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Emotion recognition is an essential human ability critical for social
functioning. It is widely assumed that identifying facial expression
is the key to this, and models of emotion recognition have mainly
focused on facial and bodily features in static, unnatural condi-
tions. We developed a method called affective tracking to reveal
and quantify the enormous contribution of visual context to affect
(valence and arousal) perception. When characters’ faces and bod-
ies were masked in silent videos, viewers inferred the affect of the
invisible characters successfully and in high agreement based
solely on visual context. We further show that the context is not
only sufficient but also necessary to accurately perceive human
affect over time, as it provides a substantial and unique contribu-
tion beyond the information available from face and body. Our
method (which we have made publicly available) reveals that emo-
tion recognition is, at its heart, an issue of context as much as it is
about faces.

affect | emotion | context | facial expression | visual scene

Emotion recognition is a core human ability, important for
understanding others, navigating social environments, and

guiding decisions and actions (1, 2). Emotion recognition is also
a key component of most measures of so-called emotional in-
telligence (3), and impairments in emotion recognition are as-
sociated with a variety of disorders ranging from autism (4) to
schizophrenia (5) to major depression (6).
Emotion recognition is widely assumed to be determined by

face and body features, and operational measures of emotion
perception or emotional intelligence typically use decontextual-
ized face stimuli (7–11). However, an individual’s face and body
are usually perceived within a meaningful context, not in iso-
lation. In recent years, there has been growing evidence that
perceived emotion in facial expressions is susceptible to con-
textual influences from several modalities, such as the expresser’s
tone of voice (11), faces of surrounding people (12), scene gist
information (13, 14), and personality traits of the perceiver (15).
In the visual domain specifically, recent studies found that
emotion recognition from facial expressions is modulated by
body posture and the visual scene within which the face is seen
(16–21), and this modulation appears to happen routinely and
automatically. However, the contribution of context has been
difficult to systematically investigate and quantify. Also, the vast
majority of experiments used static faces superimposed on dis-
connected, unrelated, or unnatural visual backgrounds. In con-
trast, emotion perception is continuous and dynamic in natural
environments. As a result, quantifying the role of context in
emotion recognition has been elusive, leading authors to treat
context as a coarse modulator of perceived emotion, primarily
used to disambiguate interpreted facial expressions.
An alternative view is that emotion recognition is, at its heart,

a context-based process (21): context makes a significant and
direct contribution to the perception of emotion in a precise
spatial and temporal manner. Human perceptual systems are
exquisitely sensitive to context and gist information in dynamic
natural scenes (14, 16, 22–26). Such dynamic gist information
could carry rich affect-relevant signals, including the presence of
other people, visual background scene information, and social
interactions—unique emotional information that cannot be

attained from an individual’s face and body. For example, a
smiling face could accompany completely different internal
emotions depending on the context: it could be faked to hide
nervousness in an interview setting; it could signal friendliness
when celebrating other people’s success, and it could also show
hostility when teasing or mocking others. Furthermore, much
evidence suggests that context is processed rapidly, automatically,
and effortlessly when recognizing others’ emotions (16, 27–31).
Therefore, we hypothesized that emotion recognition may be

efficiently driven by dynamic visual context, independent of in-
formation from facial expressions and body postures. We oper-
ationalized visual context as the spatial circumstances in which a
person is seen. There are other types of context (e.g., stimulus
history), but our question focuses on the visual spatial context—all
of the visual information available apart from the face and body of
the person (e.g., background scene, faces of other people). We in-
vestigated whether the visual context alone, in the absence of a
person’s face and body information, is both sufficient and necessary
to recognize the (invisible) person’s emotion over time.
To quantify whether dynamic contextual information drives

emotion perception, we developed a 3D mouse tracking method
to measure an observer’s ability to dynamically infer and track
emotion in real time: “inferential affective tracking” (IAT) (Fig.
1A). It is “inferential” because it explicitly tests the ability to
infer the emotional states of other people entirely from contex-
tual cues instead of directly from facial expressions. Similarly, the
general method is called “affective tracking” because we mea-
sured real-time reporting of affect (valence and arousal) in dynamic
videos rather than in static images (SI Appendix, Methods). Our
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experiments focus primarily on valence and arousal because they
are the primary dimensions that capture the most variance in
affect ratings (32) and the perception of affect has been con-
sidered a primitive component of emotion perception (33). We
used silent video clips from a variety of sources, including Hol-
lywood movies, home videos, and documentaries totaling 5,593 s
across the experiments (SI Appendix, Stimuli). The video clips
included characters interacting with others or with their envi-
ronment. We removed all auditory and text information to focus
on the visual content alone. Movie clips are ideal dynamic stimuli
for our experiments because they are widely viewed, they reveal
a broad range of emotions (SI Appendix, Fig. S1), they are
designed specifically to be realistic, and even though they may

be staged, they are accepted by audiences. The video clips were
gathered from an online video-sharing website, depicting
characters in a range of social scenes and emotional situations
over a period of time. Videos clips in experiment 1 specifically
show two main characters interacting with each other. Exper-
iments 2 and 3 extended this to single or multiple characters
and non-Hollywood movie clips. For each video clip, we
masked the face and body of a chosen target character frame by
frame using a Gaussian blurred mask, such that the target
character was completely invisible to viewers (Fig. 1B; see SI
Appendix, Stimuli).
In experiment 1, we asked 33 participants to infer and track, in

real time, the affect of the invisible target character under what we
call the inferred condition (SI Appendix,Methods). To measure this,
we adapted a two-dimensional valence-arousal affect rating grid,
previously used to rate static pictures of faces (34). We used a 2D
valence-arousal affect-rating grid because it has been shown to be
valid and reliable in other domains (35) and it is a uniform space,
which allows continuous tracking without predefined categorical
boundaries or discontinuities. Moreover, discrete emotional labels
do map onto the this 2D space (36), and we confirmed that the
distribution of emotions contained in our videos was representative
of the full valence-arousal affect space measured using linguistic
descriptions (ref. 36; see SI Appendix, Fig. S1).
In our experiments, observers moved a mouse pointer within

the affect rating grid to continuously report the valence and
arousal of an invisible character (Fig. 1A). The affect rating grid
was superimposed on top of the video, and participants were
required to rate the affect of the target continuously in real time
while they watched the clip for the first time. Participants were
not allowed to view any clip more than once (SI Appendix,
Methods). The affect ratings of target characters were distributed
mostly around the center of the affect rating grid with more
neutral and medium affect ratings and fewer extreme affect
ratings (SI Appendix, Fig. S1), showing that the affect in the video
clips that we used is not particularly emotionally evocative but is
comparable to those in real-world scenarios (36, 37).

Results
Participants agreed with each other about the inferred affect of
invisible target characters. We used single-subject Pearson cor-
relation to quantify between-subject agreement. We calculated
the pairwise correlation coefficient between pairs of affect rat-
ings from different subjects judging the same clip, which were
then divided by single-subject test–retest correlations to obtain
normalized values (see SI Appendix, Fig. S2 for other measures
of between-subject agreement, including split-half correlation
and intraclass correlation). These normalized correlation values
measure the ratio of the similarity in affect ratings given by
different observers relative to the ceiling value, which is the
similarity in affect ratings given by the same observer. We found
high intersubject agreement in the inferred affect ratings of the
invisible character, with a mean normalized single-subject
agreement value of 0.61 (bootstrapped 95% CI: 0.50–0.71; P <
0.001, permutation tests, see SI Appendix) for valence and 0.57
(bootstrapped 95% CI: 0.46–0.68; P < 0.001, permutation tests)
for arousal (Fig. 2A). All mean correlation coefficients were
computed by first applying Fisher Z transformation on all indi-
vidual correlations, averaging the transformed values, and then
transforming the mean back to Pearson’s r. Our result indicates
that observers agreed with each other about the affect of in-
visible characters, but it does not yet reveal how accurate they
were compared with when the characters were visible.
We measured the accuracy of IAT by comparing inferred affect

ratings to affect ratings made when the target character was visible
under what we call the “fully informed” condition (Fig. 1C). Because
there is no absolute ground truth for the expressed affect of the
characters on screen, we consider the group consensus of affective
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Fig. 1. Experiment 1. (A) Observers viewed a silent Hollywood movie clip
while moving a mouse pointer within the valence-arousal affect rating grid
to continuously report the affect of a chosen character in the video. In the
experiments, the affect rating grid was superimposed on top of the video
frames. (B and F) In the inferred condition, the target (the invisible male
policeman in this example; circled in red) was occluded by a Gaussian blurred
mask, while the partner (the visible female driver) was visible. Participants
were asked to infer and track the invisible target’s affect. (C) In the fully
informed condition, participants were asked to track the affect of the target
(the male policeman; circled in gray) when everything was visible. (D and E)
Example inferential valence (D) and arousal (E) ratings over time. Partici-
pants’ inferred affect ratings of the invisible target (red curve) closely fol-
lowed the fully informed affect ratings of the visible target (gray curve). (G)
Participants were asked to track the visible partner (the female driver; circled
in blue) in the fully informed condition. (H and I) Example valence (H) and
arousal (I) ratings. When inferring the affect of the invisible target (red
curve), participants did not simply track the affect of the visible partner (blue
curve). Shaded regions represent 1 SEM.
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interpretations under the fully informed condition as a practical
approximation of ground truth. The fully informed condition in-
cludes all of the visual information in the scene, so it is the closest
to the default state observers encounter in typical circumstances.
To measure the similarity between conditions, we calculated how
well the inferred affect ratings (Fig. 1B) correlated with the fully
informed ratings; we will refer to this measure of similarity as
accuracy. To establish the fully informed affect ratings, we asked a
different group of 32 participants to track and rate the affect of
the target character when he or she was visible on the screen. We
chose a between-subject approach to avoid memory effects and
interference between conditions. If participants inferred the affect
of the invisible target accurately, the inferred affect ratings should
closely follow the fully informed affect ratings of the visible target
(Fig. 1 D and E). To quantify IAT accuracy, we computed Pearson
correlation coefficients of the time series between inferred affect
ratings of the invisible targets and fully informed affect ratings
of the same targets when visible. We found a high degree of
similarity between inferred affect ratings and fully informed affect
ratings, with mean (Fisher Z transformed) Pearson correlation
coefficients of 0.76 (bootstrapped 95% CI: 0.65–0.83; P < 0.001,
permutation tests) and 0.73 (bootstrapped 95% CI: 0.60–0.83; P <
0.001, permutation tests) for valence and arousal, respectively
(Fig. 2B). Since between-subject agreement and IAT accuracy
were similar for both valence and arousal, we collapsed the data
across the two dimensions in the following analyses unless
otherwise specified (see SI Appendix, Fig. S3 for data pertaining
to individual dimensions). In summary, we found that even with
no access to any face and body information of the target character,
participants were able to accurately infer and track the affect of
the invisible target based entirely on contextual cues alone.
One might be concerned that participants simply tracked the

affect of the other character who was visibly interacting with the
target character (i.e., the partner character) and not actively
using dynamic contextual information to infer the affect of the in-
visible target. To rule out this possibility, we collected affect ratings
of the visible partner character in separate trials under fully in-
formed conditions in experiment 1 (no occlusions; Fig. 1G). If
participants inferred the affect of the invisible target rather than
simply tracking the visible partner, we would expect the inferred
affect of the invisible target to deviate significantly from the fully
informed affect of the visible partner (Fig. 1 H and I) while still
closely following the fully informed affect of the visible target
(Fig. 1 D and E). To quantify this, we calculated partial corre-
lations between inferred and fully informed affect ratings of the
target when controlling for fully informed affect ratings of the
partner. Separating out the variance attributable to the partner is

a conservative approach because characters in an interaction can
have covarying affect and emotions (e.g., SI Appendix, Fig. S1E),
and the partner characters should be considered part of the
dynamic context rather than just irrelevant information. We
found the partial correlation coefficients between inferred affect
ratings and fully informed affect ratings of the target character to
be strong and significant (mean: 0.35; bootstrapped 95% CI: 0.24–
0.45; P < 0.001, permutation tests) when accounting for those of
the partner (Fig. 2C and SI Appendix, Fig. S3A). This result sug-
gests that when participants were asked to infer and track the
invisible target, they did not simply track the visible partner char-
acter. The target’s affect is more than a linear transformation of
the partner’s affect: the visual scene background information
matters too.
We have shown that the context is sufficient to perceive affect

in dynamic and naturalistic environments. However, is the con-
text necessary to most accurately perceive and track affect? Does
the context alone possess significant explanatory power beyond
the face and body features themselves? To answer these ques-
tions, we designed experiment 2 to isolate the contribution of
background context information from face and body informa-
tion. To include a larger variety of scenarios beyond two inter-
acting characters, a new independent set of videos from various
Hollywood movies totaling 1,214 s were edited as before (SI Ap-
pendix, Stimuli). Three independent groups of participants were
asked to track and rate the affect of a chosen target character in
four different conditions: (i) fully informed condition, where
everything in the clip was visible (Fig. 3A); (ii) character-only con-
dition, where the context was masked and invisible but the face
and body of the target were visible (Fig. 3C); (iii) context-only
condition, where the face and body of the target were masked
and invisible but the context was visible (Fig. 3D); and (iv) blur-
only condition, where the target was blurred and the context was
replaced by black pixels (Fig. 3E). This fourth condition was to
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control for the residual motion or skin color information avail-
able from the blurred target. To show that accurate IAT is not
due to individual differences between subjects, one group of
participants rated a random half of the video clips in the context-
only condition and the other half of the videos in the blur-only
condition. On average, video clips in every one of the four con-
ditions were rated by a separate group of 50 participants. We then
used linear regression models to measure the degree to which
variance in affective tracking is explained only by the character
(Fig. 3D), the context (Fig. 3C), or the blurred mask (Fig. 3E).
Similar to experiment 1, participants in experiment 2 accu-

rately inferred the affect of the invisible target character with
high agreement. Between-subject agreement evaluated by
normalized single-subject correlation was 0.74 (bootstrapped
95% CI: 0.60–0.83; P < 0.001, permutation tests) for valence and
0.63 (bootstrapped 95% CI: 0.45–0.77; P < 0.001, permutation
tests) for arousal (SI Appendix, Fig. S3B). We also found strong
correlations between inferred affect ratings and fully informed
affect ratings of the same character, with mean Pearson corre-
lations of 0.88 (bootstrapped 95% CI: 0.77–0.94; P < 0.001,
permutation tests) and 0.85 (bootstrapped 95% CI: 0.76–0.90;
P < 0.001, permutation tests) for valence and arousal (SI Ap-
pendix, Fig. S3C).
Is the context necessary to perceive and track affect most ac-

curately, even when face and body information are already
available? When controlling for affect ratings in the character-
only condition, we found strong and significant partial correla-
tions between affect ratings in the context-only condition and
the fully informed condition (mean: 0.61; bootstrapped 95% CI:
0.44–0.73; P < 0.001, permutation tests; see Fig. 4A). To quantify
the size of the unique explanatory power of context, we then
used linear regression models to predict mean fully informed
affect ratings of the visible target based on mean character-only
affect ratings, mean context-only affect ratings, and mean blur-
only affect ratings as predictor variables. To account for variance
from noise that the regression model could not explain, we
normalized the proportion of unique variance by dividing it by
the total variance explained by the model. The proportion of
unique variance in fully informed affect ratings that could be
explained by context-only affect ratings but not character-only
affect ratings or blur-only affect ratings was 14.6% (bootstrapped
95% CI: 7.6–22.9%; Fig. 4B, red bar) of the total variance
explained. Importantly, we found that the benefits of having
additional contextual information spanned the whole 2D valence
and arousal affect space evenly from neutral to extreme affect

ratings (SI Appendix, Fig. S4D) and across various basic emotion
categories annotated by state-of-the-art computer vision models
(SI Appendix, Fig. S4E). Likewise, we also estimated the pro-
portion of unique variance that could only be explained by
character-only ratings but not context-only ratings or blur-only
ratings (mean: 20.5%; bootstrapped 95% CI: 13.9–28.0%; Fig.
4B, green bar), the magnitude of which was comparable to the
unique variance explained only by the context (P > 0.05, per-
mutation tests). Therefore, the context explains a significant
unique portion of variance in the fully informed affect—nearly as
much as the character itself (for individual participant data see
SI Appendix, Fig. S5). In addition, the blur-only ratings contrib-
uted only 1.5% of the total variance explained (bootstrapped
95% CI: 0.69–2.5%; Fig. 4B, blue bar), which was not different
from the permuted null distribution (P > 0.05, permutation tests)
and was significantly lower than the unique variance of the
context (P < 0.001, permutation tests). These results suggest that
residual information (e.g., kinematics or skin color) in the blurred
characters alone was not informative about the affect of charac-
ters. While it is conceivable that the contribution of kinematics
may be somewhat larger than reported here because the in-
teraction between context and kinematics was not accounted
for and might be nonlinear, the key is clearly the presence of
context.
We further estimated the proportion of shared variance be-

tween character-only and context-only ratings, which reflects the
degree of congruency, or the amount of redundant information
from target and context. We found that the proportion of shared
variance between character-only and context-only ratings was
surprisingly high (mean: 58.3%; bootstrapped 95% CI: 53.1–64.4%).
This high shared variance suggests that affect recognition is fairly
robust, in the sense that one can recognize affect under impoverished
conditions, such as when the face, body, or contextual informa-
tion is missing. Nevertheless, the context does not contain only
congruent or redundant information; there is still a significant
amount of unique and necessary information available only from
the context.
Additional analyses showed that adding nonlinear terms to the

model only marginally and nonsignificantly increased the good-
ness of fit (∼1–3% more explained variance), which supports the
use of a linear model. Although more complex nonlinear models
could, in principle, fit the data better, the linear model provides
an excellent fit (89% variance explained) while being parsimoni-
ous (see SI Appendix, Linear Regression Analysis, for a comparison
with nonlinear models).
To test whether the contribution of context is essential for

scenarios other than Hollywood movie clips or those with in-
teractions between individuals, we conducted experiments 3a
and 3b with a new set of video clips. Experiment 3a tested videos
that have only one target character and no other character in the
scene. Observers could rely on only scene information instead of
a partner character’s facial expressions to infer the invisible
target’s affect. Experiment 3b used only nonmovie video clips
that were from either documentaries or home videos, rather than
from Hollywood movies. One might be concerned that the Holly-
wood movie clips in experiments 1 and 2 included cinematog-
rapher- or director-created emotive environments that might
exaggerate the estimated role of the context. However, even if
film directors were able to manipulate human affect perception
simply with changes to the background scenery, it would support
the importance of the context by demonstrating that audiences
use this information, which reinforces our point. Artists, in-
cluding film directors, often reveal the mechanisms and heuris-
tics of visual processing, and this may be another example.
Nevertheless, we controlled this in experiment 3b using home
videos and documentaries, where the context and facial expres-
sions are not posed or staged in the style of a Hollywood movie.
We collected affect ratings from 25 independent observers for
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Fig. 4. (A) Mean partial correlations between context-only affect ratings
and fully informed affect ratings of the target when controlling for the
character-only affect ratings of the target. (B) Proportion of unique variance
in the fully informed affect ratings that could only be explained by context-
only affect ratings (in red), character-only affect ratings (in green), and blur-
only affect ratings (in blue). Yellow bar and pie show the proportion of
variance shared between two or more than two types of ratings. Error bars
represent bootstrapped 95% CI. Dashed lines represent means of permuted
null distributions (SI Appendix, Permutation Test).
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each of the three conditions: fully informed, context only, and
character only (75 new observers in total). The same group of 75
participants in experiment 3a also participated in experiment 3b.
We confirmed that participants in experiment 3 accurately infer-
red the affect of the invisible target character with high agreement.
Between-subject agreement evaluated by normalized single-subject
correlation was 0.67 (bootstrapped 95% CI: 0.44–0.84; P < 0.001,
permutation tests) for valence and 0.63 (bootstrapped 95% CI:
0.44–0.79; P < 0.001, permutation tests) for arousal (see SI Ap-
pendix, Fig. S3 F and H for a breakdown of experiments 3a and
3b). We also found strong correlations between inferred affect
ratings and fully informed affect ratings of the same character,
with mean Pearson correlations of 0.83 (bootstrapped 95% CI:
0.73–0.90; P < 0.001, permutation tests) and 0.80 (bootstrapped
95% CI: 0.67–0.88; P < 0.001, permutation tests) for valence and
arousal, respectively (SI Appendix, Fig. S3 E and G).
In experiment 3a, which used clips without a partner charac-

ter, the context contributed a significant amount of unique var-
iance (14.4% of the total explained variance; see SI Appendix,
Fig. S6A), approaching that of the character itself (20.5% of the
total explained variance; P > 0.05). In experiment 3b, which used
more naturalistic videos, the proportion of unique variance ex-
plained by the context (23.2% of the total explained variance; see
SI Appendix, Fig. S6B) was even higher than that of the character
(17.8% of the total explained variance), although the difference
is not statistically significant (P > 0.05, permutation tests). These
results suggest that visual context is likely to have broad influence
on perceived affect across a range of different scenarios.

Discussion
Our results reveal that, in natural scenes, participants use unique
information about the background context, independent of any
face information, to accurately register and track affect. Even
when no face information is present, the visual context is sufficient
to infer valence and arousal over time, and different observers
agree about the affective information provided by the context.
Background contextual information is an essential component
of our moment-to-moment emotional experience. It is equally
predictive of both neutral and evocative affect (SI Appendix, Fig.
S4D) and different basic emotion categories (SI Appendix, Fig.
S4E). Context is usually taken as having a modulatory influence
(14, 19, 20, 27), although recent theories suggest that context
might shape and influence the actual perception of emotion
signals (21). Our results provide clear evidence that the context
by itself is both sufficient and necessary for accurate judgments
of the perceived affect of people within that context and con-
textual information is used even when face and body information
is available. The context does not just uniformly amplify or
dampen the perceived affect of faces and bodies. Observers ac-
tively derive information from contextual information and face
and body information and combine them in a context-specific way
in real time. Importantly, these substantial contextual influences
were observed with a range of different video stimuli, including
those with and without interpersonal interactions, with posed or
spontaneous facial expressions, and with staged or natural scenes.
What might be the mechanisms underlying such context-based

dynamic affect recognition? Numerous empirical findings sug-
gest that human perceptual systems can extract meaningful dy-
namic gist information from natural scenes efficiently and rapidly
(14, 16, 22–26). Such scene gist information could carry emergent
properties at a more global or scene-wide scale, which would be
accessible through mechanisms of ensemble perception (22).
There are a couple of hypotheses about how this information
might be used: one hypothesis could be that visual background
context is used to support mental simulation of how one would
feel in a similar situation, which would be dependent on ob-
servers’ previous experiences (38). Alternatively, visual context
could be integrated in an inferential process based on a set of

perceptual or cognitive representations and attributions about
other people’s mental states (39). Future experiments using our
approach with a modified task could be used to distinguish these
hypotheses. The more important general point is that context is
not at the fringe of emotion recognition, but rather, it may shape
and transform emotion into a new holistic interpretation. This
might reflect a goal of the visual system: to represent emotion in
the most robust way by actively deriving information from con-
text because facial expressions in real life are often absent, am-
biguous, or nondiagnostic of emotion (40, 41). In summary, we
can better understand the perceptual and neural mechanisms of
emotion perception if we incorporate and measure the critical role
of contextual information. Our technique allows for this.
Although valence and arousal characterize the dimensional as-

pect of emotion, they do not fully account for discrete emotion
categories such as the difference between anger and fear (33).
However, our technique can be extended to categorical emotion as
well, and future studies can characterize in detail the conditions or
categories under which contextual information might be weighted
most strongly. When video frames in our experiment are classified
into emotion categories such as happiness, fear, and anger, there is
still a significant contribution of context information (SI Appendix,
Fig. S4E), suggesting that our approach can be adopted for use
with different emotion spaces (categorical or otherwise).
Our finding suggests that there might be a unique visual mech-

anism for extracting contextual information to derive affective
judgments of people. This has implications for other fields, in-
cluding the study of emotional intelligence (3) and emotion sim-
ulation (42). Although the widely studied construct of emotional
intelligence is highly debated (3), most of the major existing
emotional intelligence tests include some form of emotion per-
ception, recognition, or emotion understanding measure. These
measures usually rely on static, isolated, and decontextualized
pictures of faces. Our results suggest that any test of emotional
intelligence that incorporates a perceptual measure of emotion
recognition or emotion understanding (9, 10) needs to be revised
to take into account the separate but nearly as important factor
of context in emotion recognition. An individual may be able to
recognize static photos of facial emotions but fail to actually
understand the displayed emotion unless they successfully take
into account the context.
Emotional inference is equally important for computer vision,

which is at a stage now where machines are increasingly able to
recognize emotion with high accuracy in images and videos based
on facial expressions (43). However, our results reveal that hu-
man recognition of affect goes well beyond accessing image-level
features of a face. Instead, emotion recognition depends strongly
on the specific context. As computer vision models of emotion
recognition are increasingly incorporated into daily life, such as
security surveillance, personalized marketing, and social media,
it will be important to understand how humans actually recog-
nize emotion in the real world. Recent efforts to incorporate the
context have found that neural networks achieved moderately
higher accuracy when both body and contextual information
were used as inputs rather than just body alone (44). Although
these models are nowhere near as accurate as human observers,
the approach of using the context is promising. Indeed, our results
demonstrate that recognition of emotion is, at its heart, an issue
of context as much as it is about facial and body expressions.
Computer vision, neural, and social cognitive models, as well as
psychological measures of emotional intelligence, will benefit by
taking this into account.

Materials and Methods
We used 47 video clips in total in our experiments. The sets of video clips used
in different experiments do not overlap. Our library of videos, affect ratings,
and analysis code have been made available at https://osf.io/f9rxn/. In total,
we tested 393 healthy participants (205 females, mean age = 22.5 y). All
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participants gave informed consent before starting experiments. All partici-
pants were naive to the purpose of the experiment. The study was approved
by institutional review at the University of California, Berkeley. Participants,
stimuli, methods, and analyses are outlined in detail in SI Appendix.
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