
https://doi.org/10.3389/fncom.2022.885207
https://www.frontiersin.org/articles/10.3389/fncom.2022.885207/full

Yegenoglu et al. L2L

problem in a dynamic environment. We particularly focus on simulations with models

ranging from the single cell to the whole brain and using a variety of simulation engines

like NEST, Arbor, TVB, OpenAIGym, and NetLogo.

Keywords: simulation, meta learning, hyper-parameter optimization, high performance computing, connectivity

generation, parameter exploration

1. INTRODUCTION

An essential common tool to most efforts around brain research
is the use of algorithms for analysis and simulation. Specialists
have developed a large variety of tools that typically rely on
many parameters in order to produce the desired results.
Finding an appropriate configuration of parameters is a highly
non-trivial task that usually requires both experience and the
patience to comprehensively explore the complex relationships
between inputs and outputs. This problem is common to all
input and output formats, as they differ in their type such as
images, continuous or discrete signals, experimental data, spiking
activity, functional connectivity, etc. In this article, we focus on
parameter specification for simulation.

In order to address this problem, we present a flexible tool for
parameter optimization: L2L. Initially inspired by the learning to
learn (L2L) concept in the machine learning (ML) community,
the L2L framework is an open-source Python tool1 that can
be used to optimize different workloads. The flexibility of the
framework allows the user to set the target of optimization to
be a model which can be executed either from Python or the
command line. The optimization target can also be adaptive
and capable of learning, providing a natural way to carry out
hyper-parameter optimization. The L2L framework can be used
in local computers as well as on clusters and high performance
computing (HPC) infrastructure.

This manuscript is structured as follows. First, we provide a
quick overview on the state of the art for optimization methods
and highlight the main differences between those tools and the
L2L framework. In Section 2, we provide an overview of the
framework’s architecture, its implementation, and the way it can
be used and extended. We then demonstrate its effectiveness
on a variety of use cases focused on neuroscience simulation at
different scales (Section 3).

1.1. State of the Art
In the field of ML, the concept of L2L (c.f. Section 2.1) has
been well studied. The L2L concept can be decomposed into two
components: (a) an inner loop where a program to be optimized,
here named the optimizee, executes specific tasks and returns a
measure of how well it performs, called the fitness, and (b) an
outer loop where an optimizer searches for generalized optimizee
parameters (hyper-parameters) that improve the optimizee’s
performance over distinct tasks measured by the fitness function.
The fitness function is different for each model and tightly linked
to the expected transitions in its dynamics. The optimizee can
consist of any program such as an artificial neural network, a
spiking network, a single cell model, or a whole brain simulation

1https://github.com/Meta-optimization/L2L

using rate models. In a recent work, Andrychowicz et al. (2016)
proposed using long short term memory network (LSTM) with
access to the top-level gradients to produce the weight updates
for the task LSTM. The main idea is to replace the gradient
descent optimizer of the optimizee with an LSTMas an optimizer.
In this case, the weights of the inner loop network are treated
as the hyper-parameters and trained/learned in the outer loop,
while being kept fixed in the inner loop. Based on the work
of Andrychowicz et al. (2016) and Ravi and Larochelle (2017)
modified the optimization scheme so that the test error can be
incorporated into the optimization step. Thus, the optimization
can be executed in fewer steps which leads to fewer unrollings
of the LSTMs and a reduction of the computational burden.
By representing the learning updates of the classifier within the
hidden state of the outer-loop optimizer network, the authors
acquire a good initialization for the parameters of the inner-loop
learner and for further update steps.

For feed-forward networks, Model Agnostic Meta-Learning
(MAML) was introduced by Finn et al. (2017). MAML can learn
initial parameters for a base-model solving inner-loop-level task.
After a few steps of optimization with gradient descent, the
base-model can generalize well on the validation set, which is
the related data seen for the first time from the same class as
the training set. The method can be applied to a vast set of
learning problems since the learning itself is agnostic to the inner-
loop model. Finn and Levine (2017) showed that learning the
initialization combined with gradient updates was as powerful
as L2L using a recurrent network. Several extensions have
been proposed to enhance the performance of the learning and
computation time (Finn et al., 2018, 2019). For example, Li et al.
(2017) introduce META-SGD, a stochastic gradient optimization
method that not only learns the parameter initialization but
also the gradient update of the base-model optimization.
However, Antoniou et al. (2018) list several issues found with
MAML, such as training instabilities, due to repeated application
of backpropagation through the same network multiple times
which leads to gradient issues. This leads to a performance drop
in learning and computational overhead. A gradient-free version
of MAML was proposed by Song et al. (2019) using evolution
strategies to replace the second-order backpropagation used in
MAML. A framework that is model agnostic but does not depend
on calculating gradients or backpropagating through networks
and is not limited to a single optimization algorithm would
be highly desirable, especially to address the needs of highly
interdisciplinary fields such as neuroscience.

Cao et al. (2019) utilize particle swarm optimization
(Kennedy and Eberhart, 1995) to train a meta-optimizer that
learns both point-based and population-based optimization
algorithms in a continuous manner. The authors apply a
set of LSTMs to train and learn the update formula for a

Frontiers in Computational Neuroscience | www.frontiersin.org 2 May 2022 | Volume 16 | Article 885207

https://github.com/Meta-optimization/L2L
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

population of samples. Their learning is based on two attention
mechanisms, the feature-level (“intra-particle”) and sample-level
(“inter-particle”) attentions. The intra-particle module reweights
every feature based on the hidden state of the corresponding i-th
LSTM, whereas the inter-particle attention module learns in the
update step of the actual particle information from the previous
already updated particles.

Similarly, Jaderberg et al. (2017) use a parallel population-
based approach and random search to optimize the hyper-
parameters of neural networks. They randomly sample the
initialization of the network parameters and hyper-parameters
and every training run is evaluated asynchronously. If a
network is underperforming, it is replaced by a more successful
network. Furthermore, by perturbing the hyper-parameters of
the replacing network the search space is expanded. Neural
architecture search (Zoph and Le, 2016) and related methods
have been shown to be very useful in choosing network
architectures for various tasks. A random search was shown
to be surprisingly effective for hyper-parameter searches for a
wide variety of tasks (Bergstra and Bengio, 2012). Many of the
automated hyper-parameter searches also fall under the category
of Automated Machine Learning or AutoML (Hutter et al., 2019;
He et al., 2021).

In the area of computational neuroscience,
BluePyOpt (Van Geit et al., 2016) has represented a robust
solution to address optimization problems. Even if it was
originally meant to support the optimization of single cell
dynamics, BluePyOpt is also able to optimize models at other
scales. It makes use of DEAP (Fortin et al., 2012) for the
optimization algorithms and of SCOOP (Hold-Geoffroy et al.,
2014) to provide parallelization. The target of optimization in
BluePyOpt is also quite flexible, it can be any simulator that
can be called from Python. This framework can also be used
in different infrastructures, from laptops to clusters. However,
the framework only allows the execution of optimization targets
written in Python.

Deep Learning compatible spiking network libraries, such
as NengoDL (Rasmussen, 2018) or Norse (Pehle and Pedersen,
2021), are getting more popular. They are based on modern
tensor libraries and can be executed on GPUs which can speed up
the simulations. Although these libraries do not focus on meta-
learning they are interesting for solving ML tasks using spiking
neural networks (SNN). They can be used to quickly learn the
tasks while the hyper-parameters of the SNNs can be optimized
in an outer loop.

The L2L framework offers a flexible way to optimize
and explore hyper-parameter spaces. Due to its interface, the
optimization targets are not restricted to executables with a
Python interface offering the possibility to optimize models
written in different programming languages. In our work, we
focus on neuroscientific use cases. The framework, however,
is available for a variety of simulations in different scientific
domains. Furthermore, the framework is agnostic to the
inner loop models and thus allows for different types of
optimization techniques in the outer loop. Most of the optimizers
adapt population-based computational algorithms, which enable

parallel executions of optimizees (see Section 3). This helps to
optimize for a vast range of parameter ranges. The error or
rather fitness of the inner loop on the absolved tasks is included
in the optimization step to update the parameters. Optimizers
such as the genetic algorithm or ensemble Kalman filter (EnKF)
use the fitness in order to rank the individuals and replace
underperfoming individuals with more successful ones (e.g., see
Section 3.1).

2. METHODS

2.1. Concept of L2L
Learning to learn or meta-learning is a technique to induce
learning from experience (Thrun and Pratt, 2012). The L2L
process consists of two loops, the inner and outer loop (Figure 1).
In the inner loop, an algorithm with learning capabilities (e.g., an
artificial or SNN, a single cell model or a whole brain simulation
using rate models) is executed on a specific task T from a family
F of tasks.

Tasks can range from classification (e.g., MNIST;
LeCun et al., 2010, see Section 3.1), to identifying
parameter regimes that result in specific network dynamics
(Sections 3.2, 3.4) or training agents to autonomously solve
optimization problems (Sections 3.3, 3.5).

The performance of the algorithm over tasks is evaluated
with a specifically designed fitness function, which produces
a fitness value f or a fitness vector f. The function is,
in general, different for every model but closely connected
to the task itself. Parameters and hyper-parameters, together
with the fitness value of the optimizee are sent to the outer
loop. Different optimization techniques, such as evolutionary
algorithms, filtering methods or gradient descent, can be utilized
to optimize the hyper-parameters in order to improve the
performance of the optimizee. Afterward, the hyper-parameters
are fed back into the algorithm and a new iteration (i.e., a
new generation) is invoked. It is important to note that from a
technical point of view, the optimizee acts as an orchestrator of
the inner loop. Each optimizee executes a simulation. Borrowing
the terminology from evolutionary algorithms, the parameter set
which is optimized is called an individual. The optimizee accepts
(hyper-)parameters from the outer loop and starts the inner loop
process to execute the simulation. Last, it calculates the fitness
and transmits everything to the optimizer.

2.2. Parallel Executions in the L2L
Framework
In L2L, the optimizers apply population based methods which
enable simulations to be run in an embarrassingly parallel
fashion. Each individual is initialized independently. They can
be easily distributed on several computing nodes and thus can
exploit HPC systems. The L2L framework supports the message
passing interface (MPI) over several nodes and multi-threading
per node. The number of nodes and cores can be set in the
beginning of the run and the L2L framework will automatically
take care of the distribution and collection of results. Section 2.3
explains in detail how to set up a simulation run in L2L.

Frontiers in Computational Neuroscience | www.frontiersin.org 3 May 2022 | Volume 16 | Article 885207

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

2.3. Workflow Description

Listing 1 | Template script to start a L2L run. The optimizee, optimizer are defined. The experiment class is managing the run.

1 from l2l.utils.experiment import Experiment
2 from l2l.optimizees.optimizee import Optimizee, OptimizeeParameters
3 from l2l.optimizers.optimizer import Optimizer, OptimizerParameters
4
5 experiment = Experiment(root_dir_path= '/home/user/L2L/results')
6 jube_params = { "exec" : "srun -n 1 -c 8 --exclusive python" }
7 traj, all_jube_params = experiment.prepare_experiment(name= 'L2L-Run' ,
8 log_stdout= True ,
9 jube_parameter=jube_params)
10
11 ## Inner loop simulator
12 # Optimizee class
13 optimizee = Optimizee(traj)
14 optimizee_parameters = OptimizeeParameters()
15
16 ## Outer loop optimizer initialization
17 optimizer_parameters = OptimizerParameters()
18 optimizer = Optimizer(traj,
19 optimizee_prepare=optimizee.create_individual,
20 fitness_weights=(1.0,),
21 optimizee_bounding_func=optimizee.bounding_func,
22 parameters=optimizer_parameters)
23
24 experiment.run_experiment(optimizee=optimizee,
25 optimizee_parameters=optimizee_parameters,
26 optimizer=optimizer,
27 optimizer_parameters=optimizer_parameters)
28 experiment.end_experiment(optimizer)

In L2L, the user has to work on two main files. The first file is
the run script, which invokes the whole L2L two loop run. The
second file is the optimizee, which operates the simulation in the
inner loop.

In the run script, the user configures hardware-related

settings, e.g., if the run is executed on a local computer or on
an HPC. Furthermore, the optimizee and optimizer and their

parameter options have to be set. An example code template to
start the whole L2L run is shown in Listing 1. Lines 1-3 import

the necessary modules, i.e., the experiment, optimizee, and the

optimizer. Of course, in the real run, the names of the modules
and classes have to be adapted to their respective class names,
for simplicity, we call them here optimizee and optimizer. The
experiment class manages the run. In line 5, the results path
is set in the constructor of the class. The experiment method
prepare_experiment in line 7 prepares the run. It accepts
the name of the run, whether logging should be enabled, and the
Juelich Benchmarking Environment (JUBE; Speck et al., 2021)
parameters. In L2L, JUBE’s functionality was stripped down to
submit and manage parallel jobs on HPCs and interact with the
jobmanagement system SLURM (Yoo et al., 2003). The execution
directives for the HPC jobs can be seen in line 6. Here, exec
is the indicator command to invoke a run on a supercomputer,
followed by a srun directive for SLURM. In the example, one

task (-n 1) should be run on 8 cores (-c 8). Optimizees
and optimizers run as Python executables, which is why the
python command is needed here. If a local run is desired, just
the Python command is sufficient, i.e., “exec”:“python.”
Internally, JUBE creates a job script and passes it to SLURM,
which then executes the parallel optimizees and the optimizer.
JUBE accepts manymore commands for SLURM, but elaborating
on all options would go beyond the scope of this work; see the
SLURM documentation2 for a list of executives. The run script
can be executed either as a batch script or as an interactive job on
an HPC.

The optimizee is defined in line 13 and requires only
the trajectory traj . The trajectory, modeled after PyPet’s
trajectory3, is a class that holds the history of the parameter
space exploration and the results from each execution and
the parameters to be explored. OptimizeeParameters is a
Python namedtuple object, which accepts the parameters of
the optimizee. For the optimizee, the namedtuple appears as
a parameter object and can be accessed as a class variable, i.e., as
parameters.name . The optimizee has access to the trajectory
and the parameters object.

2https://slurm.schedmd.com/
3https://github.com/SmokinCaterpillar/pypet

Frontiers in Computational Neuroscience | www.frontiersin.org 4 May 2022 | Volume 16 | Article 885207

https://slurm.schedmd.com/
https://github.com/SmokinCaterpillar/pypet
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

FIGURE 1 | Learning to learn (L2L) consists of two loops. In the inner loop, the optimizee, an algorithm with learning capabilities is trained on a family of tasks. A

fitness function evaluates the performance of the algorithm. The (hyper-) parameters and the fitness value of the algorithm are sent to the optimizer in the outer loop.

Several optimization methods are available to optimize the parameters, which are fed back to the optimizee and the algorithm.

In the optimizee, three main functions have to be
implemented.

1. The function create_individual() defines the
individual. Here, the parameters which are going to be
optimized need to be initialized and returned as a Python
dictionary.

2. simulate() is the main method to invoke the simulation.
The L2L framework is quite flexible about the simulation in
the inner loop. It is agnostic with regards to the application
carrying out the simulation and only requires that a fitness
value or fitness vector is returned.

3. bounding_func() is a function that clips parameters
before and after the optimization to defined ranges. For
example, in an SNN, it is necessary that delays are strictly
positive and greater than zero. The function is applied only on
parameters that are defined in create_individual() .

Similarly, the optimizer is created in line 18. It requires
the optimizer parameters (line 17) and the method
optimizee.create_individual , and if available,
the bounding function optimizee.bounding_func .

Additionally, a tuple of weights (fitness_weights , here
(1.0,)) can be given, which weights the optimizee fitness by
multiplying those values with the fitness itself. For example, in
the case of a two-dimensional fitness vector, a tuple of (1.0, 0.5)
would weigh the first fitness fully and the second one only half.
Most of the optimizers in the L2L framework perform fitness
maximization, but if minimization is required, then it suffices
to flip the sign of the fitness function that would be used for
maximization. Several optimization techniques are available
in the framework, such as cross-entropy, genetic algorithm
(GA), evolutionary strategies (Salimans et al., 2017), gradient
descent, grid-search, ensemble Kalman Filter (EnKF; Iglesias
et al., 2013) natural evolution strategies (Wierstra et al., 2014),
parallel tempering, and simulated annealing. The results of the
optimizations are automatically saved in a user specified results
folder as Python binary files; however, users can store result files
from within the optimizee in any format they wish.

The method run_experiment (line 24) requires that the
optimizee and the optimizer and their parameters have to be
defined. Finally, the end_experiment method is needed to
end the simulation and to stop any logging processes.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 May 2022 | Volume 16 | Article 885207

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

3. RESULTS

In this section, we present the results of using L2L to optimize
the parameters for a variety of simulation use cases. Every task
is executed with a different set of simulation tools, and the
interfaces with the simulators also differ between use cases. We
present here 5 use cases. Please see the Supplementary Material

for an additional use case where hyper-parameters are also
optimized. A GitHub repository with instructions to run the
provided use cases can be found at https://github.com/Meta-
optimization/L2L/tree/frontiers_submission.

3.1. Use Case 1: Digit Classification With
NEST
The first use case describes digit classification with an SNN
implemented in the NEST simulator (Gewaltig and Diesmann,
2007). The SNN is designed as a reservoir, i.e., a liquid state
machine (LSM, Maass et al., 2002). The network consists
of an input encoding layer, a recurrent reservoir, and an
output layer as shown in Figure 2. The weights between the
reservoir and the output layer are optimized to maximize the
classification accuracy.

3.1.1. Description of the Simulation Tool
NEST is a simulator for SNN models. Its primary design focus
is the efficiency and accurate simulation of point neuron models,
in which the morphology of a neuron is abstracted into a single
iso-potential compartment; axons and dendrites have no physical
extent. Since NEST supports parallelization with MPI and multi-
threading and exhibits excellent scalability, simulations can either
be executed on local machines or efficiently scaled up to large
scale runs on HPCs (Jordan et al., 2018). Our experiments were
conducted on the HDF-ML cluster of the Jülich Supercomputing
Center using NEST 3.1 (Deepu et al., 2021).

3.1.2. Optimizee: Spiking Reservoir Model
The network consists of three populations of leaky integrate-and-
fire (LIF) neurons, the encoder, the reservoir, and the output;
see Figure 2. The input to the network is the set of MNIST
digits, encoded into firing rates; the firing rates are proportional
to the intensity of the pixels from 0 to 255 mapped between
[1, 100]Hz. A total of 768 excitatory neurons receive input from
a pixel of the image in a one-to-one connection. The reservoir
has 1,600 excitatory and 400 inhibitory neurons, while the output
has a population of 12 neurons (10 excitatory (red), 2 inhibitory
(blue)) per digit. The connections in the reservoir are randomly
connected but limited to a maximal outdegree of 6% and 8% for
each excitatory and inhibitory neuron. In this setting, we focused
explicitly on three digits of the dataset (0 to 2), thus having
three output clusters. Each excitatory neuron receives a maximal
indegree of 640 connections and each inhibitory neuron receives
an indegree of maximal 460 connections from the reservoir. This
results in 28,800 (= 800 × 12 × 3) connections in total. The
neurons within an output are recurrently connected, while the
output clusters do not have connections to each other. If an
input is not presented, the network exhibits low spiking activity
in all three parts. The whole network is constructed in the

create_individual function. The connection weights are
sampled from a normal distribution with µ = 70 and σ = 50
for the excitatory neurons and µ = −90 and σ = 50 for the
inhibitory neurons.

In the simulation (simulate function), a small batch of 10
different numbers from the same digit is presented to the network
for 500ms per image as spike trains. Additionally, each neuron in
the network receives background Poissonian noise with a mean
firing rate of≈ 5 spikes/s to always maintain a low activity within
the reservoir.

Before any image is presented, there is a warming up
simulation phase lasting for 100ms in order to decay all neuron
parameters to their resting values. Likewise, between every image,
there is a cooling period of 200ms where no input is shown. After
the simulation is run, the output with the highest spike activity
indicates the number of the presented digit.

3.1.3. Fitness Metric
In the output, we acquire the firing rates of all clusters and apply
the softmax function

σ (x)j =
exj

∑

k e
xk

,

where σ :R
k → [0, 1]k and x = (x0, x1, . . . xk) ∈ R

k, j = 1, . . . , k
is the vector of firing rates.

We take the highest value, which indicates the digit the
network classified. Since every image in the dataset has a label,
we can calculate the loss by applying the mean squared error
function to the corresponding label:

L =
1

n

n
∑

i=1

(yi − ŷi)
2 , (1)

with yi the label and ŷi the predicted output, encoded as one-hot
vectors with a non-zero entry corresponding to the position of
the label. As the optimizer used in the outer loop for this use
case is the ensemble Kalman filter, which minimizes the distance
between the model output and the training label, we define the
fitness function as f = 1 − L and use it in order to rank
individuals (see next Section 3.1.4). After each presentation of
a digit, the fitness and the softmax model output are sent to
the optimizer.

3.1.4. Optimizer: EnKF
The ensemble Kalman filter (Iglesias et al., 2013) is the
optimization technique we use to update the weights between
the reservoir and the output, as described in Yegenoglu et al.
(2020). Before the optimization, they are normalized to be
in the range of [0, 1]. The weights from the reservoir to the
output are concatenated to construct one individual. In total,
98 individuals go into the optimization. Each individual has
28,800 weights. To specify in terms of the EnKF setting, the
set of ensembles are the network weights, the observations are
the softmax model outputs. In Yegenoglu et al. (2020), it was
shown that around 100 ensembles are required to reach at least
chance level on the MNIST dataset. However, the experiments

Frontiers in Computational Neuroscience | www.frontiersin.org 6 May 2022 | Volume 16 | Article 885207

https://github.com/Meta-optimization/L2L/tree/frontiers_submission
https://github.com/Meta-optimization/L2L/tree/frontiers_submission
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

FIGURE 2 | A schematic view of a reservoir network classifying the MNIST dataset. The input image is encoded into firing rates and fed afterward into the reservoir.

The output consists of 10 excitatory neuron depicted in red and 2 inhibitory neurons depicted in blue. The highest activity at the output indicates the presented digit.

were conducted using convolutional neural networks tested
with harsh conditions such as poor weight initialization and
different activation functions. Due to long simulation times, we
limited the number of ensembles in this case. Future work will
investigate a more variable ensemble size. We implemented a
slight modification of the EnKF in which poorly performing
individuals can be replaced by the best individuals. The fitness is
used to rank the individuals and replace the worst n individuals
with m best ones. Furthermore, we add random values drawn
from a normal distribution to the replacing individuals in order
to increase the search space for the parameters and to find
different and possibly better solutions. We set n andm to be 10%
of the corresponding individuals. One hyper-parameter of the
EnKF is γ (set to γ = 0.5), it can be compared to the effect of
the learning rate in stochastic gradient descent. A lower γ may
lead to a faster convergence but also has the risk of overshooting
minima. In contrast, a higher γ is slower to converge or can get
trapped in minima. Since the simulations take a relatively long
time to finish, we cannot train on the whole dataset (see next
Section 3.1.5) In this setting, the EnKF with the implemented
additions is a suitable optimization technique, because it is able
to quickly converge to minima and provide satisfactory results.

3.1.5. Analysis
Figure 3 depicts the evolution of the fitness over 320 generations.
The test is acquired over a subset of the MNIST test set in every
tenth generation. The test set (10, 000 images) is separated from
the training set (60, 000 images) and contains digits that were not
presented during training.

While the mean fitness steadily increases over the generations,
the best individual fitness exceeds 0.9 at generation 50 and
improves to a fitness very close to 1.0 before decreasing again
to around 0.9. Toward the end of training, we observe that
the standard deviation of the individuals gets smaller and the
mean increases. After a maximum standard deviation of 0.16
in generation 100, the spread of the ensemble contracts to a
minimum standard deviation of 0.08 in generation 260, and
remains low thereafter. It is important to note that the green

FIGURE 3 | Every tenth iteration the reservoir is tested on a small part of the

MNIST test data. The blue dotted line shows the mean fitness and the shaded

area is the standard deviation of all individuals. The green line depicts the best

fitness in every generation.

curve indicates the performance of the highest performing
individual in each generation, this is not necessarily the same
individual. Currently we show 10 images for 500ms on each
generation in every training and testing phase which takes
relatively long simulation times, thus hindering our ability to
process the whole dataset and limits the total number of used
images to 3, 200 (2, 880 training, 320 testing). Although the
simulations take a relatively long time, using the HPC capabilities
of L2L we are able to process an entire generation of 98
individuals including the optimization of a total of 98 × 28, 800
weights in less than 3min. In comparison a grid search on 28, 000
parameters exploring a range of 20 values for each weight would
require the evaluation of 2028,000 combinations. Due to the fast
convergence behavior of the EnKF it is possible to reach an

Frontiers in Computational Neuroscience | www.frontiersin.org 7 May 2022 | Volume 16 | Article 885207

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

optimal solution in few generations. Our modifications to sample
new individuals from well performing ones and perturbing them
increases the possibility to find an overall better solution by
exploring other parameter ranges. A future research direction we
want to investigate is to move the optimization process of the
weights into the inner loop and optimize the hyper-parameters
of the optimizer. In this light, it would be interesting to use
Nengo or Norse which are suitable for solving ML tasks with
SNNs and optimizing the hyper-parameters of the optimizers
provided by those libraries. Finally, we can compare the results by
executing the same approach having NEST as the SNN back-end.
Our setup for learning MNIST is different from other reported
works in literature in terms of architecture, learning strategy,
and even metrics to measure performance. This makes a direct
comparison not straightforward. Previous studies have shown a
high accuracy in the MNIST dataset by shaping the structure
of the reservoir. For instance, Wijesinghe et al. (2019) divide
the reservoir into clusters of locally connected neurons and
change the connectivity in order to reach satisfactory results on
different tasks. Zhou et al. (2020) apply neural search techniques
and hyper-parameter optimization using a mix of covariance
matrix adaptation evolution strategy and Bayesian optimization
to modify the reservoir structure, reaching an accuracy of more
than 90% on the MNIST dataset. They also report high accuracy
on different spatio-temporal tasks.

3.2. Use Case 2: Fitting
Electrophysiological Data With Arbor
This use case is concerned with optimizing the parameters
of a biophysically realistic single cell model implemented in
Arbor such that the response of the neuron to a specific
input stimulus matches an experimental recording. Both
passive parameters—morphology and resistivities—and active
response to an external stimulus are commonly recorded in
electrophysiological experiments. Similarly, the ion channels
present are typically known. However, the internal parameters of
the mechanisms—usually implemented as a set of coupled linear
ODEs—are not known. To address this, we use L2L to fit the
model parameters to the available data. This proof-of-concept
aims at providing a robust way for model fitting for the Arbor
simulator using HPC resources.

3.2.1. Description of the Simulation Tool
Arbor is a library for writing high-performance distributed
simulations of networks of spiking neuron with detailed
morphologies (Akar et al., 2019). Arbor implements a
modification of the cable-equation model of neural dynamics
which describes the evolution of the membrane potential over
time, given the trans-membrane currents. In this model, neurons
comprise a tree of cables (the morphology), a set of dynamics
assigned to sub-sections of the morphology (called ion-channels
or mechanisms), and a similar assignment of bio-physical
parameters. The morphology describes the electric connectivity
in the cell’s dendrite and the mechanisms primarily produce the
trans-membrane currents.

3.2.2. Optimizee: Morphologically-Detailed Single

Cell
As outlined above, we expect models to be imported from
laboratory data, that is a morphological description of the cell
from microscopy, a template of ion channels with yet unknown
parameter values, and some known data like the temperature
of the sample. In addition, a series of stimulus and response
measurements need to be provided, which will be the target
of optimization. Our objective then is to assign values to the
parameters to best approximate the measured response. For
designing this use case, we focus on a single specimen from the
Allen Cell Database with a known parametrization in addition to
the input/response data (Lein et al., 2007).

We define the parameter sets P to be fit as a list of 4-tuples: a
sub-section of the morphology, an ion-channel id, a parameter
name, and the value to set the parameter to. Regions in the
morphology are written as queries against Arbor’s layout engine,
e.g., selecting all parts of the dendrite where the cable radius
is smaller than 1 µm becomes (rad-lt (tag 2) 1) , since
tag=2 has been set during morphology creation. Consequently,
setting the parameter tau in the expsyn mechanism to 2ms
appears as

[.., ((rad-lt (tag 2) 1), expsyn,
tau, 2), ..]

in the individual. Optimizee instances are constructed from
are configuration file which lists the following items (example
item)

• morphology file name (cell.swc)
• list of current clamps with expected response

(delay, duration, amplitude, ref.csv)
• simulation parameters: length and time-step
• location where to record the response (location 0 0.5)
• fixed parameter assignments (T=285 K)
• list of ion channel assignments and optimizable parameters

[(tag 2), pas, e, -70, -30]

Parameters to be optimized are given a bounding range used to
automatically restrict the optimizer, here e may vary in the range
of [-70mV. . . -30mV]. This data is sufficient—together with the
statically known items—to construct a simulation in Arbor that
can be run forward in time.

3.2.3. Fitness Metric
We implemented the naive approach of using the mean square
loss as the measure of fitness. Given the experimentally obtained
membrane potential Uref(t) we define the fitness as

L(P) = −
1

T2

T
∑

t=0

[

Uref(t · τ)− Usim(P, t · τ)
]2

(2)

where Usim(P, t) is the measurement produced by Arbor given
the parameter set P and τ is the sampling interval of the voltage
measurement. The optimizer attempts to maximize the given
metric, which is why we defined the fitness as the negative of the
L2 norm here.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 May 2022 | Volume 16 | Article 885207

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

FIGURE 4 | Example input to Arbor and trace of a run of the optimizer. (Left) Cell morphology as consumed by Arbor and imported from the Allen DB, regions are

marked as “soma,” “dendrite,” and “axon.” (Right) Loss function over successive generations of the genetic optimizer for an example run of L2L on this cell starting

from random parameters. Shown are the mean loss per generation (as a line) and the spread between minimum and maximum (shaded area).

Figure 4 shows an example of single cell morphology and the
loss function across a single run of L2L. The scales and units
of L are arbitrary. After roughly 50 generations, the best result
has been identified and we found only minor improvements to
the fitness after this. As can be seen in Figure 5 (left), we quite
easily reach a configuration that reproduces themeanmembrane
voltage but does not exhibit spiking behavior. From experience,
we know that spikes are only produced for a narrow band of
parameters in these complex configurations.

Thus, the fitness function will need to be extended to include
the requirement for spiking. Furthermore, it seems prudent that
the final result of the optimization process should include the
responses to multiple separate stimulation protocols. Therefore,
the overall fitness becomes a vector

F(P, I) =

L(P, I0)
S(P, I0)
L(P, I1)

...

(3)

which—in conjunction with a vector of weights—is suited for
use with L2L’s multi-objective optimization. Here, I is the vector
of stimuli and the function S collects the fitness with respect to
the spiking behavior. Thus, the fitness function was changed to
emphasize spiking behavior

L(P, I) = |〈Uref〉 − 〈Usim〉| (4)

S(P, I) = 〈Uref − Usim〉
∣

∣

∣

Uref>σ

(5)

where S selects spikes by applying a threshold σ and then applies
the temporal average 〈·〉. As can be seen in Figure 5 (right),
we find spiking behavior with this fitness function, albeit still
different from the expected outcome.

3.2.4. Optimizer: Evolutionary Algorithm
The fitness metric is used to drive the outer loop optimizer,
an evolutionary algorithm searching for maximum fitness.
This choice of the algorithm was motivated by prior studies
showing it to be computationally efficient for this kind of fitting
problem (Druckmann et al., 2007).

In the L2L framework, the genetic algorithm optimizer (GA)
is a wrapper around the DEAP library (Fortin et al., 2012). This
adapter takes care of handling the parameters received from
the inner loop and prepares them for the optimization process.
The DEAP library then facilitates the cross-over and mutation
methods, applies them to the actual parameter set, and saves
the best individuals into the Hall of Fame if they fare better
than previous runs. Afterward, the optimized parameters are sent
back to the optimizee, which then initializes the next generation
of individuals.

Here, we use a population of 100 individuals and a total of 200
generations. Individuals in a generation are evaluated by using 16
parallel tasks on a single dual-socket node.

3.2.5. Analysis
We have shown a basic implementation for finding optimal
parameter sets for single cell models using Arbor and L2L.
This enables researchers to fit experimental data to neuron
models in Arbor, a workflow that is important in practice
and lacking so far in Arbor’s ecosystem. The approach shown
here so far is implemented in a straightforward fashion but
falls short to reach the desired configuration in a reasonable
time frame.

A fitness function based on salient features is generally
more successful in producing spiking behavior (Druckmann
et al., 2007; Gouwens et al., 2018). We expect the current
fitness implementation to evolve further, likely including more

Frontiers in Computational Neuroscience | www.frontiersin.org 9 May 2022 | Volume 16 | Article 885207

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

FIGURE 5 | Impact of the fitness function. Shown is the measured membrane potential at the center of the soma from the simulation • against reference • and

applied stimulus •. (Left) Simple square loss, the best result after 100 generations. (Right) Feature based fitness, the best result after 100 generations.

features, such as the resting potential and mean spike frequency.
Further, L2L does not normalize parameters, thus parameters
that have significantly different ranges can pose issues to
the optimization process, e.g., the test case here features
parameters of magnitude 100 as well as 10−7. Given the
bounding annotations in our configuration, we implemented
normalization within the optimizee and L2L handles uniform
ranges [0, 1]4. To cope with common time-restrictions on
the used resources in the mean-time, we implemented a
method to resume optimization given an intermediate result.
Currently, this workflow is being extended beyond the proof-
of-concept state we presented here. A further open task
is to investigate the impact of the hyper-parameters passed
through L2L to DEAP, such as tournament size, population
size, etc.

Another extension is the use of accelerators (GPUs), which
allow for massively parallel evaluation of individuals. Arbor is
able to use GPUs for simulations efficiently starting at a few
thousands of cells per GPU. This would enable processing an
entire generation of the optimization process at once. Given
the current number of 100 cells per generation, this is not yet
profitable, but for larger generation sizes and additional stimulus
protocols, it becomes attractive. L2L was extended to enable
a vectorized version of the evolutionary algorithm similar to
the multi-gradient descent approach presented in use case 4
(Section 3.4).

3.3. Use Case 3: Foraging Behavior With
Netlogo and NEST or SpikingLab
In this use case, we describe optimizing the foraging behavior
in a simulated ant colony. The colony consists of 15 ants, all of
which are searching for food (big green patches, Figure 6). Any
food found must be brought back to the nest. Ants communicate
with each other by dropping pheromones on the ground (blue

4Note that this can introduce different issues with numerical precision if said

ranges span too many orders of magnitude.

patches) whenever the food is found or the nest is reached. The
pheromone can be smelled by other ants which then can follow
the trail left on the ground. Each ant is controlled by an SNN,
which is an identical copy for every ant. Here, we use L2L to
configure its weights and delays so that the ants bring food back
to the nest as efficiently as possible.

3.3.1. Description of the Simulation Tools
NetLogo is a multi-agent simulator and modeling
environment (Tisue and Wilensky, 2004). It is widely used
as an educational and scientific tool for the study of emergent
behavior in complex systems. Agents are expressed as objects
that can communicate with each other. In our setting, NetLogo
helps us to observe and manipulate the state of every neuron
and synapse. For the simulations, we have two backends:
NEST (see Section 3.1.1) and SpikingLab (Jimenez-Romero
and Johnson, 2017). SpikingLab is an engine directly integrated
within NetLogo and can be easily and quickly used for small scale
networks, as we present in our use case. Invoking NEST from
NetLogo causes a minimal communication overhead since NEST
needs to be called as an external process. For larger networks, it
is preferable to use NEST since its higher simulation efficiency
compensates for the communication overhead.

3.3.2. Optimizee: Simulated Ant Brain
In the first iteration, the optimizee creates the individual
inside the create_individual function. The individual
consists of network weights and delays. The weights are
uniformly distributed in [−20, 20], while the delays range
between [1, . . . , 7)N+ . The network has an input, a hidden, and an
output layer, the neurons are all-to-all connected for every layer
as depicted in Figure 7. The input layer consists of 12 neurons.
The first three neurons are receptors to smell the direction
of the pheromone. The next three neurons are responsible to
locate the nest. The queen receptor indicates the middle of
the nest. Reward and nociceptors determine the reward and
punishment for the ant. The green and red photoreceptors are

Frontiers in Computational Neuroscience | www.frontiersin.org 10 May 2022 | Volume 16 | Article 885207

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

FIGURE 6 | The ant colony is searching for food (big green patches with

brown leaves). The ants are communicating via pheromones which are

dropped on the ground (blue-white patches) when food is found or when the

ants return to the nest (black-brown patch). Green colored ants are

transporting the food, while orange colored ants are exploring the environment

or following the pheromone trail. The red border around the world is an

impenetrable wall and prevents ants from crossing from one side to the other.

The pheromone trail decays with time if it is not reinforced by other ants.

triggered when food or a wall is seen. Finally, the heartbeat
neuron stimulates the network in every timestep with a small
direct current to keep a low dynamic ongoing in the network.
The four output neurons are responsible for the movement and
for dropping the pheromone. Similar to the first use case in
Section 3.1.5, the total number of individuals is 98. The total
number of connection weights (250) and delays (250) is derived
as follows: 110 connections from the input to the middle layer,
10 connections from the heartbeat neuron to the middle layer,
90 connections in the middle layer, and 40 connections from the
middle layer to the output (110 + 10 + 90 + 40 = 250). The
weights and delays can be min-max normalized if specified. The
optimizee saves these parameters as a csv file before starting the
simulation. The model is invoked by a Python subprocess5 in

5https://docs.python.org/3/library/subprocess.html

the simulate function, which then calls the headless mode of
NetLogo to start the run. The optimizee waits until the simulation
is finished and collects the fitness value from a resulting csv file
which is written after the simulation ends.

The user has to set whether NEST or SpikingLab is invoked as
a backend inside the simulation. NEST is known as a subprocess
by NetLogo, while SpikingLab is directly accessed by the model.
In the case that NEST is selected, the parameters have to be
passed to it as well since the network needs to be constructed
with the new parameters. This can be done either by loading the
parameter in a csv file within NEST, or NetLogo can read the csv
file and pass the values to the simulation.

The parameters are restricted within the bounding_func
function if their values exceed the specified ranges after the
optimization process. Weights are clipped to the range of
[−20, 20] and delays to [1, 5].

3.3.3. Fitness Metric
The fitness function for the ant colony optimization problem
rewards finding food and bringing it back to the nest while
punishing excessive movement.

We define the ant colony fitness fi of optimizee i as:

fi =

T
∑

t=1

J
∑

j=1

N
(t)
i,j + F

(t)
i,j − C

(t)
i,j

 , (6)

where t = 1, . . . ,T is the simulation step,T is the total simulation
time, J is the total number of ants in the colony, and j indexes the
ants. N is the reward for coming back to the nest with food, F
is a reward for touching the food, and C is the movement cost.
Every movement, rotation, and pheromone dropping is added
toward C. We set the cost as follows: Rotation−0.02, pheromone
dropping −0.05, and movement −0.25. The movement has a
higher cost since we would like to restrict vast movements and
force them to return to the nest. We also punished resting
with −0.5 to speed up the movement and to slightly induce
exploration. The rewards are returning to the nest 220 and
touching food 1.5. A high reward for coming back to the nest is
necessary, otherwise, the ants are spending a long time exploring
the environment even when the food is found. This slows down
learning and hinders solving the task.

3.3.4. Optimizer: Genetic Algorithm
We use a genetic algorithm to optimize the weights and delays in
the ant brain network. This is the same class of optimizers as used
in Section 3.2.

3.3.5. Analysis
Figure 8 depicts the evolution of the fitness of the ant colony over
800 generations. Initially, the ants move a lot without retrieving
food, resulting in a negative maximum fitness. After around
200 generations, the mean fitness is consistently positive and
the best solution is close to 10,000. In following generations,
the mean fitness saturates at around 5,000, with increasing
best fitness. After 800 generations, the L2L run is stopped
with the best individual fitness close to 15,000. Similarly to
use case 3.1, L2L enables us to execute 98 individuals in

Frontiers in Computational Neuroscience | www.frontiersin.org 11 May 2022 | Volume 16 | Article 885207

https://docs.python.org/3/library/subprocess.html
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

FIGURE 7 | The SNN for the ant colony. Every ant is steered by an SNN. Neurons are depicted as pink dots and excitatory/inhibitory connections as red/blue lines. All

networks are identical.

FIGURE 8 | Fitness of the ant colony. The blue curve shows the mean fitness

and the shaded area is the SD. The green curve indicates the best solution

found so far, and thus rises monotonically.

parallel, where a generation is optimized in less than 2 min.
A grid search algorithm with 20 values to explore weight and
delay combinations would require 20500 possibilities to test

for. The mutation and cross-over steps of the GA increase
the parameter space and avoid local minima, without loosing
performance. The best individuals are saved in the Hall of
Fame (HoF) if they have better fitness than their predecessors.
If an optimization step produces underperforming individuals,
it is possible to recombine the new set utilizing the HoF.
Due to the parallel distribution of individuals and the GA
optimizer, we are able to find well performing individuals in less
than 400 generations. In contrast to other literature optimizing
ant colonies using rule-based systems, our work describes the
optimization of an SNN that learns the foraging behavior of
an ant. The decision making of each ant is not based on fixed
rules (e.g., if food is found turn around 180° and go back
to the nest), instead, it depends on the firing activity of the
network in response to the perceived environment. Compared
to the ant colony model provided by NetLogo (Wilensky, 1997),
which solves the foraging task within ≈ 15,000 steps, our
SNN solution takes between 15,000 and 20,000 steps with
a diffusion rate of 20 and evaporation rate of 1. However,
when the environmental conditions change to the detriment
of the pheromone communication (e.g., the evaporation rate
increases and diffusion rate decreases), the performance of the
two implementations becomes closer. In general, utilizing the
network solution enables the ants to be more adaptable toward
environmental modifications.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 May 2022 | Volume 16 | Article 885207

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

3.4. Use Case 4: Fitting Functional
Connectivity With TVB
This use case describes tuning the parameters of a whole brain
simulation using the GPUmodels of The Virtual Brain simulator
(TVB; Sanz Leon et al., 2013) to give the best match to empirical
structural data.

To do clinical research with TVB, it is often necessary to
configure the parameters of a model for a specific person
such that it matches obtained empirical data. First, the brain
is parcellated into different regions, based on many available
atlases (Bansal et al., 2018). The connectivity of these regions
is determined using diffusion weighted imaging, estimating the
density of white matter tracts between the regions, resulting
in a connectivity matrix which is regarded as the structural
connectivity. Finally, a model that represents the regional brain
activity must be chosen. To optimize thematch between a specific
person and the TVB simulation, obtained fMRI can be used
to further personalize the structural connectivity (Deco et al.,
2014).

Due to the high dimensionality of TVB models and the wide

variation in possible parameter values, fitting patient data often

requires extensive parameter explorations over large ranges. In
this use case, the simulated functional connectivity is matched

to the structural connectivity. The task has the underlying
assumption that regions that are anatomically connected often

show a functional connection (Honey et al., 2009). In this task,

we want to find the values for the global_coupling and

global_speed variables, characteristic of the connectome

of a TVB stimulation, which gives rise to the strongest
correlation between the structure of the brain and the functional
connectivity, i.e., the relationship between spatially separated
brain regions.

3.4.1. Description of the Simulation Tools
The Virtual Brain is a simulation tool which enables researchers
to capture brain activity at mesoscopic level using different
modalities such as EEG, MEG of fMRI, using realistic biological
connectivity. A TVB brain network consists of coupled neural
mass models (NMM) whose dynamics can be expressed by a
single or system of ordinary differential equations. The coupling
of the NMMs is defined by the connectivity matrix. The NMMs
describe, e.g., the membrane potential or firing rate of groups
of neurons using differential equations, which are then solved
numerically. In this use case, we utilize an Euler based solver.
RateML (van der Vlag et al., 2022), the model generator of TVB,
enables us to create the desired TVB model written in CUDA for
the GPU and a driver to simulate the model, from a high level
model XML file.

Listing 2 | Implementation of the correlation computation between functional and structural connectivity.

1 SC = connectivity.weights / connectivity.weights.max()
2 for i in range (couplings * speeds):
3 FCSC[i] = np.corrcoef(FC[:, :, i].ravel(), SC.ravel())[0, 1]

Unlike the use cases discussed above, in this case, we exploit
GPU-parallelization by defining an optimizer that can process a

vector of fitnesses and create new individuals for multiple TVB
simulations executed in parallel on the GPU. An overview of
this process is shown in Figure 9. The optimizee in the inner
loop spawns a number of threads (here: 1, 024) according to
the users defined parameters ranges and resolution. Each thread
represents a TVB instance, simulating a unique set of parameters.
The fitness is computed for each instance, and the outer loop
optimizer selects the best fitness by using the gradient ascent
strategy. The arrows indicate the independent iterations of the
vector of fitnesses. In the figure, six TVB simulations run in
parallel, thus the optimizer needs to iterate a vector of six
fitnesses.

3.4.2. Optimizee: Whole Brain Simulation
The create_individual function initializes a first instance
for the TVB simulation. The structural connectivity is usually
obtained from the patient but in this case, the standard TVB
connectivity for 76 nodes is used. We model the regions
with the Generic2DimensionOscillator (G2DO;
Ott and Antonsen, 2008). A dictionary is created which
contains initial random values for the optimization parameters,
connection_speed and coupling_strength .

For subsequent simulation generations, the optimizee reads
the adapted values from a text file written by the optimizer
and utilizes the Python subprocess module to spawn a new
TVB simulator object with the corresponding parameterization.
When the TVB simulation is complete, the fitness for each TVB
instance is computed and written to a separate text file. The text
files are read by the optimizee reformatted for processing by
the optimizer.

3.4.3. Fitness Metric
The computation of the fitness for this task is 2-fold. In the
first step, the simulated functional connectivity is determined by
computing the Pearson product-moment correlation coefficient,
ρxy, of the simulated 76 regions according to Equation 7.

ρxy =
Cov(x, y)

σxσy
, (7)

where Cov(x, y) is the covariance of variables x and y and σx

and σy are the SD. This first step determines how strong the
dynamics of the simulated regions correspond to one another.
A strong functional correlation means that the simulated activity
between the spatially separated brain regions is more similar. The
second step is to determine the correlation between the obtained
functional and the structural connectivity, the weight matrix used
in the simulation, also using Equation 7.

The Python implementation of the second step is shown in
Listing 2, where SC is the structural connectivity and FC is the

Frontiers in Computational Neuroscience | www.frontiersin.org 13 May 2022 | Volume 16 | Article 885207

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

FIGURE 9 | The multi-gradient ascent implementation of L2L. The inner loop launches multiple instances of TVB on the GPU simulating different sets of parameters.

The outer loop selects the best fitnesses and produces a new parameters range.

simulated functional connectivity that was computed previously.
On line 1, the weights are normalized. In the for-loop on line
2, the correlation with the structural connectivity is computed.
The FCSCholds these correlations and is the array of fitnesses
returned to the optimizer.

3.4.4. Optimizer: Multi-Gradient Ascent
The best fitness is selected with a gradient ascent optimizer.
The existing optimizer has been adapted for processing the
vector of fitnesses returned by the GPU, named multi-gradient
ascent (MGA). In order to adapt it to vector processing, the
fitnesses need to be expanded before processing and compressed
afterward, as is shown in Figure 9. The expansion transforms
the obtained fitnesses from the optimizee process to a data
structure in which the obtained fitnesses are linked to the used
parameters, thus enabling the multi-gradient ascent optimizer
the possibility to select the best fitness and define a range
for the new parameters to be sent to the optimizee. When
the optimizer has selected the parameters for the optimizee, it
compresses the new individuals to a data structure that just
contains the new parameter combinations for the optimizee.

Aside from the expanding and compressing, the MGA algorithm
determines the new values for the individuals similar to
gradient ascent.

3.4.5. Analysis
The results in Figure 10 show the evolution of the mean and best
fitness for a generation of 1, 024 parameter combinations for the
global_speed and global_coupling variables, with a
learning rate of 0.01 and four individuals. These four individuals
each spawn 1,024 TVB simulations on the GPU, enlarging the
chance of success. Each generation contains a TVB simulation
of 4,000 simulation steps with a dt = 0.1. These results were
obtained using a NVIDIA V100 GPU on the JUSUF6 cluster. Our
results show that after 30 generations the best attainable fitness
(green curve) is reached (c.f. Deco et al., 2014).

Comparing the GPU population based on a single L2L
implementation, the latter would need more generations before
the best fitness is attained. The likelihood of finding a suitable
solution in earlier generations rises with the size of the

6https://fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUSUF/JUSUF_node.

html

Frontiers in Computational Neuroscience | www.frontiersin.org 14 May 2022 | Volume 16 | Article 885207

https://fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUSUF/JUSUF_node.html
https://fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUSUF/JUSUF_node.html
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

FIGURE 10 | SD of the mean and best out of 1,024 fitnesses for 116

generations for the multi-gradient TVB parameter optimization TVB simulation.

The blue curve is the mean fitness over the population of 1, 024 and the

shaded area gives the SD. The green curve shows the best fitness for each

generation.

population: the more configurations considered in a single
generation, the faster it converges to the best value. The GPU
implementation has already considered 30 × 1,024 different
parameters values, after which the optimal fitness is found
(Figure 10), while the single implementation would have only 30.
A single implementation would need at least 30,720 generations
to find the same result, but would very likely need many more.
Additionally, the GPU makes it very convenient to execute
many simulations in parallel by not having to split them up
onto multiple nodes, without communication overhead and
decreasing wall clock time even further.

3.5. Use Case 5: Solving the Mountain Car
Task With OpenAI Gym and NEST
In this use case, we describe a solution to the OpenAI Gym
Mountain Car (MC) problem. The MC task is interesting since
it requires the agent to find a policy in a continuous state
space constituted by the position and velocity of the car. At
the same time, the action space is discrete, limited to three
possible actions: accelerate left, accelerate right, and do nothing.
The initial position and velocity of the car are set randomly by
the environment; the aim is to reach the goal position (yellow
flag) as depicted in Figure 11. As the car’s motor is weak,
consistently reaching the goal at the top of the hill requires
the agent to learn a policy that swings the car back and forth
in order to build up momentum. The challenge is considered
solved if the car reaches the goal position in an average of
110 steps over 100 consecutive trials. We implement a feed-
forward LIF SNN in NEST to encode a policy and optimize
the weights so as to improve the ability of the network to
solve the task.

3.5.1. Description of the Simulation Tools
The OpenAI Gym (Brockman et al., 2016) is a software library
that provides an interface to a wide range of environments
for experimentation with reinforcement learning techniques.
NEST has been described in Section 3.1. Both simulators
are instantiated and invoked by the optimizee process which
implements the closed-loop interactions. These interactions are
synchronized in such a way that for each simulation step of
the MC environment, the SNN is simulated for an interval of
20 ms in NEST. On completion of a simulation interval, the
state of the network is sampled and fed back as an action to the
MC environment.

3.5.2. Optimizee: Spiking Feed-Forward Policy

Network
The SNN of LIF neurons that controls the actions of the car is
implemented in NEST. The inputs to the SNN are the position
[−1.2, 0.6] and velocity [-0.7, 0.7] variables which are discretized
and encoded using 30 input neurons for each variable. For
the discretization (binning) of the continuous variables, the
width (w) of the bins is given by the minimum (min) and
maximum (max) value of the interval divided by the number of
input neurons (n) available for each variable. Each value within
the range is discretized into a bin which corresponds to one
input neuron:

w =
min+max

n
(8)

Once a value falls into a bin, its corresponding neuron is
activated by a dc current as provided by a connected dc
generator resulting in a firing rate of 500 Hz. The 60 encoding
neurons have all-to-all connections to an intermediate layer

of five neurons, which in turn have all-to-all connections to
the three neurons in the output layer corresponding to the
three possible actions. The action sent to the OpenAI Gym

environment depends on the activity of the three neurons in

the output (third) layer. Each output neuron represents one
of the possible actions. Following a winner-takes-all approach,

the neuron with the highest spiking activity determines which

action is sent to the OpenAI Gym environment. Figure 11

illustrates the spiking network and the closed-loop interaction

with the MC environment on the basis of input variables and
output actions.

Similar to the Netlogo use case (see Section 3.3), at
the beginning, the optimizee creates the individual inside
the create_individual() function. The total number
of individuals per generation is 32. Each individual consists
of network weights, which are initially uniformly distributed
in [−20, 20]. There are 315 weights corresponding to the
(60 × 5) + (5 × 3) = 315 synaptic connections in the
network. The instantiation and orchestration of OpenAI Gym
and NEST simulator (including the set-up of the SNN) is
carried out by the optimizee. Each simulation runs for 110
simulation steps (where a simulation step corresponds to an
action being sent to the environment) or until the goal position
is reached. Once the simulation is completed, the optimizee

Frontiers in Computational Neuroscience | www.frontiersin.org 15 May 2022 | Volume 16 | Article 885207

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

FIGURE 11 | A feed-forward spiking network to solve the Mountain Car task. In the Mountain Car environment (left) the agent must steer the car to reach the goal

position (flag on top of the hill). The position and velocity of the car reported by the MC are encoded into spikes by the encoding layer (DC generators depicted as

green dots) of the three-layer spiking neural network (SNN) (neurons depicted as pink dots and excitatory/inhibitory connections as red/blue lines) running in the NEST

simulator (right). The activity from the three output neurons (accelerate left, accelerate right, do nothing) is decoded into actions for MC. The set of weights between

the sixty encoding neurons and the three output neurons is the object of optimization.

returns the calculated fitness value to the optimizer. The
bounding_func() function ensures the weights are clipped
to the range [−20, 20] if the values exceed this range after the
optimization process.

3.5.3. Fitness Metric
The fitness function for the MC optimization problem is defined
as the maximum horizontal position reached by car during an
episode comprised of 110 simulation steps, i.e.,

f = maxT(EPT)

Where maxT returns the item with the highest value in a vector
and EPT contains the position of the car on each simulation step
up to T = 110.

3.5.4. Optimizer: Genetic Algorithm
The optimization method is identical to that used in Section 3.3.
Afterward, the optimized parameters are sent back to
the optimizee, which then initializes the next generation
of individuals.

3.5.5. Analysis
Figure 12 depicts the fitness of the SNN over 400 generations.
After 50 generations, the fitness becomes positive showing that
the car is moving toward the goal position. The best solution
(goal position of 0.5) is first reached around generation 160.
In following generations, the mean fitness saturates at around
0.3, while the best fitness reaches the maximum of 0.5. After
400 generations, the L2L run is stopped with the best individual
fitness being 0.5. Finally, we confirmed that the fittest individual
could solve the MC problem. We ran a thousand episodes (each
episode lasting for a maximum of 200 simulation steps); the
spiking network achieved the required average of 110 or less
simulation steps over 100 episodes. Our solution requires 101
simulation steps on average to reach the goal position and thus
solves the task (data not shown).

The Mountain Car problem has been approached using
several ML techniques most of them focusing on reinforcement
learning (Heidrich-Meisner and Igel, 2008; Weidel et al.,
2021) and gradient descent (Young et al., 2019). Current
implementations are able to solve the challenge while delivering
a good performance in terms of speed of convergence and

Frontiers in Computational Neuroscience | www.frontiersin.org 16 May 2022 | Volume 16 | Article 885207

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

FIGURE 12 | Fitness of the MC run. The blue, starred line shows the mean of

all individuals while the shaded area is the SD. The green line is the best fitness

per generation.

the obtained final score. We took an evolutionary approach
by using a GA to optimize an SNN that is able to solve the
MC obtaining consistently a high reward (over 100 trials).
Evolutionary strategies have shown comparable performance
to reinforcement learning and gradient descent algorithms in
problems where learning to sense and act in response to
the environment are required (Salimans et al., 2017; Such
et al., 2017; Stanley et al., 2019). Another advantage with
the evolutionary approach is the parallel exploration of the
solution space. In L2L, each individual is run as an independent
optimizee process. The framework enables us to execute a
large number of parallel optimizees in multi-core CPUs and
HPC infrastructures.

4. DISCUSSION AND FUTURE WORK

Simulations in different science domains tend to become more
and more complex and span over multiple disciplines and scales.
These simulations usually have a large number of parameters to
configure, and researchers spend a long time tuning the model
parameters manually, which is difficult and time-consuming. To
tackle these issues, it is necessary to have an automated tool
that can be easily executed on local machines or likewise on
super-computers. We present the L2L framework as a flexible
tool to optimize and explore ranges of parameter spaces. Because
the tool does not require a particular type of simulation,
i.e., it is agnostic to the model in the inner-loop, it enables
the optimization of any type of parameter resulting from the
model, as long as fitness can be calculated and sent to the
outer loop.

In Section 3, we described several neuroscientific use cases
at different scales. The optimizations range from finding the
correct set of parameter configurations to determining network
dynamics to solving optimization problems up to exploring

values for specific growth rules. In all cases, the optimization
methods in the outer loop treated the inner loop simulations as
black box problems and similarly, the optimization technique was
unknown to the inner loop.

In terms of implementation, every optimizee follows the
same structure by providing three functions: 1. creating the
individual, i.e., the parameters to optimized, 2. starting and
managing the optimizee run and providing fitness to asses
the simulation performance, and 3. optionally constraining the
parameter exploration range. The framework offers a plethora of
built-in optimization techniques. Most of them are population
based optimizers, which require several individuals and fitness
or a fitness vector. Both the fitness and the population approach
are incorporated into the optimization. For example, with genetic
algorithms and the EnKF, the fitness is used to rank the
individuals. A large population enables a wider range to explore
parameters and find possible good initializations, which leads to a
faster convergence. In order to not get stuck in local optima, most
of the optimizers offer techniques to perturb the individuals and
additionally enlarge the parameter space (which of course can be
bounded if needed).

Clearly, executing a high number of individuals leads to
an increase in computational requirements. By utilizing MPI
in combination with the JUBE back-end, it is easy to deploy
simulation and optimization on high performance computers
in an automated fashion. From the users’ perspective, only a
few parameters have to be configured in a run script. The
optimizees for the inner loop are created and the simulations
are executed in parallel. One of the practical reasons for the
population based optimizers is that the simulations are very easily
parallelizable: each simulation can be conducted independently.
Only the parameters have to be collected in a single step and
fed into the optimizer. Afterward, the optimized parameters are
distributed for the next generation and the new simulations can
be started.

The TVB use case is an example of demonstrating a
parallelized simulation in the optimizee. We show that we
successfully reconfigured the gradient ascent optimizer to a
version that can process a vector of fitnesses. We used this
optimizer to find the best parameter setting for a TVB model
such that the match between simulated functional and structural
connectivity is optimal. Results from performance testing for
the RateML (van der Vlag et al., 2022) models show that for
a double state model such as the G2DO, on a GPU with 40
GB of memory, up to ≈ 62, 464 (61 times more parameters),
can be simulated in a single generation, taking approximately
the same amount of wall time due to the architecture of
the GPU. This would reduce the time it takes for each
generation and increases the range and resolution of the to be
optimized processes even further; opening up possibilities for
experiments requiring greater computational power. Moreover,
this particular optimizer is not limited to TVB simulations
only. Any process which uses a parallel architecture, e.g., GPU,
CPU or FPGA, for which the output is a vector of fitnesses,
can be adapted as an optimizee for the MGA optimizer.
The utilization of the subprocess library and information

Frontiers in Computational Neuroscience | www.frontiersin.org 17 May 2022 | Volume 16 | Article 885207

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

transfers via in- and output text files, makes usage of this
optimizer generic for any process. The MGA is just one example
of an optimizer adapted to process multiple fitnesses, in theory,
any of the optimizers can be adjusted to handle multi fitness
optimizees.

4.1. Choice of Fitness Function and
Optimizer
One important point to mention is the challenge of creating
the fitness function. Every fitness function is a problem specific
and finding a suitable function is often a complex task. In
some cases, the fitness is given by the design of the problem
(c.f. Section 3.1, in this case supervised learning). To illustrate
the point, the task in Section 3.3 can be extended so that the
ants are punished whenever they collide. However, just adding
a simple cost value for the collision makes the training and
optimization much harder, the ants exhibit erratic behaviors,
such as spinning around or stopping moving after a few steps.
Potentially, this behavior might resolve with enough generations,
but it is more likely that the fitness function would need
to be adapted. Even for the simple example shown here, the
fitness function had to be carefully balanced in terms of the
punishment and reward cost, which lead to several trials and
manual adjustments. Thus, the exploratory and exploitative
behavior is influenced by the fitness function. With a strict
fitness function, i.e., every action in the simulation generates
a reward or a punishment, it may be possible to exploit local
optima; however, it may restrict the exploration of different,
better optima. Conversely, making the fitness function too lax
may lead to an overly exploratory behavior that does not exhibit
any exploitation.

The choice of the optimizer is based on experience, the
familiarity with the task and often includes a trial and error
approach. Furthermore, the choice may be dependent on the
task itself. For instance, in a supervised learning scheme, the
“observable” parameter of the EnKF can be modified to support
labels and enable this optimizer for supervised training. However,
other optimization techniques may not be suitable as they cannot
incorporate the concept of labels into their optimization process
without extensive changes. It is not easy to recommend general
optimization solutions for a variety of problems, and it is out of
the scope of this work, we instead refer here to further literature
(Okwu and Tartibu, 2020; Malik et al., 2021; Oliva et al., 2021).
However, we would like to discuss some pointers which may be
helpful in choosing an optimization technique when using L2L.
Gradient descent and Kalman filtering can provide a directed
and fast search within the parameter space. If it is known that
the optimization problem space is smooth and ideally convex,
the gradient descent algorithm is known for providing an efficient
solution. The EnKF can also provide a fast convergence for non-
convex problems with several optima and is especially suited for
problems where calculation of the gradient is not possible or
requires complex approximations. This can be particularly useful
for problems where fast optimization with adequate results is
more important than thorough explorations of vast parameter

spaces to identify the optimal parameter configuration. Both the
EnKF and gradient descent are suitable for optimization in high
dimensional parameter spaces, such as the weight optimization of
neural networks.

In contrast, if the solution space is not known and exploration
is the focus, genetic algorithms—from the family of optimizers
inspired by nature—may be the correct choice. By creating new
individuals using mutation and cross-over, genetic algorithms
can cover a vast space and still be very performant. For example,
we also used genetic algorithms to optimize the network in use
case 1 and obtained reasonable optimization results but did not
reach as high a performance as with the ensemble Kalman filter
(data not shown). The dimensionality of the parameter space in
combination with the optimization algorithm chosen plays a key
role in the outcome of the optimization. From our experience
with the use cases presented here, we have seen that genetic
algorithms work well with parameter spaces in the range of tens
to thousands of dimensions.

Learning to learn provides several additional optimizers
beyond those introduced in the use cases, which also have
advantages in certain applications. The evolution strategies
optimizer creates new individuals by perturbing, i.e., adding
Gaussian noise, to the fittest individuals to create new ones
and falls into the same category as the GA but uses stochastic
gradient descent as an optimization technique. For example,
the authors of Salimans et al. (2017) optimize large networks
which are then able to play Atari games. Similarly, the
natural evolution strategies (NES) optimizer samples from a
multivariate Gaussian distribution to obtain new individuals.
Wierstra et al. (2014) employ NES on several benchmark tasks
with different parameter dimensions. They conclude that NES
is applicable on low dimensional and high-dimensional and
multi-modal problems.

The performance of simulated annealing depends heavily
on the annealing schedule selected. L2L provides a variety
of schedules to choose from the exploration progress and
they define the ratio between exploration and exploitation
of the algorithm. Simulated annealing can be an excellent
tool to perform initial explorations of large parameter spaces
and progressively move from exploration to exploitation as
experience with the simulated model increases. The L2L version
includes a cooling factor that allows the user to explore the
balance between exploration and exploitation.

Cross entropy is highly directed and fast to converge. It is
well suited for dealing with noisy optimization problems and
large parameter spaces. In contrast, L2L also provides the grid-
search, a technique that just iterates over the given parameter
range in a brute force manner. This technique can be used for
rather small parameter ranges if nothing is known about the
problem space.

4.2. Outlook
Specifically regarding our presented use cases, future work will
include multi-objective optimization to decouple the objectives
from a specific fitness function and optimize the fitness functions
in interchangeable steps. The L2L framework already supports

Frontiers in Computational Neuroscience | www.frontiersin.org 18 May 2022 | Volume 16 | Article 885207

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

multi-objective optimization since it can handle several fitness
values. Alternatively, the optimizee can be written in such a way
that it exchanges the fitness function in certain generations and
still returns one fitness value.

A visualization of the trajectories through generations may
give further insights for a follow-up analysis of the parameters.
We aim to implement a visualization tool that can plot the
evolution of the parameters using simple diagrams such as
histograms, correlations, and similar statistics. A desirable feature
would be to interact with the plot while the simulation is
ongoing, as demonstrated by Tensorboard7. A challenge here is
to interact with the results whenever the run is conducted on
an HPC, as many super computing centers no longer allow X-
forwarding—a network protocol to control and display a remote
software from a local computer. Instead, other mechanisms for
interactive computing need to be considered such as virtual
network computing8.

In preliminary work, we were already able to run the L2L
simulations on an HPC while instructing the run from a local
machine. By utilizing UNICORE (Streit et al., 2005), a tool for
distributed computing, we could successfully send an optimizee
to a specified HPC, initialize the L2L framework, run the
optimizations, and collect the results. For this approach to work,
we have to ensure that the L2L framework is correctly deployed
on the remote side. Seamless integration of all tools in the
process chain is required. This approach also leads toward a
vision of L2L as a service, where users can submit optimization
workloads using a simple API. Despite the advantages of this
approach, new aspects should be considered to protect user data
and any sensitive data that can be used or produced during
simulations. In order to deploy this service, full integration
with the EBRAINS9. infrastructure is our target for the near
future, as this will enable L2L to support the neuroscience
community while being part of a well-established research
platform.

Another necessary element, which is currently only available
in a preliminary form, is check-pointing the run, i.e., the
possibility to continue the inner and outer loop processes to
a later time. This would allow us to execute jobs in a very
long period without any HPC time restriction. At the moment,
the run-script (see Section 2.3) has to be changed with a few
more routines to load the trajectories from an earlier run and
to continue it. In an upcoming release, this component will be
integrated into the L2L framework.

Finally, we would like to extend the set of optimization
techniques with optimizers that have more capabilities. This
would be for example a neural network, along the lines of the
approach proposed by Andrychowicz et al. (2016). For instance,
the network could learn the distribution of the parameter space
and predict the next set of parameters. One other interesting
direction is to include Bayesian Optimization via Bayesian
hierarchical modeling. In this case, the parameters are not

7https://www.tensorflow.org/tensorboard/
8https://trac.version.fz-juelich.de/vis/wiki/vnc3d
9https://ebrains.eu/

optimized directly as depicted in this work, instead, uncertainty
measures and prediction uncertainty are inferred (Finn et al.,
2018; Gordon et al., 2018; Yoon et al., 2018).

In conclusion, with this work, we have presented L2L as a
software framework for the hyper-parameter optimization of
computing workloads, especially focusing on neuroscience use
cases. The flexibility of this framework is designed to support the
broad and interdisciplinary nature of brain research and provides
easier access to HPC for ML-based optimization tasks.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: The Modified National Institute of Standards
and Technology (MNIST) database, http://yann.lecun.com/exdb/
mnist/.

AUTHOR CONTRIBUTIONS

AS, AY, WK, and SD-P worked on the design of the framework.
AY, AS, SD-P, and WK worked on the implementation. AY,
TH, CJ-R, WK, AP, MV, and SD-P implemented the use
cases and produced the results reported in the manuscript.
All authors conceived of the project, designed the set of use
cases, reviewed, contributed, and approved the final version of
the manuscript.

FUNDING

The research leading to these results has received funding from
the European Union’s Horizon 2020 Framework Programme for
Research and Innovation under the Specific Grant Agreements
no. 785907 (Human Brain Project SGA2) and 945539 (Human
Brain Project SGA3). This research has also been partially
funded by the Helmholtz Association through the Helmholtz
Portfolio Theme Supercomputing and Modeling for the
Human Brain. Open Access publication funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation)-491111487.

ACKNOWLEDGMENTS

We would like to thank Dr. Alexander Peyser for his ideas,
support and useful input to implement the L2L framework and
take it into HPC. We would also like to thank Prof. Wolfgang
Maass for his input and feedback during the progress of the
project. Finally, we would like to thank the HBP community and
collaborators around the learning to learn concept who provided
a platform for fruitful discussions, identify requirements and
expand the potential of the L2L framework. We acknowledge
the use of Fenix Infrastructure resources, which are partially
funded from the European Union’s Horizon 2020 research and
innovation programme through the ICEI project under the grant
agreement No. 800858. The authors gratefully acknowledge the
Gauss Centre for Supercomputing e.V. (www.gauss/centre.eu)

Frontiers in Computational Neuroscience | www.frontiersin.org 19 May 2022 | Volume 16 | Article 885207

https://www.tensorflow.org/tensorboard/
https://trac.version.fz-juelich.de/vis/wiki/vnc3d
https://ebrains.eu/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://www.gauss/centre.eu
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

for funding this project by providing computing time on the GCS
Supercomputer JUWELS at Jülich Supercomputing Centre (JSC).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2022.885207/full#supplementary-material

SUPPLEMENTAL DATA

All code used to produce the results in this paper as well as the
L2L framework can be accessed in this repository: https://github.
com/Meta-optimization/L2L/tree/frontiers_submission.

Installation instructions for the framework can be found in the
README file of the repository.

An additional use case using structural plasticity in NEST can
be found in the Supplementary Material.

REFERENCES

Akar, N. A., Cumming, B., Karakasis, V., Ksters, A., Klijn, W., Peyser, A., et al.

(2019). “Arbor - a morphologically-detailed neural network simulation library

for contemporary high-performance computing architectures,” in 2019 27th

Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP) (Pavia, Italy), 274–282.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T.,

et al. (2016). “Learning to learn by gradient descent by gradient descent,”

in Advances in Neural Information Processing Systems (Barcelona, Spain),

3981–3989.

Antoniou, A., Edwards, H., and Storkey, A. (2018). How to train your

MAML. arXiv preprint arXiv:1810.09502. doi: 10.48550/arXiv.1810.0

9502

Bansal, K., Nakuci, J., and Muldoon, S. F. (2018). Personalized brain network

models for assessing structure-function relationships. Curr. Opin Neurobiol. 52,

42–47. doi: 10.1016/j.conb.2018.04.014

Bergstra, J., and Bengio, Y. (2012). Random search for hyper-parameter

optimization. J. Mach. Learn. Res. 13, 281–305.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J.,

Tang, J., et al. (2016). Openai gym. arXiv preprint arXiv:1606.01540.

doi: 10.48550/arXiv.1606.01540

Cao, Y., Chen, T.,Wang, Z., and Shen, Y. (2019). “Learning to optimize in swarms,”

in Advances in Neural Information Processing Systems, Vol. 32, eds H. Wallach,

H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett (Pavia,

Italy: Curran Associates, Inc.).

Deco, G., McIntosh, A. R., Shen, K., Hutchison, R. M., Menon, R. S., Everling,

S., et al. (2014). Identification of optimal structural connectivity using

functional connectivity and neural modeling. J. Neurosci. 34, 7910–7916.

doi: 10.1523/JNEUROSCI.4423-13.2014

Deepu, R., Spreizer, S., Trensch, G., Terhorst, D., Vennemo, S. B., Mitchell, J., et al.

(2021). NEST 3.1. Zenodo. doi: 10.5281/zenodo.5508805

Druckmann, S., Banitt, Y., Gidon, A. A., Schürmann, F., Markram, H., and Segev,

I. (2007). A novel multiple objective optimization framework for constraining

conductance-based neuron models by experimental data. Front. Neurosci.

1:2007. doi: 10.3389/neuro.01.1.1.001.2007

Finn, C., Abbeel, P., and Levine, S. (2017). “Model-agnostic meta-learning for fast

adaptation of deep networks,” in International Conference on Machine Learning

(PMLR), 1126–1135.

Finn, C., and Levine, S. (2017). Meta-learning and universality: deep

representations and gradient descent can approximate any learning algorithm.

arXiv:1710.11622 [cs]. doi: 10.48550/arXiv.1710.11622

Finn, C., Rajeswaran, A., Kakade, S., and Levine, S. (2019). “Online meta-learning,”

in International Conference on Machine Learning (Long Beach, CA: PMLR),

1920–1930.

Finn, C., Xu, K., and Levine, S. (2018). “Probabilistic model-agnostic meta-

learning,” in Advances in Neural Information Processing System, vol. 31,

eds S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,

and R. Garnett (Curran Associates, Inc.), 1–14. Available online at: https://

proceedings.neurips.cc/paper/2018/file/8e2c381d4dd04f1c55093f22c59c3a08-

Paper.pdf

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., and Gagné, C.

(2012). DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13,

2171–2175. doi: 10.1145/2330784.2330799

Gewaltig, M.-O., and Diesmann, M. (2007). Nest (neural simulation tool).

Scholarpedia 2, 1430. doi: 10.4249/scholarpedia.1430

Gordon, J., Bronskill, J., Bauer, M., Nowozin, S., and Turner, R. E. (2018). Meta-

learning probabilistic inference for prediction. arXiv preprint arXiv:1805.09921.

doi: 10.48550/arXiv.1805.09921

Gouwens, N. W., Berg, J., Feng, D., Sorensen, S. A., Zeng, H., Hawrylycz, M. J.,

et al. (2018). Systematic generation of biophysically detailed models for diverse

cortical neuron types.Nat. Commun. 9, 1–13. doi: 10.1038/s41467-017-02718-3

He, X., Zhao, K., and Chu, X. (2021). AutoML: a survey of the state-of-the-art.

Knowl. Based Syst. 212, 106622. doi: 10.1016/j.knosys.2020.106622

Heidrich-Meisner, V., and Igel, C. (2008). “Variable metric reinforcement learning

methods applied to the noisy mountain car problem,” in Recent Advances in

Reinforcement Learning. EWRL 2008. Lecture Notes in Computer Science, vol.

5323, eds S. Girgin, M. Loth, R. Munos, P. Preux, and D. Ryabko (Berlin;

Heidelberg: Springer), 136–150.

Hold-Geoffroy, Y., Gagnon, O., and Parizeau, M. (2014). “Once you SCOOP, no

need to fork,” in Proceedings of the 2014 Annual Conference on Extreme Science

and Engineering Discovery Environment (New York, NY: ACM), 60.

Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli,

R., et al. (2009). Predicting human resting-state functional connectivity

from structural connectivity. Proc. Natl. Acad. Sci. U.S.A. 106, 2035–2040.

doi: 10.1073/pnas.0811168106

Hutter, F., Kotthoff, L., and Vanschoren, J. (Eds.). (2019). Automated Machine

Learning-Methods, Systems, Challenges. Cham, Switzerland: Springer.

Iglesias, M. A., Law, K. J., and Stuart, A. M. (2013). Ensemble

kalman methods for inverse problems. Inverse Probl. 29, 045001.

doi: 10.1088/0266-5611/29/4/045001

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M., Donahue, J., Razavi,

A., et al. (2017). Population based training of neural networks. arXiv preprint

arXiv:1711.09846. doi: 10.48550/arXiv.1711.09846

Jimenez-Romero, C., and Johnson, J. (2017). SpikingLab: modelling agents

controlled by spiking neural networks in netlogo. Neural Comput. Appl. 28,

755–764. doi: 10.1007/s00521-016-2398-1

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018).

Extremely scalable spiking neuronal network simulation code: from laptops

to exascale computers. Front. Neuroinform. 12:2. doi: 10.3389/fninf.2018.

00002

Kennedy, J., and Eberhart, R. (1995). “Particle swarm optimization,” in Proceedings

of ICNN’95-International Conference on Neural Networks, vol. 4 (Perth, WA:

IEEE), 1942–1948.

LeCun, Y., Cortes, C., and Burges, C. (2010).MNIST Handwritten Digit Database.

ATandT Labs [Online]. Available: http://yann. lecun. com/exdb/mnist 2:18.

Lein, E. S., Hawrylycz, M. J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., et al.

(2007). Genome-wide atlas of gene expression in the adult mouse brain.Nature

445, 168–176. doi: 10.1038/nature05453

Li, Z., Zhou, F., Chen, F., and Li, H. (2017). Meta-sgd: Learning to

learn quickly for few-shot learning. arXiv preprint arXiv:1707.09835.

doi: 10.48550/arXiv.1707.09835

Maass,W., Natschläger, T., andMarkram, H. (2002). Real-time computing without

stable states: a new framework for neural computation based on perturbations.

Neural Comput. 14, 2531–2560. doi: 10.1162/089976602760407955

Malik, H., Iqbal, A., Joshi, P., Agrawal, S., and Bakhsh, F. I. (2021).

Metaheuristic and Evolutionary Computation: Algorithms and Applications.

Cham, Switzerland: Springer.

Frontiers in Computational Neuroscience | www.frontiersin.org 20 May 2022 | Volume 16 | Article 885207

https://www.frontiersin.org/articles/10.3389/fncom.2022.885207/full#supplementary-material
https://github.com/Meta-optimization/L2L/tree/frontiers_submission
https://github.com/Meta-optimization/L2L/tree/frontiers_submission
https://doi.org/10.48550/arXiv.1810.09502
https://doi.org/10.1016/j.conb.2018.04.014
https://doi.org/10.48550/arXiv.1606.01540
https://doi.org/10.1523/JNEUROSCI.4423-13.2014
https://doi.org/10.5281/zenodo.5508805
https://doi.org/10.3389/neuro.01.1.1.001.2007
https://doi.org/10.48550/arXiv.1710.11622
https://proceedings.neurips.cc/paper/2018/file/8e2c381d4dd04f1c55093f22c59c3a08-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/8e2c381d4dd04f1c55093f22c59c3a08-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/8e2c381d4dd04f1c55093f22c59c3a08-Paper.pdf
https://doi.org/10.1145/2330784.2330799
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.48550/arXiv.1805.09921
https://doi.org/10.1038/s41467-017-02718-3
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1073/pnas.0811168106
https://doi.org/10.1088/0266-5611/29/4/045001
https://doi.org/10.48550/arXiv.1711.09846
https://doi.org/10.1007/s00521-016-2398-1
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.1038/nature05453
https://doi.org/10.48550/arXiv.1707.09835
https://doi.org/10.1162/089976602760407955
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

Okwu, M. O., and Tartibu, L. K. (2020). Metaheuristic Optimization: Nature-

Inspired Algorithms Swarm and Computational Intelligence, Theory and

Applications, volume 927. Switzerland: Springer Nature.

Oliva, D., Houssein, E. H., and Hinojosa, S. (2021). Metaheuristics in Machine

Learning: Theory and Applications. Cham, Switzerland: Springer.

Ott, E., and Antonsen, T. M. (2008). Low dimensional behavior of large systems of

globally coupled oscillators. Chaos 18, 37113. doi: 10.1063/1.2930766

Pehle, C., and Pedersen, J. E. (2021). Norse - A Deep Learning Library for Spiking

Neural Networks. Available online at: https://norse.ai/docs/.

Rasmussen, D. (2018). NengoDL: combining deep learning and neuromorphic

modelling methods. arXiv 1805.11144:1–22. doi: 10.48550/arXiv.1805.11144

Ravi, S., and Larochelle, H. (2017). “Optimization as a model for few-shot

learning,” in International Conference on Learning Representations (ICLR)

(Toulon, France).

Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I. (2017). Evolution

strategies as a scalable alternative to reinforcement learning. arXiv preprint

arXiv:1703.03864. doi: 10.48550/arXiv.1703.03864

Sanz Leon, P., Knock, S. A., Woodman, M. M., Domide, L., Mersmann, J.,

McIntosh, A. R., et al. (2013). The Virtual Brain: a simulator of primate brain

network dynamics. Front. Neuroinform. 7:10. doi: 10.3389/fninf.2013.00010

Song, X., Gao, W., Yang, Y., Choromanski, K., Pacchiano, A., and Tang, Y. (2019).

Es-maml: simple hessian-free meta learning. arXiv preprint arXiv:1910.01215.

doi: 10.48550/arXiv.1910.01215

Speck, R., Knobloch, M., Lhrs, S., and Gocht, A. (2021). “Using performance

analysis tools for a parallel-in-time integrator,” in Parallel-in-Time Integration

Methods, volume 356 of Springer Proceedings in Mathematics and Statistics,

Cham 9thWorkshop on Parallel-in-Time Integration, online (online), 8 Jun 2020

- 12 Jun 2020 (Cham: Springer International Publishing), 51–80.

Stanley, K., Clune, J., Lehman, J., and Miikkulainen, R. (2019). Designing

neural networks through neuroevolution. Nat. Mach. Intell. 1, 24–35.

doi: 10.1038/s42256-018-0006-z

Streit, A., Erwin, D., Lippert, T., Mallmann, D., Menday, R., Rambadt, M., et

al. (2005). UNICOREfrom project results to production grids. Adv. Parallel

Comput. 14, 357–376. doi: 10.1016/S0927-5452(05)80018-8

Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., and

Clune, J. (2017). Deep neuroevolution: genetic algorithms are a competitive

alternative for training deep neural networks for reinforcement learning.ArXiv,

abs/1712.06567. doi: 10.48550/arXiv.1712.06567

Thrun, S., and Pratt, L. (2012). Learning to Learn. Cham, Switzerland: Springer

Science and Business Media.

Tisue, S., and Wilensky, U. (2004). “Netlogo: a simple environment for modeling

complexity,” in International Conference on Complex Systems, vol. 21 (Boston,

MA), 16–21.

van der Vlag, M., Woodman, M., Fousek, J., Diaz-Pier, S., Perez Martin, A., Jirsa,

V., et al. (2022). RateML: a code generation tool for brain network models

(accepted). Front. Netw. Physiol. 2:826345. doi: 10.3389/fnetp.2022.826345

Van Geit, W., Gevaert, M., Chindemi, G., Rssert, C., Courcol, J.-D., Muller, E. B., et

al. (2016). BluePyOpt: leveraging open source software and cloud infrastructure

to optimise model parameters in neuroscience. Front. Neuroinform. 10:17.

doi: 10.3389/fninf.2016.00017

Weidel, P., Duarte, R., and Morrison, A. (2021). Unsupervised

learning and clustered connectivity enhance reinforcement learning

in spiking neural networks. Front. Comput. Neurosci. 15:543872.

doi: 10.3389/fncom.2021.543872

Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., and Schmidhuber,

J. (2014). Natural evolution strategies. J. Mach. Learn. Res. 15, 949–980.

doi: 10.48550/arXiv.1106.4487

Wijesinghe, P., Srinivasan, G., Panda, P., and Roy, K. (2019). Analysis of

liquid ensembles for enhancing the performance and accuracy of liquid state

machines. Front. Neurosci. 13:504. doi: 10.3389/fnins.2019.00504

Wilensky, U. (1997). Netlogo Ants Model. Evanston, IL: Center for Connected

Learning and Computer-Based Modeling, Northwestern University.

Yegenoglu, A., Krajsek, K., Pier, S. D., and Herty, M. (2020). “Ensemble kalman

filter optimizing deep neural networks: an alternative approach to non-

performing gradient descent,” in International Conference onMachine Learning,

Optimization, and Data Science (Siena – Tuscany, Italy: Springer), 78–92.

Yoo, A. B., Jette, M. A., and Grondona, M. (2003). “Slurm: simple linux utility for

resource management,” in Workshop on Job Scheduling Strategies for Parallel

Processing (Seattle, Washington USA: Springer), 44–60.

Yoon, J., Kim, T., Dia, O., Kim, S., Bengio, Y., and Ahn, S. (2018). Bayesian model-

agnostic meta-learning. Adv. Neural Inf. Process. Syst. (Montréal, Canada),

31.

Young, K., Wang, B., and Taylor, M. (2019). “Metatrace actor-critic: online step-

size tuning by meta-gradient descent for reinforcement learning control,” in

Proceedings of the Twenty-Eighth International Joint Conference on Artificial

Intelligence Main Track (Macao, China), 4185–4191.

Zhou, Y., Jin, Y., and Ding, J. (2020). Surrogate-assisted evolutionary search of

spiking neural architectures in liquid state machines. Neurocomputing 406,

12–23. doi: 10.1016/j.neucom.2020.04.079

Zoph, B., and Le, Q. V. (2016). Neural architecture search with reinforcement

learning. arXiv:1611.01578 [cs]. doi: 10.48550/arXiv.1611.01578

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Yegenoglu, Subramoney, Hater, Jimenez-Romero, Klijn, Pérez

Martín, van der Vlag, Herty, Morrison and Diaz-Pier. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 21 May 2022 | Volume 16 | Article 885207

https://doi.org/10.1063/1.2930766
https://doi.org/10.48550/arXiv.1805.11144
https://doi.org/10.48550/arXiv.1703.03864
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.48550/arXiv.1910.01215
https://doi.org/10.1038/s42256-018-0006-z
https://doi.org/10.1016/S0927-5452(05)80018-8
https://doi.org/10.48550/arXiv.1712.06567
https://doi.org/10.3389/fnetp.2022.826345
https://doi.org/10.3389/fninf.2016.00017
https://doi.org/10.3389/fncom.2021.543872
https://doi.org/10.48550/arXiv.1106.4487
https://doi.org/10.3389/fnins.2019.00504
https://doi.org/10.1016/j.neucom.2020.04.079
https://doi.org/10.48550/arXiv.1611.01578
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Exploring Parameter and Hyper-Parameter Spaces of Neuroscience Models on High Performance Computers With Learning to Learn
	1. Introduction
	1.1. State of the Art

	2. Methods
	2.1. Concept of L2L
	2.2. Parallel Executions in the L2L Framework
	2.3. Workflow Description

	3. Results
	3.1. Use Case 1: Digit Classification With NEST
	3.1.1. Description of the Simulation Tool
	3.1.2. Optimizee: Spiking Reservoir Model
	3.1.3. Fitness Metric
	3.1.4. Optimizer: EnKF
	3.1.5. Analysis

	3.2. Use Case 2: Fitting Electrophysiological Data With Arbor
	3.2.1. Description of the Simulation Tool
	3.2.2. Optimizee: Morphologically-Detailed Single Cell
	3.2.3. Fitness Metric
	3.2.4. Optimizer: Evolutionary Algorithm
	3.2.5. Analysis

	3.3. Use Case 3: Foraging Behavior With Netlogo and NEST or SpikingLab
	3.3.1. Description of the Simulation Tools
	3.3.2. Optimizee: Simulated Ant Brain
	3.3.3. Fitness Metric
	3.3.4. Optimizer: Genetic Algorithm
	3.3.5. Analysis

	3.4. Use Case 4: Fitting Functional Connectivity With TVB
	3.4.1. Description of the Simulation Tools
	3.4.2. Optimizee: Whole Brain Simulation
	3.4.3. Fitness Metric
	3.4.4. Optimizer: Multi-Gradient Ascent
	3.4.5. Analysis

	3.5. Use Case 5: Solving the Mountain Car Task With OpenAI Gym and NEST
	3.5.1. Description of the Simulation Tools
	3.5.2. Optimizee: Spiking Feed-Forward Policy Network
	3.5.3. Fitness Metric
	3.5.4. Optimizer: Genetic Algorithm
	3.5.5. Analysis

	4. Discussion and Future Work
	4.1. Choice of Fitness Function and Optimizer
	4.2. Outlook

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	Supplemental Data
	References

