
Journal of

Personalized 

Medicine

Article

Risk-Profile and Feature Selection Comparison in
Diabetic Retinopathy

Valeria Maeda-Gutiérrez 1,†, Carlos E. Galván-Tejada 1,*,† , Miguel Cruz 2, Jorge I. Galván-Tejada 1,
Hamurabi Gamboa-Rosales 1 , Alejandra García-Hernández 1, Huizilopoztli Luna-García 1 ,
Irma Gonzalez-Curiel 3 and Mónica Martínez-Acuña 3

����������
�������

Citation: Maeda-Gutiérrez, V.;

Galván-Tejada, C.E.; Cruz, M.;

Galván-Tejada, J.I.; Gamboa-Rosales,

H.; García-Hernández, A.;

Luna-García, H.; Gonzalez-Curiel,

I.E.; Martínez-Acuña, M. Risk-Profile

and Feature Selection Comparison in

Diabetic Retinopathy. J. Pers. Med.

2021, 11, 1327. https://doi.org/

10.3390/jpm11121327

Academic Editor: Ali

Salehzadeh-Yazdi and Mohieddin

Jafari

Received: 13 September 2021

Accepted: 25 November 2021

Published: 8 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147,
Centro 98000, Mexico; valeria.maeda@uaz.edu.mx (V.M.-G.); gatejo@uaz.edu.mx (J.I.G.-T.);
hamurabigr@uaz.edu.mx (H.G.-R.); alegarcia@uaz.edu.mx (A.G.-H.); hlugar@uaz.edu.mx (H.L.-G.)

2 Unidad de Investigación Médica en Bioquímica, Centro Médico Nacional Siglo XXI, Hospital de
Especialidades, Instituto Mexicano del Seguro Social, Mexico City, Av. Cuauhtémoc 330, Col. Doctores,
Del. Cuauhtémoc, Ciudad de Mexico 06720, Mexico; miguel.cruzlo@imss.gob.mx

3 Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Jardín Juarez 147,
Centro 98000, Mexico; irmacuriel@uaz.edu.mx (I.G.-C.); monicaimeldamtza@uaz.edu.mx (M.M.-A.)

* Correspondence: ericgalvan@uaz.edu.mx; Tel.: +52-492-5440968
† These authors contributed equally to this work.

Abstract: One of the main microvascular complications presented in the Mexican population is
diabetic retinopathy which affects 27.50% of individuals with type 2 diabetes. Therefore, the purpose
of this study is to construct a predictive model to find out the risk factors of this complication. The
dataset contained a total of 298 subjects, including clinical and paraclinical features. An analysis was
constructed using machine learning techniques including Boruta as a feature selection method, and
random forest as classification algorithm. The model was evaluated through a statistical test based
on sensitivity, specificity, area under the curve (AUC), and receiving operating characteristic (ROC)
curve. The results present significant values obtained by the model obtaining 69% of AUC. Moreover,
a risk evaluation was incorporated to evaluate the impact of the predictors. The proposed method
identifies creatinine, lipid treatment, glomerular filtration rate, waist hip ratio, total cholesterol, and
high density lipoprotein as risk factors in Mexican subjects. The odds ratio increases by 3.5916 times
for control patients which have high levels of cholesterol. It is possible to conclude that this proposed
methodology is a preliminary computer-aided diagnosis tool for clinical decision-helping to identify
the diagnosis of DR.

Keywords: diabetic retinopathy; feature selection; random forest; risk factors

1. Introduction

Diabetes Mellitus (DM) is a metabolic disorder characterized by hyperglycemia, re-
sulting from the inability of the pancreas to produce enough insulin [1].

Distinguished as a global health emergency, it affects more than 463 million people
worldwide; and it is expected to exceed 578 million by 2030 and 700 by 2045, thus becoming
the seventh leading cause of death in 2030 [2]. Another alarming aspect is the high
percentage of people with undiagnosed DM, which currently exceeds 50%, being in most
cases type 2 diabetes (T2D) [2]. T2D represents 90–95% of DM cases worldwide; results from
a pancreatic β cell dysfunction combined by insulin resistance. Furthermore, it can lead to
an increased risk of complications which impact people’s quality of life, their finances, and
generate an economic burden for the health system. It is important to point out that T2D is
prevalent in Latin Americans due to a combination of genetic and lifestyle risk factors [3].
For the specific case of Mexico, the annual cost generated by DM is 17 billion USD; it is also
in the list of the top ten countries with undiagnosed diabetics, where 4.9 million people
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have DM and do not know it. On the other hand, it is estimated that the prevalence of DM
by 2030 will be 17.2 million people and consequently it will increase by 5% in 2045 [2].

One of the main chronic complications of DM in Mexico is diabetic retinopathy (DR),
which occurs when there is excess glucose in the bloodstream that damages the blood
vessels in the retina, and this is the leading cause of blindness in working-age adults
(20–65 years) [4], being frequent in up to 40% of all those affected by DM. In addition, it
ranks third in direct costs, which include diagnostic and treatment procedures [5,6]. There
are five stages of DR. The first is “no apparent DR”; the second is “mild non-proliferative
DR” (NPDR) which is distinguished by the presence of some microaneurysms; “moderate
NPDR” is the third, characterized by the presence of microaneurysms, and intraretinal
hemorrhages. The fourth stage is “severe NPDR”; and the last stage is “proliferative
DR”. This presents neovascularization of the disc, retina, iris, hemorrhage, of the angle,
vitreous hemorrhage, or tractional retinal detachment [7]. There are many treatments for
DR, an eye examination by an ophthalmologist or optometrist is important. In addition,
high-quality fundus photographs can detect DR and serve as a tool. Several studies, taking
advantage of digital computing and artificial intelligence advances, have implemented
deep neural networks for automated detection of DR in retinal fundus photographs. The
implementation of convolutional neural networks (CNNs) for the recognition task of
DR stages have been successful in the medical field; some authors [8–11] used CNN
architectures such as AlexNet, GoogleNet, and VGGNet, where finally, significant results
were obtained.

Some research has focused on identifying risk factors for DR; Semeraro et al. [12],
quantify the individual risk for DR in T2D patients by using c-statistic, area under the curve,
and the Gonen and Heller concordance probability estimate (CPE) for the Cox proportional
hazard model. The external validation showed 0.767 and 0.697 for C-index and CPE, respec-
tively. The risk factors associated with DR were duration of DM, glycosylated hemoglobin
(HbA1C), systolic blood pressure, male gender, albuminuria, and DM therapy. Another ap-
proach conducted by Alfian et al. [13] proposed a Deep Neural Network (DNN) combined
with Recursive Feature Elimination (RFE) to provide early prediction of DR using known
risk factors. There were 13 attributes found, but the DM duration, subject’s fasting blood
sugar level (FBS), high density lipoprotein (HDL), age, and HbA1C were the significant risk
factors. Then, the authors compared the outcomes with several machine learning models:
k-Nearest Neighbor (KNN), C4.5 Decision Tree (DT), Support Vector Machine (SVM), Naïve
Bayes (NB), Random Forest(RF), and their proposed model (DNN-RFE); Finally, the area
under the curve for each model was 0.70 (KNN), 0.73 (DT), 0.71 (SVM), 0.71 (NB), 0.68 (RF),
and 0.80 (DNN-RFE). The investigation done by Wang et al. [14], focused on identifying a
set of laboratory tests that were the most important for DR prediction. In the analysis the
predictive model achieved 0.85 area under the curve on the derivation cohort and 0.77 on
the validation. The essential predictors for DR were: creatinine, HbA1C, neuropathy, DM
duration, age, nephropathy, WBC, hematocrit, and sodium.

As shown, many studies describe the implementation of different models of artificial
intelligence for the classification of the different stages of DR, and others to find risk factors
that are associated with this disease, but it remains unknown which factors are more
associated. The main contribution of this study focuses on identifying possible predictors
of DR. Thus, feature selection techniques are used to investigate the discriminative features
for DR, and to finally evaluate each attribute with the aim of knowing which of them are
predominant in the progress and the development of the DR.

2. Materials and Methods

In Figure 1, the entire procedure is divided into six basic steps: data acquisition,
data pre-processing, feature selection, data classification, data evaluation, and the risk
evaluation for each feature.
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Figure 1. Flowchart representing the proposed methodology.

2.1. Data Description

The dataset for this study was provided by the Unidad de Investigación Médica en
Bioquímica, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS). The
Mexican patients signed an informed consent letter and the protocol meets the Helsinki
criteria which were approved by the Ethics Committee of IMSS under the number R-2011-
785-018. Table 1 shows basic information, laboratory indicators, and medical treatment.
These data were extracted for each subject and used for the analysis.

Table 1. Features gathered from the Mexican dataset.

Feature Category Feature

Basic information EDU, SAL, SEX, AGE, AGE DX, WHR, BMI, SBP, DBP
USBP, UDBP

Biochemical indicators GLU, UREA, CRE, CHOL, HDL, LDL, TG, TCHOLU,
UHDL, ULDL, UTG, HBA1C, GFR

Additional information GB, MF, PG, RG, AB, INS, LIPIDS TX, HA-TX
Output DIABETIC RETINOPATHY

Note: EDU(Education, studies concluded by the subject); SAL (Salary, monthly income); SEX (subject sex);
AGE (subject age); AGE DX (age at diagnosis of diabetes); WHR (waist hip ratio); BMI (body mass index);
SBP (systolic blood pressure); DBP (diastolic blood pressure); USBP (systolic blood pressure uncorrected by
treatment); UDBP (diastolic blood pressure uncorrected by treatment); GLU (blood glucose levels); UREA (waste
product resulting from the breakdown of protein in the subject body); CRE (waste product produced by muscles
as part of regular activity); CHOL (fat-like substance that is found in all cells of the subject body); HDL (high
density lipoprotein); LDL (low density lipoprotein); TG (type of fat found in the subject body); TCHOLU (total
cholesterol uncorrected); UHDL (high density lipoprotein uncorrected by treatment); ULDL (low density lipopro-
tein uncorrected by treatment); UTG (triglycerides uncorrected by treatment); HBA1C (glycated hemoglobin);
GFR (glomerular filtration rate); GB (drug treatment); MF (drug treatment); PG (drug treatment); RG (drug treat-
ment); AB (drug treatment); INS (drug treatment); LIPIDS TX (lipids treatment); HA-TX (hypertension treatment).

The dataset is comprised of 32 input variables, and one categorical output. For this
study, there were a total of 298 participants. The case group comprises 149 T2D patients
with DR, and the control group comprised 149 T2D patients without DR. All subjects aged
between 30 and 84 years. There were 173 female and 125 male samples, accounting for
58.08% and 41.94%, respectively with the portion of female samples being high. Table 2
and Table 3 show the independent variable features, indicating values as mean, standard
deviation, and percentages (%). Table 4 displays the categorical attributes (0-No, 1-Yes),
which ”1” indicates that the subject received medical treatment, and ”0” means that the
subject is off medical treatment, and finally, Table 5 shows the p-values aiming to compare
cases and controls.
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Table 2. General characteristics of all the subjects included.

Feature Cases (n = 149) Controls (n = 149)

Education, p-value = <2.2 × 10−16

Elementary school
Secondary school
Technical school

High school
Professional
Postgraduate

25 (16.77%)
33 (22.14%)
24 (16.10%)
30 (20.13%)
34 (22.81%)

3 (2.01)

39 (26.17%)
32 (21.47%)
17 (11.40%)
12 (8.05%)

44 (29.53%)
5 (3.35%)

Salary, p-value = <2.2 × 10−16

Less than $2000.00
Between $2000.00 and $5000.00

More than $5000.00

35 (23.48%)
66 (44.29%)
48 (32.21%)

37 (24.83%)
63 (42.28%)
49 (32.88%)

Sex, p-value = <2.2 × 10−16

Female
Male

75 (50.33%)
74 (49.66%)

98 (65.77%)
51 (34.22%)

Age (years) 57 ± 9.96 55 ± 9.42
Age DX (years) 44.09 ± 7.55 45 ± 7.06
WHR (cm/cm) 0.94 ± 0.07 0.91 ± 0.07
BMI (kg/m2) 29.55 ± 5.00 30.02 ± 5.07
SBP (mmHg) 125 ± 15.88 123.41 ± 14.95
DBP (mmHg) 81.93 ± 11.09 83.82 ± 11.11

USBP (mmHg) 122.32 ± 15.01 120.06 ± 13.92
UDBP (mmHg) 80.27 ± 10.65 82.14 ± 10.62

Table 3. Biochemical indicators of all the subjects included.

Feature Cases (n = 149) Controls (n = 149)

Glucose (mg/dL) 162.02 ± 70.44 165.51 ± 68.67
Urea (mg/dL) 38.14 ± 22.83 34.45 ± 16.91

Creatinine (mg/dL) 0.96 ± 0.59 0.84 ± 0.28
Cholesterol (mg/dL) 209.54 ± 46.38 219.55 ± 52.56

HDL (mg/dL) 39.24 ± 12.88 43.95 ± 13.34
LDL (mg/dL) 148.50 ± 39.13 154.86 ± 41.55

Triglycerides (mg/dL) 231.49 ± 157.77 214.16 ± 112.94
TCHOLU (mg/dL) 184.71 ± 40.29 201.58 ± 46.47

UHDL (mg/dL) 41.71 ± 12.40 45.64 ± 13.37
ULDL (mg/dL) 125.43 ± 33.15 138.04 ± 34.55
UTG (mg/dL) 208.07 ± 152.53 198.26 ± 111.44

HBA1C (mmol/L) 7.74 ± 3.15 7.47 ± 2.58
GFR (mL/min) 98.31 ± 41.27 101.88 ± 33.65

Table 4. Additional information of all the subjects included.

Feature Cases (n = 149) Controls (n = 149)

Glibenclamide

0
1

74 (49.66%)
75 (50.33%)

87 (58.38%)
62 (41.61%)

Metformin

0
1

35 (23.48%)
114 (76.51%)

32 (21.41%)
117 (78.52%)
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Table 4. Cont.

Feature Cases (n = 149) Controls (n = 149)

Pioglitazone

0
1

147 (98.65%)
2 (1.34%)

144 (96.64%)
5 (3.35%)

Rosiglitazone

0
1

149 (100%)
-

149 (100%)
-

Acarbose

0
1

147 (98.65%)
2 (1.34%)

148 (99.32%)
1 (0.67%)

Insuline

0
1

103 (69.12%)
46 (30.87%)

116 (77.85%)
33 (22.14%)

HA.TX

0
1

100 (67.11%)
49 (32.88%)

99 (66.44%)
50 (33.55%)

Lipids TX

0
1

75 (50.33%)
74 (49.33%)

96 (64.42%)
53 (35.57%)

Table 5. p-value of each feature.

p-Value

Features Cases Controls

Education <2.2 × 10−16 <2.2 × 10−16

Salary <2.2 × 10−16 <2.2 × 10−16

Sex <2.2 × 10−16 <2.2 × 10−16

Age <2.2 × 10−16 <2.2 × 10−16

Age DX <2.2 × 10−16 <2.2 × 10−16

WHR 4.054 × 10−16 <2.2 × 10−16

BMI <2.2 × 10−16 <2.2 × 10−16

SBP <2.2 × 10−16 <2.2 × 10−16

DBP <2.2 × 10−16 <2.2 × 10−16

USBP <2.2 × 10−16 <2.2 × 10−16

UDBP <2.2 × 10−16 <2.2 × 10−16

Glucose <2.2 × 10−16 <2.2 × 10−16

Urea <2.2 × 10−16 <2.2 × 10−16

Creatinine 0.515 <2.2 × 10−16

Cholesterol <2.2 × 10−16 <2.2 × 10−16

HDL <2.2 × 10−16 <2.2 × 10−16

LDL <2.2 × 10−16 <2.2 × 10−16

Triglycerides <2.2 × 10−16 <2.2 × 10−16

TCHOLU <2.2 × 10−16 <2.2 × 10−16

UHDL <2.2 × 10−16 <2.2 × 10−16

ULDL <2.2 × 10−16 <2.2 × 10−16

UTG <2.2 × 10−16 <2.2 × 10−16

HBA1C <2.2 × 10−16 <2.2 × 10−16

GFR <2.2 × 10−16 <2.2 × 10−16
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Table 5. Cont.

p-Value

Features Cases Controls

Glibenclamide <2.2 × 10−16 <2.2 × 10−16

Metformin 3.87 × 10−10 <2.2 × 10−16

Pioglitazone <2.2 × 10−16 0.02484
Rosiglitazone NA NA

Acarbose <2.2 × 10−16 0.3189
Insuline <2.2 × 10−16 1.224 × 10−09

HA.TX <2.2 × 10−16 8.107 × 10−15

Lipids TX <2.2 × 10−16 8.086 × 10−16

2.2. Data Pre-Processing

For the pre-processing stage, the first step consisted of manually removing those input
features (ID, neuropathy, and nephropathy cases) from the original dataset that are not
relevant for this study. Furthermore, the remaining input features presented some missing
values (GFR, SBP, DBP, USBP, UDBP) represented as NA were imputed with the value
calculated mean of the non-missing observations.

2.3. Feature Selection

Boruta is a wrapper method based on Random Forest (RF). This algorithm was applied
to select all the possible predictors of DR. In short, Boruta expands the data set by creating
“shadow” variables for each input variable; these added attributes are shuffled to eliminate
their correlations with the response; an RF classifier that uses all the features is executed,
both the original and the shadow ones, and the Z scores are collected; the Z score is the
measure with which the importance of each attribute is determined by assigning three
possible labels to each feature; rejected, tentative, and confirmed, then the maximum Z
score among the shadow attributes (MZSA) is found to assign a value to each attribute
that scored better than MZSA. In addition, for an attribute with indeterminate importance,
a two-sided test of equality is performed with the MZSA, where the attributes that have
significantly less importance than MZSA are rejected. Finally, those that have significantly
greater importance are considered [15].

2.4. Classification Method

The supervised machine learning algorithms can learn features of the target classes
from the training set and are capable of identifying these learned features in the testing set.
An RF approach was implemented, in order to develop a general model that identifies a
diabetic patient that also has DR or a diabetic patient that does not have DR.

Random Forest

Developed by Breiman et al. [16], RF is a popular machine learning algorithm. This
technique is a combination of decision trees (DT); each DT provides a vote; then, the results
are acquired by adding the vote from different decision trees to decide the final class,
according to the principle of majority.

The specific steps are described as follows:

• First, the dataset D1 having mxn is given; the samples are randomly selected using
the bootstrap method, which is used to create a new dataset D2.

• Next, the RF algorithm is trained to generate a DT for every sample; subsequently, the
unbiased error is estimated.

• In this step, the final prediction is calculated based on the number of votes of the DT.
• Finally, the samples that have not been selected in the training process can be used in

the testing process to evaluate the performance of the classifier.
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2.5. Validation Process

To evaluate the performance and validate the classification model obtained, the confu-
sion matrix, the ROC curve, and the AUC value are measured. Two possible outputs in
a classification problem are 0 and 1; they can be represented within a confusion matrix.
This table contains True Positives (TP), True Negatives (TN), False Positives (FP), and
False Negatives (FN). As well as the diagonal which represents the observations that are
correctly classified. On the contrary, those that remain outside the diagonal correspond to
the observations that were misclassified.

It is possible to obtain other important metrics to evaluate the quality of the model by
analyzing how well it performs on test data. However, in this work it was used to calculate
the following metrics: sensitivity, specificity, and Area Under the Curve (AUC).

Sensitivity (recall), represents the portion of true positives; in other words, the ability
to identify those with a DR condition, shown in Equation (1).

Sensitivity =
TP

TP + FN
(1)

Specificity, measures the portion of true negatives that are correctly identified; e.g.,:
the ability to identify those without a DR condition, shown in Equation (2).

Speci f icity =
TN

TN + FP
(2)

The ROC curve plots the relationship between sensitivity (y-axis) and specificity
(x-axis), providing important information about the performance of a binary classifier.
This analysis can discriminate between two classes: with DR (diseased) or without DR
(non-diseased). Another significant metric complemented with the ROC curve is AUC,
which gives the probability that a random sample would be correctly classified by the
model. In practice, the AUC value ranges from 0.5 to 1, wherein in the case of perfect class
separation (performance), the AUC will be the higher value. [17,18]

2.6. Risk Evaluation

To evaluate the effect of the predictor variables obtained by boruta, both the relative
risk and odds ratio were evaluated in our study population.

The Relative Risk (RR) or risk ratio is a measure of association between the exposure
and the control group or a particular outcome; it is calculated by the Equation (3).

RelativeRisk =
Risko f ExposureGroup

Risko f UnexposedGroup
(3)

Assuming the causal effect between the two groups: cases and controls, the values of
RR can be interpreted as follows:

• RR = 1.0, indicates no difference between the two groups.
• RR < 1.0, indicates a negative association; the risk of the microvascular complication

(DR) decrease when the factor risk is present.
• RR > 1.0, indicates a positive association; the risk of the microvascular complication

(DR) increase when the risk factor is present.

The Odds Ratio (OR) defined by the odds of disease in the exposed group divided by
the odds of disease in the unexposed group; are often interpreted as the RR.

All the methodology was developed in R (version 4.0.3) [19]. The libraries used
were Boruta (version 7.0) [15], caret (version 6.0-86) [20], MLeval (version 0.3) [21], fsmb
(version 4.0.5) [22], and epitools (version 4.0.5) [23].
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3. Experiments and Results

The dataset used in this study was extracted from the Centro Médico Nacional Siglo XXI,
IMSS. A total of 298 subjects were divided into two classes: cases (n = 149) and controls
(n = 149), where the cases present T2D with DR, and the control group are the subjects
with T2D. There were 32 input variables and one outcome variable, that were used for
the development of the model. The input variables were: basic information, biochemical
indicators, and the medical treatment.

First, a feature selection was performed using Boruta; this method captures all the
relevant features for the classification in terms of importance. Figure 2 indicates the
importance on y − axis of the analyzed attributes (x − axis). The blue box plots correspond
to the shadow attributes. There are only three: shadow minimum, average, and maximum
Z score; the red box-plots represent the irrelevant features; the yellow box-plots correspond
to the tentative attributes; and the green box-plots correspond to the confirmed features.

Figure 2. Feature selection process according by Boruta.

Aiming to obtain the relevant features, the Boruta algorithm performed 499 iterations.
The selection results are summarized in Table 6. In this case, out of 32 features, 25 are
rejected, one is tentative, and six are confirmed. In addition, the Norm Hits are the number
of the RF runs in which this feature was more important than the shadow one.

Table 6. Feature selection results—Confirmed attributes.

No. Attribute
Feature Selection-Boruta

Norm Hits

1 Creatinine 0.6355
2 Lipids TX 0.7054
3 GFR 0.7615
4 WHR 0.8316
5 TCHOLU 0.8537
6 HDL 0.8777

Based on the result: Creatinine, Lipids TX, GFR, WHR, TCHOLU, and HDL are
possible predictors of DR. On the other hand, these confirmed attributes are relevant for
the classification of DR.

The selected attributes serve as the input variables for the RF algorithm. Basically,
RF creates numerous DT’s that produce more accurate classifications. RF needs some
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additional hyper-parameters that should be considered. The type of RF is “classification”,
and the number of trees (ntree) is 500. To evaluate the performance of the model, a K-Fold
Cross-Validation (KCV) was performed, and calculated its sensitivity, specificity, confusion
matrix, ROC curve, and AUC value. In this study, 10-Fold CV was implemented, it consists
in splitting the dataset in K independent subsets, in this case were 10, in turn nine of these
subsets are used to train the RF classifier, while the remaining one is used to evaluate
the error.

Figure 3 shows the statistical model performance obtained by implementing Boruta + RF
with 10-Folds CV. This method presented an AUC of 69% and an Out-Of-Bag (OOB) error
of 37.92%.

Figure 3. ROC curve obtained for the model based on the key features identified by Boruta.

According to the Fawcett criterion, the interpretation of the AUC values is as follows:

• Bad test = (0.5, 0.6)
• Regular test = (0.6, 0.75)
• Good test = (0.75, 0.9)
• Very good test = (0.9, 0.97)
• Excellent test = (0.97, 1) [24]

These values were used to interpret the performance of the model.
Table 7 shows the detail performance of the RF model. This model obtained an AUC

value of 69% indicating that the model has the ability to diagnose patients with DR. In
medical diagnosis, sensitivity provides the portion of positive instances that were correctly
classified, and the specificity, the portion of negative instances that were correctly classified.
The results indicate that the RF model is capable of classifying both cases: subjects with
T2D and DR; otherwise, subjects with T2D without DR.

Table 7. Performance metrics of RF classifier.

Classifier Sensitivity Specificity AUC

Random Forest 0.6422 0.6169 0.69

The confusion matrix of the RF model is presented in Table 8. Depending on the
results it is possible to evaluate the classifier and determine which classes are highlighted.
The off-diagonal corresponds to the observations that were incorrectly classified, and the
correct predictions are located in the diagonal.
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Table 8. Confusion matrix of the RF classifier.

Reference

0 1 Class. Error

Prediction 0 91 58 0.3892
1 55 94 0.3691

In order to evaluate those features that imply the development of DR, both groups
were divided by condition. Regarding the controls, 53 of them have lipid treatment; in
relation to GFR, 59 present levels below 90 mL/min; with respect to the WHR index, 56
of them showed higher values compared to the normal index; 69 of type 2 diabetics have
high levels of total cholesterol; likewise, in 133 subjects low levels of HDL were found; and
finally, in regards to creatinine, 24 controls have values out of range, as shown in Table 9.

Table 9. Participants groups divided by condition.

Lipids Profile Cases Controls Total

Lipids TX 74 53 127
GFR 66 59 125

WHR 72 56 128
TCHOLU 45 69 114

HDL 139 133 272
Creatinine 37 24 61

Total 433 394 827

With the above, the RR associated with having DR was calculated, as shown in
Table 10. The results show a statistically significant positive association between DR and
the predictors found by Boruta, in which there is a risk of suffering from DR if a control
subject has one of these factors.

Table 10. Risk Ratio with 95% C.I.

Lipids Profile Estimate Lower Upper

Lipids TX 1 NA NA
GFR 1.1310 0.8575 1.4916

WHR 1.0483 0.7889 1.3930
TCHOLU 1.4503 1.1257 1.8686

HDL 1.1716 0.9228 1.4876
Creatinine 0.9427 0.6490 1.3693

In Table 11 the odds ratio was calculated; which is a measure of association that
estimates how the presence of certain factors influences the development of a condition. In
the present study, the variables confirmed by Boruta were analyzed and it was found that
the risk increases if any of these factors are present. For example, the odds of developing
DR increases 2.0575 times if the subject presents levels of GFR below 90 mL/min; regarding
total cholesterol, this increases the odds of suffering DR by 3.5916 times.
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Table 11. Odds Ratio with 95% C.I.

Lipids Profile Estimate Lower Upper

Lipids TX 1 NA NA
GFR 1.2466 0.7571 2.0575

WHR 1.0854 0.6596 1.7877
TCHOLU 2.1316 1.2759 3.5916

HDL 1.3342 0.8726 2.0494
Creatinine 0.9073 0.4815 1.6910

4. Discussion and Conclusions

In this section, the discussion and conclusion of the results obtained are presented.
Initially, the Mexican dataset contained 47 input features. Nevertheless, a pre-processing
stage was performed, removing all the variables that are not relevant to this study. Thus,
the final dataset was comprised of 32 features listed in Table 1. The total number of patients
used is 298, of which 149 (cases) correspond to diabetic patients with DR, and the remaining
149 (controls) correspond to diabetic patients.

This work employed machine learning algorithms to classify DR cases among T2D
patients and provided possible risk factors. Feature selection has been used in various
domains [25,26] to improve the model prediction. The main idea of this method is to
choose important features that are essential for the discovery of new knowledge [27]; a
small subset of the significant features subsequently reduce the computation time. Boruta
was implemented for this task, the wrapper algorithm determines the importance for each
feature; the benefits of this algorithm is that it considers all attributes that are related to the
output, and it considers multi-variable relationships where it can also explore interactions
between variables [28]; the risk factors for DR were identified with the most important
predictors being lipids treatment, glomerular filtration rate, waist hip-ratio, total cholesterol,
high density lipoprotein, and creatinine. These six features comprise the new dataset. RF
has been successfully used in many healthcare approaches, such as the development of a
model to predict the severity of a COVID-19 case and the possible outcome, recovery, or
death [29], as well as for the prediction of anxiety, depression, and stress [30], the diagnosis
and prognostic for breast cancer [31], and the modelling for the diagnosis of pediatric
pneumonia from chest X-ray images [32], among others. An RF model was built to classify
the two different classes of subjects; then, an approach of 10-Fold CV was applied. Once the
model has been built, it is important to evaluate the performance; the prediction of the RF
model was based on different metrics used in clinical areas; sensitivity provides the portion
of positive instances that were classified correctly, specificity is the portion of negative
instances that were correctly classified, the ROC curve is the plot of the sensitivity versus
1-specificity, this curve includes all the possible decision thresholds from a diagnostic
test result; and the AUC value demonstrates the performance of the model to detect or
classify if a patient has the disease. An ideal performance has an AUC of 1; conversely,
a value < 0.5 is considered to have a reasonably discriminating ability. Table 12 presents
a comparison of the different approaches used; in the first model, the 32 features were
evaluated, while the second model uses Boruta, which is in charge of determining the
importance of each feature. The prediction of both models is in an acceptable performance
according to the Fawcett criterion. The general model, which submitted 32 attributes, had
lower results in terms of sensitivity, specificity, and AUC. On the other hand, the model
with only six features obtained the highest results, and it demonstrated the effectiveness of
implementing feature selection.
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Table 12. Results for DR classification.

Sensitivity Specificity AUC

32 features + RF 0.5709 0.5634 0.61
Boruta approach + RF 0.6422 0.6169 0.69

To compare the RF results with other machine learning algorithms, using the six
characteristics obtained by Boruta, Table 13 shows the sensitivity, specificity, and AUC
values of RF, Support Vector Machine (SVM), and Logistic Regression (LR) models. It can be
concluded that in terms of AUC values and specificity, RF achieved the best performance.

Table 13. Comparison of machine learning models.

Classifier Sensitivity Specificity AUC

RF 0.6422 0.6169 0.69
LR 0.6714 0.5858 0.68

SVM 0.6647 0.5882 0.67

There are many DR risk factors cited in the literature such as duration of DM, high
blood glucose, poor blood glucose control, high blood pressure, dyslipidemia/high choles-
terol, nephropathy, obesity, insulin treatment, smoking, ethnicity, and age [4,33–37]. The
study has demonstrated the relationship between DR and Lipids TX + GFR + WHR +
TCHOLU + HDL + Creatinine. Initially, the research of Klein et al. [38], demonstrated
that HDL and the cholesterol levels were not related to the severity of the DR, but were
a significant factor in describing the severity of retinal hard exudate. Similarly, the study
of Chang and Wu [39] confirmed the association of total cholesterol with the presence
of hard exudates in patients with DR. Additionally, Müller et al. [40], investigated the
association between DM and lipid-related biomarkers and DR in hemodialysis patients,
their results showed that DR was associated with HDL. Besides, Van et al. [41], prove
that the prevalence of DR was positively associated with cholesterol. It is important to
mention that HDL is directly related to macrovascular complications of T2D. Another
serious complication of T2D is diabetic nephropathy (DN), which is more common in
subjects with DR; and the severity of DN increases with DR. Zang et al. [42] conclude that
serum creatinine and GFR are associated with the presence and severity of DR. Likewise,
El Haddad et al. [43], study the prevalence of DR, demonstrating the significant factors
related to the occurrence of DR; and it was found that the duration of DM was the only risk
factor associated with mild NPR, while high levels of serum creatinine, cholesterol, and
triglycerides were significantly associated with the occurrence of proliferative retinopathy.
On the other hand, the obesity in individuals with DM is associated with DR, specially the
abdominal obesity and the increased WHR were correlated with the DR but not with the
severity [44]. Klein et al. [45], suggest that WHR and index of regional body fat distribution
is associated with DR. On the other hand with the aim of knowing the impact of each risk
factor, a risk evaluation was done. The RR and OR are the most ubiquitous measures of
association and risk quantification in medical research [46]. With regard to Lipids TX, the
dataset only mentions whether the subjects are under medical lipid treatment. It should be
noted that if the patient is undergoing the treatment and still has high cholesterol levels
he or she is prone to developing DR. The results showed a positive statistical association,
the development of DR increase 3.5916 times if the control patient presents high levels of
cholesterol, which is a strong indicator of DR.

In conclusion, this paper focuses on identifying the predictors of DR based on a
methodology contained in five main stages. For the feature selection process Boruta has
confirmed six attributes; then, a classification stage was done using RF; afterward, the
performance measures were calculated. Finally, the model achieved 69% of AUC, demon-
strating the effectiveness of classifying patients with DR. A timely diagnosis, continuous
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medical care, and effective medical treatments are necessary; there is a need to identify risk
factors related with DR which may facilitate a better understanding of it. These results can
be used to facilitate the development of a preliminary tool that can be useful to support spe-
cialists in the diagnosis of DR, and may improve their decision-making in the management
of this diabetic complication. For future work, it would be interesting to include a dataset
with DR images of Mexican subjects which probably allows increasing the performance.
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